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ABSTRACT In this study, a multi-level path planning system is proposed for indoor search and rescue
operations. Requirements for the path planning system are derived based on the operational concept of the
integrated indoor navigation system. Different aspects of various path planning algorithms are assessed, and
their suitability to search and rescue operations in structured indoor environments is investigated. A five-
step path planning system is proposed, which consists of map pre-processing, segment path planning, graph
processing, route optimization, and path post-processing. The proposed method addresses a multi-goal path
planning problem in a multi-story building in a computationally efficient way by adopting a graph-based
approach while satisfying such requirements as clearance conditions in the pre- and post-processing steps.
Furthermore, a multi-query approach is adopted to exploit the response time and earn flexibility with respect
to environmental changes. The effectiveness of the proposed path planning system is demonstrated through
numerical simulations. The proposedmulti-level path planning system successfully adapts to complex indoor
environments, enabling more effective navigation for search and rescue operations. Additionally, the system
exhibits a high degree of flexibility in response to environmental changes, ensuring that the path planning
remains robust and reliable even in dynamically changing situations.

INDEX TERMS Path planning, indoor navigation, path optimization, linear programming, dynamic
environment.

I. INTRODUCTION
Searching the interior of a building on fire and rescuing
victims is one of the most important and dangerous aspects
of a firefighter’s duty. Although there are many studies on
autonomous or remotely controlled robots that help with
mapping, situational assessment, monitoring, and searching
for victims, deployment of firefighters is still inevitable in
many cases. Completing the search and rescue (SAR) oper-
ation as quickly as possible is important to the safety of
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firefighters and victims. However, finding a way to reach the
victims inside a building on fire, especially with a compli-
cated structure, is extremely difficult due to blackout, flames,
smoke, and noise. Furthermore, the fire situation may change
rapidly, which makes it more difficult for firefighters to make
the right decisions every time. Therefore, generating a safe
and efficient path and providing it to firefighters can signifi-
cantly contribute to SAR operations.

Recent studies have focused on high-dimensional path
planning problems for robotic urban SAR (USAR) and
wilderness SAR (WiSAR) operations [1], [2], [3], [4], [5].
In comparison, a systems perspective of manned indoor
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USAR operations has not been sufficiently studied. Human-
like path planning in indoor environments [6], [7] and
human-robot interaction [8], [9], [10] are studied. An indoor
navigation and evacuation path planning framework based
on internet of things (IoT) was proposed [11], and an
individual-based framework for emergency evacuation guid-
ance was proposed [12]. Note that an integrated indoor nav-
igation system consists of several subsystems. Among them,
path planning is a critical component of the integrated indoor
navigation system for SAR operations. In addition, mapping,
localization, and finding victims are all challenging tasks.
In general, the floor plans of the building are available in
advance so that they can be directly utilized to generate
the map. Instead of global localization based on a global
navigation satellite system (GNSS), relative localization with
respect to the initial position is widely used in GNSS-denied
environments. On the other hand, if no prior information is
available about the structure, simultaneous localization and
mapping (SLAM) approaches based on lidar or vision can be
utilized [13].

Many algorithms have been developed that plan a path in
an environment with obstacles. The most popular schemes
for many applications are A* [14] and a rapidly exploring
random tree (RRT) [15], [16], [17]. A* has useful charac-
teristics, such as completeness, optimality, and an optimal
efficiency, and RRTs are well known for their efficiency in
a high-dimensional space. In the effort to improve RRTs,
several variants have been proposed. RRT-connect improves
the rate of convergence by building two RRTs rooted at the
start and the goal [18], [19], and RRT* features asymptotic
optimality [20]. A natural combination of the two variants is
an RRT*-connect [21]. Other variants, such as T-RRT [22],
T-RRT*, AT-RRT [23], and neural RRT* [24], have been
proposed. Multi-query algorithms based on roadmaps such
as the probabilistic roadmap (PRM) planner [25], [26] and
its asymptotically optimal version PRM* [20] were also
proposed. In recent years, learning-based algorithms were
proposed [27], [28], [29], [30]. The path planning problem is
also widely studied in relation to ground vehicles [31], [32],
[33] and unmanned aerial vehicles [34], [35], [36], [37].

Reinforcement learning (RL) has become a prominent
approach for addressing complex path planning problems,
especially in dynamic and partially observable environ-
ments. Prominent RL-based path planning algorithms include
Q-learning, deep Q-networks (DQNs) [38], proximal policy
optimization (PPO) [39], and recent methods such as soft
actor-critic (SAC) [40] and twin delayed deep determinis-
tic policy gradient (TD3) [41]. Q-learning uses a Q-table
to represent expected cumulative rewards for state-action
pairs but suffers from scalability issues due to the curse of
dimensionality. DQNs address this issue by integrating deep
learning techniques to approximate Q-values. PPO, on the
other hand, is a policy optimization method that balances
exploration and exploitation. SAC and TD3 are advanced
off-policy algorithms that improve sample efficiency and

stability in learning. These RL-based algorithms have been
applied to indoor path planning with varying degrees of suc-
cess, offering different strengths and limitations compared to
the proposed method in this paper.

Most methods are aimed at finding a feasible solution.
However, it is also important to remove redundant motion
while keeping the path length as short as possible. Path
pruning is a simple technique used to decrease the path length,
which considers all nodes of the path. On the other hand, the
shortcut technique considers all configurations on the path,
which results in shorter paths in general. The random shortcut
technique is one of the most widely adopted methods, and
several variants exist [42].

Maintaining a proper clearance throughout the path is also
important in various aspects. Geraerts and Overmars pro-
posed an algorithm that maximizes the path clearance for
safety margin [43]. The generalized Voronoi diagram (GVD)
was utilized to create a high-clearance roadmap [44], and the
shortest path was extracted from the roadmap using Dijkstra’s
algorithm. However, creating the GVDmay be impractical in
high-degree-of-freedom (DOF) problems. Therefore, approx-
imate algorithms have been proposed to reduce the computa-
tional burden of the GVD method. Amersdorfer and Meurer
proposed an equidistant tool path planning strategy [45].
Another approach to maximize path clearance is called the
retraction technique. The PRM nodes are randomly sampled
on the medial axis (MAPRM) [46], [47], [48], [49], or the
initial path produced by the PRM is modified [50], [51], [52].
The retraction technique can also be combined with RRTs,
such as in retraction-based RRT [53], [54] and selective
retraction-based RRT (SR-RRT) [55]. However, a large clear-
ance can make it difficult to keep track of the wall, which is
dangerous in buildings on fire, especially under low visibility
conditions. Therefore, most of the existing clearance-based
path planning and optimization methods cannot be directly
applied to the problem of indoor SAR operations.

In this study, the operational concept of the integrated
indoor navigation system is reviewed. Then the requirements
for the path planning system are derived. Existing path plan-
ning algorithms are assessed in various aspects, and their
suitability to indoor USAR operations is evaluated. The pro-
posed path planning system consists of five steps: map pre-
processing, segment path planning, graph processing, route
optimization, and path post-processing. The effectiveness of
the proposed path planning system is demonstrated through
numerical simulations.

The main contributions of this study are as follows. First,
detailed requirements for a path planning system to per-
form SAR operations are derived. The derived requirements
can provide the specific direction of further research for
an indoor disaster response system. Second, a bottom-up
approach with segment path planning is proposed to over-
come the limitations of the Euclidean distance metric. The
proposed graph-building approach significantly simplifies a
3D multi-goal path planning problem into a graph problem.
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Third, a graph reduction method is adopted to minimize
the scale of the route optimization problem in a multi-story
building. The size of an NP-hard route optimization prob-
lem can be substantially reduced by applying the proposed
graph reduction method so that exact algorithms can be used
instead of suboptimal or heuristic algorithms. Finally, a novel
path post-processing algorithm is proposed to meet the SAR
operation requirements. The proposed path post-processing
algorithm can be used for any low-quality paths to ensure
safety, optimality, and smoothness.

This paper is organized as follows. In Sec. II, the basic
requirements and assumptions for the path planning system
are described. In Sec. III, a graph-based path planning sys-
tem for indoor search and rescue operations is designed.
In Sec. IV, the performance of the path planning system is
demonstrated using numerical simulations. Finally, Sec. V
concludes this paper.

II. PROBLEM STATEMENT
In this section, the basic requirements and assumptions for the
path planning system are described. The path planning system
operates in an integrated indoor navigation system, whose
operational environment imposes various restrictions on the
design of the path planning system. First, the distinct charac-
teristics of the search and rescue operations are analyzed and
translated into the formal requirements of the path planning
system. Proper assumptions are made so that the problem can
be formally formulated; therefore, suitable existing methods
can be applied to solve the problem.

A. OPERATIONAL CONCEPT
Let us briefly introduce the operational concept of the inte-
grated indoor navigation system, within which the path plan-
ning system works. Once a fire report is received, the search
and rescue operation is initiated, and the rescue team is
dispatched to the fire scene. In general, a few minutes are
given for preparation before the team arrives (response time).
In the meantime, the given map can be pre-processed and the
roadmap can be generated for fast onsite path planning. Fur-
thermore, some of the segments can be planned in advance at
this stage. The rescue team enters the building with a portable
device that can detect the signal from the mobile device of
the targets, i.e., victims. The position of the team inside the
building is continuously tracked by using the pedestrian dead
reckoning (PDR) technique. These two pieces of information
are sent to the command and control center and combined
to compute the location of the targets. Once the targets are
found, the path from the current location to the prescribed exit
via all the targets can be generated. Then, the team follows the
path displayed on the screen of the portable device. The path
can be updated during the operation in case of a change in the
situation.

B. SYSTEM REQUIREMENTS
The requirements for the path planning system are derived
based on the operational concept. The requirements are

related to i) limited visibility, ii) the variability and unpre-
dictability of the indoor disaster scene, iii) the uncertainty
of the sensor measurements, iv) the onsite communication
capability, and v) the computing power of the portable device.

First, the clearance of the path against the wall should not
exceed a prescribed limit. In general, a fire in the building
is accompanied by thick smoke and an electrical shutdown.
As a result, the visibility can be significantly reduced inside a
building that is on fire. In such situations, the walls can serve
as important landmarks helping the team locate themselves.
Consequently, it is strongly preferred that the path maintains
a small clearance against the wall while avoiding penetrating
large empty spaces.

Second, it is desired that the path planning system
exploit the response time. In general, it takes approximately
5-10 minutes for a team to arrive at the fire scene. Preliminary
work performed during this period can contribute to reducing
the onsite computational load. Hence, the path planning sys-
tem should be able to utilize the available information.

Third, path planning should be completed promptly.
Despite the pre-processing procedure, it may take a consid-
erable amount of time to plan the entire path. The computa-
tional load tends to increase sharply as the number of targets,
floors, and stairs increases, even though the path planning
problem is 2-dimensional without any path constraints.More-
over, the internal structure of some buildings may be highly
cluttered with many narrow passages, which will slow down
the convergence rate of most path planning algorithms. The
prolonged path calculation can lead to a dangerous situation
in case of an emergency. Minimization and upper bounding
of the computation time become even more important in case
i), where the communication between the rescue team and the
command and control center is lost, and in case ii), where the
computation has to be performed solely on a portable device
whose computing power is highly limited compared to the
main computer. Therefore, it is important to keep track of the
computational complexities of the individual algorithms used
in the path planning system.

Fourth, the path planning algorithm should have flexibility
and adaptability to a certain extent. Sometimes, the planned
path should be modified or recreated during the operation
under certain conditions. Note that the given floor plan may
not be up-to-date, and the current building may significantly
differ from the map due to maintenance or renovation. More-
over, the interior structure of the building can be damaged
and deformed due to fire, so that the path created based on the
original map is no longer valid. Therefore, the target informa-
tion can be updated as the operation progresses. It is impor-
tant to cope with such unpredictable incidents with minimal
additional computation, which can be done by adjusting just
a part of the entire path or utilizing the information obtained
during previous path planning.

Finally, it is favorable that the path is consistent with
human intuition and easy to recognize, even on a small screen.
Some path planning algorithms result in a highly jagged path.
Such unnecessary complexity of the path can be too difficult
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TABLE 1. Summary of the system requirements.

to understand instantly, especially in an urgent situation.
Therefore, the resulting path should be smooth enough with-
out any unnecessary local detours. The system requirements
are summarized in Table 1.

C. PATH PLANNING ALGORITHMS
Let us briefly explain the path planning algorithms consid-
ered in this study. Various existing methods are investigated
and evaluated for the specific problem considered in this
study. The basic indoor path planning problem is to find a
continuous path that connects the start position and the goal
position while avoiding collision with known obstacles. The
performance of the algorithms can be measured in terms of
completeness, optimality, and computational efficiency.

First, grid-based algorithms can be very effective for
low-dimensional problems due to their completeness and
optimality. Furthermore, narrow passages, which are com-
mon in indoor path planning problems, can be easily handled.
However, grid-based algorithms become computationally
expensive as the grids become finer and the sheer size of
the map increases. Second, geometric algorithms work intu-
itively, but they can no longer be useful when the obstacles
are not polygonal or convex. Third, computationally effi-
cient algorithms based on potential fields, such as [56], have
been proposed, which are usually not suitable for indoor
path planning problems because they can be trapped in local
minima. Fourth, sampling-based algorithms are well known
for their performance in high-dimensional problems, but they
can also be useful in low dimensions. These are typically
computationally more efficient than grid-based algorithms at
the partial sacrifice of completeness and optimality.

In this study, a few of the most popular algorithms are
considered for the indoor path planning problem: A*, RRT,
RRT-connect, RRT*, and PRM. Example paths generated on
a simple 52 × 41 grid map are shown in Fig. 1, in which
the gray zone is the area where the clearance against the wall
exceeds the limit.

1) A*
TheA* algorithmwas developed in 1968 and has become one
of the most popular methods for path planning problems due
to its completeness, optimality, and optimal efficiency, which
can be applied to either a graph or a grid map. It can also
be viewed as a combination of the greedy best-first search

FIGURE 1. A simple map.

algorithm and Dijkstra’s algorithm. At each iteration, the A*
algorithm calculates the cost of the path g(n) and an estimate
of the cost-to-go based on the heuristic function h(n), and
selects the next node n that minimizes

f (n) = g(n)+ h(n) (1)

However, despite its optimal efficiency, direct application of
theA* algorithm to the gridmap of a largemultistory building
can be computationally intensive. The example path is shown
in Fig. 2(a).

2) RRT
TheRRT algorithm iswell known for its efficiency in noncon-
vex high-dimensional spaces. The tree grows incrementally
by extending to a randomly sampled point, which tends to be
biased towards the unexplored area. However, the fact that
optimality is not considered at all in the RRT algorithm is a
major disadvantage, especially when the path length is impor-
tant. Jagged path lengths can be significantly different from
the actual path, which results in a suboptimal choice in route
optimization. Moreover, the path may not be found rapidly
if there are narrow passages between the start and the goal
points. The resulting path is often so jagged that it has to be
post-processed for improved optimality and recognizability.
The example path is shown in Fig. 2(b).

3) RRT-CONNECT
The RRT-connect algorithm can be a good alternative, espe-
cially for buildings where rooms are accessed through the
corridor. The original RRT may have difficulty extending
towards the rooms through narrow passages. To overcome
this difficulty, the RRT-connect algorithm was developed,
where two trees grow from both ends and encounter on the
open corridor.

However, faster convergence can yield another problem of
exploration and exploitation, which means that the resulting
path may be a long detour. The example path is shown in
Fig. 2(c).

4) RRT*
The RRT* algorithm is the most popular variant of the
RRT algorithm, which generates a remarkably straight path.
It achieves an improved optimality by adopting a process
called parent selection and rewiring. The improvement can be
continued even after the feasible path is found, which allows
for asymptotic optimality at the expense of extra computa-
tional load. Improved optimality can increase the probability
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FIGURE 2. Example paths using various path planning algorithms. (a) A*. (b) RRT. (c) RRT-connect. (d) RRT*. (e) PRM.

TABLE 2. Summary of the path planning algorithms.

that the found route is optimal. However, there still remains
a problem of exploration and exploitation. Furthermore, path
optimality can also be accomplished in a more sophisticated
way by using various path optimization algorithms. The
example path is shown in Fig. 2(d).

5) PRM
Roadmap-based multi-query path planning can be a solution
to the exploration and exploitation problem of single-query
path planning [57]. The PRM algorithm is one of the most
popular multi-query path planning algorithms. It consists of
two phases: the construction phase and the query phase. In the
construction phase, random samples are taken from the free
space and connected to the graph. In the query phase, the
shortest path is obtained using Dijkstra’s algorithm. It is
known that the PRM algorithm is provably probabilistically
complete, depending on the number of sampled points. Even
though the construction can take a long time as the number
of nodes and the maximum connection distance increase,
the fact that the construction phase can be done within the
response time of the rescue team is one of themost substantial
advantages of this approach. In fact, the computational load
of the query phase is significantly low compared to the other
algorithms. Flexible algorithms based on PRM for dynamic
environments can be found in [58] and [59]. There are also
many variants adoptingmore sophisticated sampling and con-
nection strategies. The example path is shown in Fig. 2(e).

The strengths and weaknesses of the algorithms are sum-
marized in Table 2. In summary, the PRM is regarded as the
most suitable algorithm for the considered problem.

Algorithm 1 Prune
1: i← 2
2: while i < n do
3: if IsMotionValid(qi−1, qi+1) then
4: 5← 5\qi
5: n← n− 1
6: else
7: i← i+ 1
8: return 5

D. PATH OPTIMIZATION ALGORITHMS
The planned path may not meet all the requirements. There-
fore, a path optimization technique can be applied to improve
the quality of the path. Three path optimization techniques are
briefly reviewed. One of the simplest techniques is path prun-
ing. The path pruning algorithm removes all redundant nodes,
which results in a considerable decrease in the path length.
This technique is easy to implement, fast, and deterministic.
However, improving the path quality is not dramatic, in that
only the nodes of the path are considered. See Algorithm 1 for
more details, where 5 = {q1, . . . , qn} is a discrete path and
IsMotionValid(a, b) is a function that determines if motion
from a to b is collision-free.

The random shortcut algorithm is a highly effective tech-
nique with a relatively simple structure. Before the shortcut
algorithm is applied, the path is filled with additional nodes
so that the distance between the neighboring nodes is at most
one predefined step. See Algorithm 2 for more details, where
Rem(a, b) returns the remainder after the division of a by
b, and Floor(x) rounds x to the nearest integer less than or
equal to x. This method randomly selects two configurations
on the path and checks if there is a shorter path between them.
If the shortcut is found then that part of the path is replaced
with the shortcut. This process is repeated until the number
of iterations reaches the predefined maximum. The resulting
path is asymptotically shortest as the iteration continues.
See Algorithm 3 for more details, where MaxNumIter is the
maximum number of iterations and RandIt([a, b]) returns a
random integer between a and b.

E. PATH CLEARANCE
There are many techniques to increase path clearance. Here
the retraction algorithm is explained. The method moves
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Algorithm 2 Impose Adjacency
1: i← 1
2: while i < n do
3: 1 = qi+1 − qi
4: if ||1|| > k then
5: 51← {q1, . . . , qi}
6: 52← {qi+1, . . . , qn}
7: if Rem(||1||, k) = 0 then
8: m← Floor(||1||/k)− 1
9: else

10: m← Floor(||1||/k)
11: 5′← {qi + 1

m+11, . . . , qi + m
m+11}

12: 5← 51 ∪5′ ∪52
13: i← i+ m+ 1
14: else
15: i← i+ 1
16: return 5

Algorithm 3 RandomShortcut
1: i← 0
2: while i < MaxNumIter do
3: a, b← RandInt([1, n]) s.t. a+ 1 < b
4: 51← {q1, . . . , qa−1} ▷51← ∅ if a = 1
5: 5′← ImposeAdjacency({qa, qb})
6: 52← {qb+1, . . . , qn} ▷52← ∅ if b = n
7: 5← 51 ∪5′ ∪52
8: i← i+ 1
9: return 5

the selected configuration to the medial axis. The medial
axis for an n-DOF object is defined as the set of all
(3− n− k)-equidistant locations, where 0 ≤ k < n.
For a 2D problem where the configuration space and the
workspace coincide, a location on the medial axis has at
least 2 equidistant obstacles. As a result, each configuration
has a maximum clearance, given the obstacles. See [42] for
more details. Applying retraction along the path results in a
Voronoi-like path with redundant branches. These branches
can be removed by using a relatively simple algorithm.

III. MULTI-LEVEL PATH PLANNING SYSTEM
In this section, a multi-level path planning methodology with
clearance-based path optimization for indoor search and res-
cue operations is proposed. The proposed method maintains
the size of the multi-goal path planning problem, even in a
multi-story building, by adopting a graph-based approach.
Let us explain the overall structure of the multi-level path
planning system. Formulating and solving the problem con-
sidering requirements can be extremely expensive. Therefore,
it is more advantageous to consider several steps in order
to meet the various requirements separately. Each subsys-
tem receives the processed information from the preced-
ing subsystem, performs a specific task, and then delivers
the result to the following subsystem. Figure 3 shows the

FIGURE 3. Structure of the path planning system.

structure of the proposed multi-level path planning system,
which consists of five steps: map pre-processing, segment
path planning, graph processing, route optimization, and path
post-processing.

The ‘Map Pre-processing’ step ensures that no path will
be generated over low visibility regions for safer operations.
In the ‘Segment Path Planning’ step, the detailed paths cor-
responding to each segment are generated for precise route
determination in the later step. The ‘Graph Processing’ step
reduces the size of the graph for a multi-story building. In the
‘Route Optimization’ step, the shortest route that visits all
the important nodes is found. The ‘Path Post-processing’
step ensures that the path meets the requirements. Detailed
descriptions of each step are as follows.

A. MAP PRE-PROCESSING
In the ‘Map Pre-processing’ step, low visibility regions on
the map are marked as occupied so that no other path will
be generated over them. In general, the visibility range is
very short inside a building on fire, and the walls are the
most important and usually the only landmarks. Therefore,
it is important to prevent the generated path from passing
too far away from the walls. The low visibility regions can
be extracted by converting the regions into obstacles, i.e.,
inflating the obstacle regions. The inflation factor is deter-
mined based on the clearance limit, which depends on the
visibility conditions. The extracted regions are then added to
the original map so that no path can be generated over those
regions. This process can be performed during the response
time, which contributes to reducing the time for onsite path
planning.

B. SEGMENT PATH PLANNING (SINGLE-STORY)
In the ‘Segment Path Planning’ step, detailed segment paths
between two positions on the same floor are created. Note
that the segment paths correspond to the innermost layer,
in that it contains the detailed paths, and the outermost layer,
in that the abstract graph is constructed based on the seg-
ment path lengths. This step ensures that route finding on
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a graph to be constructed is performed based on precise
edge weights, instead of a naive Euclidean distance. First,
the paths connecting the stairs and the entry and exit points
can be created and post-processed during the response time.
Five path planning algorithms introduced in Table 1 were
implemented. If a roadmap-based multi-query path planning
algorithm such as PRM is used, then the construction phase,
which is computationally heavy in general, can be completed
during the response time. Once the target locations are deter-
mined, the segments connecting them and their existing nodes
are planned. As the operation progresses, the locations of the
victims can be added, excluded, or corrected. When the target
information changes during the operation, only the segments
directly associated with the changed node are affected. Note
that the actual structure inside the building can be different
from the map due to maintenance or damage and is therefore
incompatible with the planned segments. In such a case,
only the conflicting segments need to be re-planned. This
partial modification adds substantial flexibility and efficiency
to the entire system. Once all the segments are planned, the
3-dimensional relation between the nodes can be represented
as a weighted graph whose edge weights are segment lengths.

C. GRAPH PROCESSING (MULTI-STORY)
In the ‘Graph Processing’ step, the information on a
multi-story building is represented as an abstract graph. Note
that graph representation allows for handling the 2.5D large
path planning problem with 2D path planning methods. The
graph is further condensed so that the route optimization
problem is tractable. Some of the graph nodes are classified
as essential nodes, which are entry and exit points and victim
locations. The essential nodes must be visited once. The set of
nodes consists of the essential nodes and the stairs. Note that
each set of stairs can be visited as many times as required
or not be visited at all. The aim of the graph processing
step is to remove the nonessential nodes from the graph.
First, the distance between the essential nodes is obtained by
solving the shortest path problem using Dijkstra’s algorithm.
The reduced graph only has the essential nodes as its nodes,
and the nodes are fully connected. The new edges contain
information about the intermediate nodes and the detailed
segment paths.

D. ROUTE OPTIMIZATION
In the ‘Route Optimization’ step, the shortest route that
i) departs from the entry point, ii) visits each node exactly
once, and iii) arrives at the exit point is found. This route-
finding problem can be solved accurately because the edge
weights are obtained from the actual segment path lengths.
Furthermore, the sheer size of the problem is significantly
reduced by applying the graph processing step. The sim-
plest way to find the solution is to consider all possible
permutations and select the shortest one. If there are (n + 2)
nodes, then n! cases should be compared, which becomes
impractical as the number of nodes becomes large. As an
alternative, the problem can be solved based on the integer

linear programming (ILP) formulation. In fact, all the vari-
ables are binary in this problem. The constraints are very
similar to those of the famous traveling salesman problem
(TSP). In this study, the Dantzig–Fulkerson–Johnson (DFJ)
formulation is adopted [60]. The nodes are labelled with the
numbers 1, . . . , n, where node 1 is the entry point and node
n is the exit point. Let us define xij as

xij =


1, if the path goes from node i to node j
0, if j = 1
0, if i = n
0, otherwise

(2)

Take cij > 0 to be the distance from node i to node j. Then, the
shortest route problem can be written as a following integer
linear programming (ILP) problem.

minimize
xij

n∑
i=1

n∑
j̸=i,j=1

cijxij (3a)

subject to
n−1∑

i=1,i̸=j

xij = 1, j = 1, . . . , n (3b)

n∑
j=2,j̸=i

xij = 1, i = 1, . . . , n (3c)

∑
i∈Q

∑
j̸=i,j∈Q

xij ≤ |Q| − 1,

∀Q ⊆ 1, . . . , n, |Q| ≤ 2 (3d)

The first constraint ensures that the path enters each node
once. The second constraint ensures that the path leaves each
node once. The last constraint ensures that no sub-tour forms.
Note that the constraints become much simpler by applying
the graph processing step. Furthermore, the sheer size of the
ILP is significantly reduced. Without the graph processing
step, the problem can be extremely large when the building
has many stories and sets of stairs. The problem can become
much larger if multiple candidate positions are considered for
each victim, which may be necessary for robust path planning
under low-accuracy target localization.

In the route optimization step, the proposedmethod utilizes
an integer linear programming formulation to find the optimal
order of visitation for the given targets. This approach is
capable of handling multiple constraints while optimizing the
objective function, which in this case, is the minimization
of the total path length. The formulation considers both the
horizontal and vertical connections between nodes and takes
into account the edge weights representing the path lengths
between them. By solving the ILP problem, we obtain the
optimal visitation sequence for the targets, ensuring an effi-
cient path for the search and rescue operation.

E. PATH POST-PROCESSING
In the ‘Path Post-processing’ step, the jagged paths are opti-
mized in terms of length and clearance. This step ensures that
all the path requirements are met, even when the quality of
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FIGURE 4. Multi-step path post-processing procedure. (a) Raw path based on RRT-connect. (b) A path after a random
shortcut is applied. (c) A path after a conditional retraction is applied. (d) A path after a bounded random shortcut is
applied.

the raw paths is relatively low. At this step, only the active
segments are processed in consecutive order. Early parts of
the segments can be processed and provided to the team first,
and the latter parts can be processed during the operation
in the background. Note that some portions of the segments
can already be processed during the response time. Once
the post-processing is completed with respect to the active
segments, the inactive segments can also be processed in the
background, which allows for swift replanning when the situ-
ation changes. Moreover, route optimization can be resolved
during spare time with the post-processed set of unvisited
segments. Because the original route is determined based on
the length of the raw paths, the new route can be shorter and
more accurate.

In this study, a path optimization technique called ‘Con-
ditional Retraction’ is proposed. Even though the proposed
path post-processing method can be applied to any path,
RRT-connected paths with a clearance limit of 4 m are given
as an example. It is shown in Fig. 4(a) that the RRT-connect
path has many jagged motions. The paths created using A*
and PRM, as shown in Figs. 5(a) and 5(b), can also be
post-processed in the same way. The path has to be modified
to follow the walls, but the direct application of the retraction
algorithm makes it impossible to adjust the clearance inde-
pendently. The clearance is then automatically set to 2 m in
the open area when the clearance limit is 4 m. However, it is
more desirable to be able to adjust the clearance and its limit
independently, depending on the visibility condition. As an
alternative, the node can be moved toward or away from the
nearest wall so that the clearance becomes a predefined value,

FIGURE 5. A* and PRM path examples. (a) A* path. (b) PRM path.

for example, 1 m in this case. This shift can be performed
without any iteration, unlike the retraction, as follows.

q′ = q+
(q− qo)

c
(cdes − c) (4)

or, equivalently,

q′ = qo +
(q− qo)

c
cdes (5)
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Algorithm 4 Conditional Retraction
1: i← 0
2: while i < n do
3: q← qi
4: qo← ClosestPair(q)
5: c← ||q− qo||
6: q′← q+ (q−qo)

c (cdes − c)
7: q′o← ClosestPair(q′)
8: if IsMotionValid(q, q′) then
9: if qo = q′o then
10: qi← q′

11: else
12: qi← q
13: else
14: qi← Retract(q)
15: i← i+ 1
16: return 5

Algorithm 5 Bounded Random Shortcut
1: i← 0
2: while i < MaxNumIter do
3: a, b← RandInt([1, n]) s.t. a+1 < b, ||qa−qb|| ≤ r
4: 51← {q1, . . . , qa−1} ▷51← ∅ if a = 1
5: 5′← ImposeAdjacency({qa, qb})
6: 52← {qb+1, . . . , qn} ▷52← ∅ if b = n
7: 5← 51 ∪5′ ∪52
8: i← i+ 1
9: return 5

where q is the subject node, q′ is the shifted node, qo is the
nearest obstacle, c = ||q − qo|| is the minimum clearance,
and cdes is the desired clearance, which should satisfy cdes ≤
clim/2. The shift result falls into one of the following three
cases depending on the local width of the passage w.

1) If and only if w ≤ cdes, IsMotionValid(q, q′) = 1.
That is, the shift results in wall penetration. Therefore,
a retraction is applied instead of a shift.

2) If and only if cdes < w < 2cdes, IsMotionValid(q, q′) =
1 and qo ̸= q′o. That is, both sides of the wall are within
cdes. Therefore, there is no need to shift. Or, a retraction
can be applied if required.

3) If and only if w ≥ 2cdes, IsMotionValid(q, q′) = 1 and
qo = q′o. In this case, no more action is required.

Therefore, retraction is performed only under the first con-
dition, which involves iteration; otherwise, shifting is per-
formed. See Algorithm 4 for more details.

However, applying conditional retraction to jagged paths
can result in a path that unnecessarily alternates between
both sides of the wall. One remedy is to apply the random
shortcut algorithm before the conditional retraction algorithm
is applied. The shortcutting algorithm is then applied to make
the path as straight as possible, as shown in Fig. 4(b). Fig. 4(b)
shows that the path intersects the medial axis exactly once
for each long passage. The conditional retraction algorithm

FIGURE 6. Path clearance.

TABLE 3. Summary of the path planning steps.

is now applied, as shown in Fig. 4(c). It is shown in Fig. 4(c)
that a 1 m clearance is maintained along the path, except
for the medial axis crossing and the corners. Note that the
temporarily increased clearance at the corners leads to a
smoother turn (e.g., 45 deg instead of 90 deg at the right-
angled passage), which is preferable for the field agent to
follow. However, the path has some redundant branches and
two successive sharp turns around the medial axis crossing.
Additionally, minor zigzags are caused by the irregularity
of the walls. In this study, a ‘Bounded Random Shortcut’
technique is proposed as a solution. The method is slightly
modified from the random shortcut technique in that it only
takes a shortcut when the two randomly selected nodes are
within some radius. As a result, a much smoother and shorter
path without a local detour is obtained, as shown in Fig. 4(d).
See Algorithm 5 for more details.
The clearance along the path is shown in Fig. 6. In Fig. 6,

it is shown that the raw path has the longest length and
random clearance. The path length is significantly decreased
after applying random shortcuts. The clearance then becomes
highly concentrated to 1 m after applying conditional retrac-
tion at the expense of a slight increase in length. Finally,
a bounded random shortcut results in a decreased path length,
which is almost comparable with that of the shortest path.

The functions and the methods of each step are summa-
rized in Table 3.
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FIGURE 7. Gunsan medical center.

TABLE 4. Edge weights of the full graph.

FIGURE 8. Building floor plans. (a) 1F. (b) 2F. (c) 3F. (d) 4F.

IV. PERFORMANCE DEMONSTRATION
In this section, the performance of the proposed path planning
system is demonstrated. The lower part (from 1F to 4F) of
the main building of the Gunsan Medical Center (Fig. 7)
located in Gunsan, Korea, is considered. The original map
is moderately refined to suit the path planning problem.

First, the map is pre-processed with a clearance limit of
4 m. The floor plan of the building is shown in Fig. 8, and
the scenario for path planning is shown in Fig. 9. There

FIGURE 9. Scenario: Visit from T1 (1F) to T10 (4F). (a) 1F. (b) 2F. (c) 3F.
(d) 4F.

FIGURE 10. Adjacency of the nodes.

are 11 access points to the staircases (S1-S11), which are
vertically connected, as shown in Fig. 10. It is assumed that
there are 10 targets: 1 target on 1F (T1), 2 targets on 2F (T2,
T3), 3 targets on 3F (T4-T6), and 4 targets on 4F (T7-T10).
In summary, the total number of nodes is 23, and 12 nodes
must be visited.

Then, 55 segment paths corresponding to the horizontal
connections in Fig. 10 are planned. Note that the adjacency
matrix is symmetric, and the opposite triangle can be filled
out by simply reversing the corresponding path. All segments
generated using the PRM are shown in Fig. 11. The full
graph can be built based on the connectivity and path lengths,
as shown in Fig. 12. The edge weights of the full graph are
summarized in Table 4. The edge weights for the vertical
paths are set to 3 m, which can affect the route optimization
results, to some extent.

In the graph processing step, the nonessential nodes are
eliminated by directly connecting all essential nodes to one
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FIGURE 11. All generated segments.

FIGURE 12. Full graph.

FIGURE 13. Reduced graph.

another. The reduced graph is shown in Fig. 13. The optimal
route on the reduced graph can be found based on ILP. The

FIGURE 14. The solution on the reduced graph.

FIGURE 15. The entire path represented on the 3D map.

TABLE 5. Computation time for each step.

optimal order of visitation is obtained as {IN, T2, T3, T10,
T9, T7, T8, T4, T6, T5, T1, OUT}, which is shown on the
reduced graph in Fig. 14. The full route can be obtained by
expanding the order as {IN, S1, S4, T2, T3, S5, S8, S11, T10,
T9, T7, T8, S10, S7, T4, T6, T5, S8, S5, S2, T1, OUT}. The
post-processed path represented in the 3D map is shown in
Fig. 15, whose total length is 865 m.
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The algorithms are executed based on MathWorks
MATLAB R2021b on an Intel Core i7-4790 (3.60 GHz) pro-
cessor. The computation time required to plan 55 segments
is 4.58 s, and the average time of segment path planning is
approximately 0.1 s. The computation times at each step are
summarized in Table 5.

In summary, the proposed path planning system success-
fully generated a path with a total length of 865 meters, vis-
iting all ten target locations within the multi-story building.
The average computation time for segment path planning was
approximately 0.1 seconds, with the overall computation time
for each step detailed in Table 5. The case study demonstrates
the effectiveness of the proposed multi-level path planning
system in a real-world indoor environment. The system is
able to efficiently navigate through the complex structure of
the Gunsan Medical Center’s main building, visiting all the
required target locations while considering clearance limits
and optimizing the route. This showcases the system’s ability
to adapt to and effectively address the challenges of indoor
search and rescue operations.

V. CONCLUSION
In this study, a multi-level path planning system was
proposed for indoor search and rescue operations. Require-
ments for the path planning system were derived, and a
five-stage path planning system was proposed, which con-
sisted of map pre-processing, segment path planning, graph
processing, route optimization, and path post-processing.
The proposed method provides systematic and efficient
multi-goal shortest path planning for search and rescue oper-
ations inside buildings on fire. The multi-query approach
exploits the response time and has flexibility with respect to
dynamic environment changes. For future work, the effec-
tiveness of the proposed scheme will be verified through
a field test with a real-time integrated indoor navigation
system.

In anticipation of the field experiments, we plan to care-
fully design and implement a rigorous testing protocol to
ensure that the effectiveness of the proposed multi-level path
planning system is thoroughly assessed under realistic con-
ditions. These field experiments will simulate indoor search
and rescue operations in various building layouts and environ-
ments, incorporating dynamic obstacles and hazards, such as
fire, smoke, and structural damage. Key performancemetrics,
such as success rate, response time, and path optimality,
will be measured and compared to existing path planning
solutions. Furthermore, we will collaborate with professional
search and rescue teams to gain valuable insights into the
practical challenges faced during real operations. Their feed-
back will enable us to refine and improve our system, ensur-
ing that it is both effective and usable in real-world scenarios.
Ultimately, these field experiments will serve as a crucial
step toward the broader adoption of advanced path plan-
ning systems for indoor search and rescue operations, with
the potential to save lives and improve overall emergency
response efficiency.
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