
Received 16 March 2023, accepted 13 April 2023, date of publication 24 April 2023, date of current version 1 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3269879

Anticipatory Classifier System With
Episode-Based Experience Replay
ŁUKASZ ŚMIERZCHAŁA , NORBERT KOZŁOWSKI , AND OLGIERD UNOLD
Department of Computer Engineering, Faculty of Computer Science and Telecommunications, Wroclaw University of Science and Technology, 50-370 Wroclaw,
Poland

Corresponding author: Olgierd Unold (olgierd.unold@pwr.edu.pl)

ABSTRACT Deep reinforcement learningwith Experience Replay (ER), includingDeepQ-Network (DQN),
has been used to solve many multi-step learning problems. However, in practice, DQN algorithms need
better explainability, which limits their applicability in many scenarios. While we can consider DQN as a
black-box model, the Learning Classifier Systems (LCSs), including anticipatory versions, also solve multi-
step problems, but their operation is subject to interpretation. It seems promising to combine the properties
of these two learning approaches. The paper describes an attempt to design and evaluate modification to
the Experience Replay extension of the anticipatory classifier system ACS2. The modification is named
Episode-based Experience Replay (EER), and its main premise is to replay entire episodes instead of single
experience samples. Promising results affirmed by Bayes estimations are obtained on multi-step problems,
albeit limited to deterministic and discrete tasks. The experimental results show that the EER extension
significantly improves the ACS2’s learning capabilities.

INDEX TERMS Anticipatory learning classifier systems, experience replay, OpenAI gym, reinforcement
learning.

I. INTRODUCTION
In the 1970s, John Holland, one of the pioneers of genetic
algorithms, introduced the concept of Learning Classifier
Systems (LCSs) [1]. This term describes the family of
rule-based machine learning algorithms conflating both the
discovery (Genetic Algorithms, GA) and learning (Rein-
forcement Learning, RL) components collectively modelling
complex and adaptive systems [2] by forming a set of human-
interpretable rules.

While there is a myriad of various LCS subvariants, one of
the most well-known and investigated is the Accuracy-based
Classifier System (XCS) [3], [4], which was recently
extended by Stein et al. with a replay buffer called Expe-
rience Replay (ER) [5]. ER is an integral part of the Deep
Q-Network (DQN) family and is mainly used to stabilize
the neural network’s training process and increase learning
efficiency. Stein et al. demonstrated that ER had proven its
ability to improve the efficiency of XCS in single-step prob-

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Tong .

lems. In the case of multi-step problems, the incorporated ER
only highlighted known issues inherent to the XCS model in
solving sequential problems.

This work, however, focuses on yet another class of algo-
rithms - Anticipatory Learning Classifier Systems (ALCSs),
building internal knowledge through the psychological the-
ory of anticipations [6], [7]. Unlike the other LCSs, the
rule structure is extended to capture the direct conse-
quences after executing specific actions in certain situa-
tions. Therefore ALCS meets the criteria for explainability
according to the framework of eXplainable Artificial Intel-
ligence (XAI). [8]. The most investigated representative of
ALCS is ACS2 [7], [9].

Unold et al. proposed the ER extension to ACS2 in [10],
following the example of Stein’s work on XCS, naming
the system ACS2-ER. Similarly, single-step problems were
performing significantly better. However, unlike XCS, for
multi-step problems, ACS2-ER demonstrated better results.
By design, ACS2-ER learns from single experiences, so it is
an implementation of the Sampling-based RL. As such, the
model learns well in environments with dense rewards.

41190 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-9868-9189
https://orcid.org/0000-0003-4873-6730
https://orcid.org/0000-0003-4722-176X
https://orcid.org/0000-0003-4414-4965


Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

This paper proposes a consecutive modification of ACS2-
ER, naming it ACS2 with Episode-based Experience Replay
(ACS2-EER), and tests it over multi-step, deterministic and
discrete benchmark problems. Unlike ACS2-ER, ACS2-EER
implements episode-based RL learning [11], whereas the
learning runs on samples of whole episodes instead of sepa-
rated experiences. ACS2-EER is believed to learn effectively
from sparse rewads, unlike the ER variant.

The main scientific contributions of this research include
the following:
• Proposition of a new model - ACS2-EER, replaying
previously collected experiences as the episodes.

• Comparative study of ACS2, ACS2-ER and ACS2-EER
applied on theOpenAIGym compliantMaze benchmark
problem [12], [13].

• Comparison of ACS2 models with two standard
RL-based benchmarks - Q-Learning andDeepQ-Network
algorithms.

• Experimental evidence that ACS2-EER gains knowl-
edge more quickly than the ACS2-ER. Moreover
episode-based model is learning more stable and more
predictable. Statistical indication of significant differ-
ence in speed of knowledge acquisition for environments
with less frequent reward in favour of EER variant.

• Experimental evidence that (E)ER extensions can fur-
ther increase the rate of building the internal model of
the environment in the investigated LCS systems.

• Replicability of the experimental protocol by using
Python scripts and Jupyter Notebooks saved in publicly
available repositories.

• Developing two new deterministic Maze environments.
Section II briefly presents current progress on utilizing

past experiences in Reinforcement Learning and Learning
Classifer Systems literature. A review of some basic concepts
from RL and LCS follows in Section III. A new model of
ACS2-EER is proposed in Section IV. Section V reports on
results obtained by the new model compared to the others on
multi-step Maze problems. Conclusions and future works are
listed in Section VI.

II. RELATED WORKS
Experience Replay is important for implementing the
off-policy RL algorithms. The core function of ER includes
storing experience tuples, each of which consists of explored
state, action, reward, and the next state, into a large replay
bufferRB, that is later used for sampling the experience tuples
and therefore creating learning batches.

Multiple modifications to the ER mechanism were pro-
posed. Mnih et al. [14] sampled uniformly randomly from
RM , giving equal importance to all samples. The authors
stressed the possibility of a more sophisticated sampling
method that would emphasize the importance of experi-
ence from which the most could be learned, like prioritized
sweeping.

Schaul et al. [15] proposed a framework for prioritizing
ER (PER). In this approach, essential samples (transitions)

were more frequently replayed. As reported in the study, pri-
oritized replay speeded up learning by a factor of 2. [16], [17]
reported a slow convergence speed of PER, and [16], [18]
proposed numerous strategies to overcome this issue.

Distributed Prioritized Experience Replay extends PER
approach to a distributed framework [19]. This setting allows
for gathering more experiences using different strategies. The
proposed architecture, called Ape-X, improved the state of
the art of the Arcade Learning Environment.

Wang and Ross [20] introduced the so-called Emphasizing
Recent Experience (ERE). This strategy emphasizes recently
observed data while remembering the past. The authors
observed that ERE is easier to implement and outperforms
PER in Mujoco environments.

Another modification is the Hindsight Experience Replay
(HER) which allowed outstanding results for tasks with
sparse rewards [21]. HER allows the RL agent to learn how
to achieve the horizon even if it has never observed it during
training. The main idea behind HER is to reexamine an
episode with a different horizon, i.e. to replace the goal with
an attainable state from the episode. HER showed high effi-
ciency in handling long-horizon reaching tasks but failed in
sequential manipulation tasks. Many improvements to HER
have been proposed to tackle efficiency. Manela and Biess
[22] proposed curriculum learning to maximize the diversity
of achieved goals, Liu et al. [23] proposed a prioritized hind-
sight model for multi-goal RL, and Li et al. [24] combined
HER with curiosity-driven exploration.

Fang et al. extended the HER approach to deal with
dynamic goals in [25]. Dynamic HER uses RB to allow
the RL agent to learn from two failures by assembling new
‘experience’ from different episodes.

Sun et al. [26] introduced the so-called Attentive Experi-
ence Replay (AER), which prioritizes the samples that con-
tain states frequently visited by current policy. AER computes
the similarities between the states in past transitions and the
agent’s state and implicitly assigns high priorities to similar
transitions. AER was shown to outperform uniform ER and
PER in terms of sample efficiency and final performance.

Quantum-inspired Experience Replay was introduced by
Wei et al. [27]. The transitions are noted in quantum rep-
resentations, and the probability amplitudes of the quan-
tum representations of experiences are iteratively manipu-
lated by some quantum operations. This approach ensures
that the learning scheme focuses on what the RL agent has
learnt from interacting with the environment (i.e. from the
Temporal Difference errors and the replaying times) instead
of the prior knowledge. Quantum-inspired ER improved
training efficiency over prioritized and curriculum [28] RL
algorithms.

In one recent study, the Model-Augmented Prioritized ER
(MaPER) was introduced [29]. MaPER prioritizes past expe-
riences based not only on Temporal Difference errors but
also on Model-augmented Critic Network model estimation
errors. This approach increases the sample efficiency of state-
of-the-art algorithms.

VOLUME 11, 2023 41191



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

Zhang et al., in a recently published study [30], propose to
consider the replay memory as an empirical Replay Memory
MDP (RM-MDP). Dynamic programming is evolved to solve
RM-MDP and results in a conservative estimate. The method
outperforms ER-based methods, especially in complex envi-
ronments with sparse and delayed rewards.

To our knowledge, very few studies have been conducted
on using ER or another kind of experiencememory utilization
in LCS families.

Recently, Stein et al. introduced ER to XCS [5] and used
XCS-ER for automatic test case prioritization [31], [32].
In earlier work, Stein et al. [33] used experienced inputs
with their corresponding rewards for modelling the classifier
predictions.

Similarly to XCS-ER, the ER extension to the ACS2model
was proposed and evaluated by Unold et al. [10]. Herein,
we aim to build on top of this particular work.

III. BACKGROUND
Here we shall briefly introduce some basic concepts from
Reinforcement Learning and Learning Classifer Systems. For
a more detailed explanation, the reader is referred to [34]
and [2], respectively.

A. REINFORCEMENT LEARNING WITH EXPERIENCE
REPLAY
In classical RL, the learning and updating take place sequen-
tially. Each new sample < st−1, at−1, rt−1, st >, where st−1
denotes the actual state of the environment observed by an
agent at the time t − 1, at−1 - an action executed by the
agent (also denoted as aexec), rt−1 - a received reward, st -
succeeding state that the agent perceives after executing its
action, triggers one update in an episode (the sample is also
described as < s, a, r, s′ > omitting the time index t).
The above process is repeated until the final state is

obtained. Then, a new episode is invoked. The total reward
is expressed as:

Rt =
H∑
k=0

γ krt+k+1 (1)

where γ is the discount factor and H is the horizon or the
length of an episode, that can be in general infinite.

A policy is a mapping from a state to an action πt (s|a). That
is the probability of select an action at = a if st = s. The
objective of RL is to find an optimal policy that maximizes
the expected output. According to the policy π , the action
value defines the expected reward after taking action at in a
state st , where the action value can be described as follows:

qπ (s, a) = Eπ

[
Rt |st = s, at = a

]
(2)

The Experience Replay was first proposed in [35] to speed
up the RL learning process. In [36] some theoretical prop-
erties of ER working in Temporal Difference regime were
demonstrated. ER refers to a memory buffer RM that stores
past experiences (also referred to as samples or transitions)

FIGURE 1. Storing and sampling transitions from Replay Memory (RM) by
Reinforcement Learning Agent with Experience Replay.

(see Fig. 1). In the training phase, the m-sized batch of
samples is drawn. ER puts all our experience in memory
and then samples from it, which helps break the correlations
between samples in the minibatch as they might not come
from consequent steps (or even different episodes). There are
different methods for obtaining samples from RM . Some of
them are cited in Section II.

Now, ER is an integral part of the Deep Q-Network family
and, besides accelerating the learning process, is used to
stabilize the training of the neural networks [37].

B. Q-LEARNING AND DEEP Q-NETWORK (DQN)
Q-Learning is a reinforcement learning algorithm that learns
the value of an action in a particular environmental state. The
algorithm is relatively primitive but was proven effective and
able to find the optimal solution with high probability under
certain conditions [38]. The ‘‘Q’’ in the algorithm name refers
to the internal function mapping the expected reward for an
action taken in a given state. Its simplest form defines it as a
table storing state-action combinations alongside a reward.
Such representation does not work well for increasing the
number of state-action combinations, as the probability of an
agent taking a particular action in a particular state decreases.
Moreover, table formalism only works if the state space is
discrete.

Algorithm 1 shows the basic procedure of Q-learning.
Before the learning process begins, the Q function is ini-
tialized arbitrarily. Learning happens by interacting with the
environment. For every step in the episode, the agent chooses
an action (e.g. using the epsilon-greedy strategy), observes a
reward r , and enters a new state s′. The Q function is updated
based on the previous and recent state, action taken, and the
received reward. The procedure is repeated for every episode.
Two parameters may control the update of the Q function:

• β - learning rate. The value should be defined in the
range [0, 1]. Value 0means the agent is learning nothing.
Value 1 means the agent only considers the most recent
information.

• γ - discount factor. This factor determines the impor-
tance of future rewards. The value should be defined in
the range [0, 1]. Value 0 means only the current reward
is considered.

41192 VOLUME 11, 2023



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

Algorithm 1 Q-Learning
Require: trials
Q(s, a) - initialize arbitrarily
current_trial ← 1
while current_trail ≤ trials do

done← False
s← env.reset()
while done is False do

if U [0, 1] < ϵ then
a← rand

else
a← best(s) - based on policy derived from Q

end if
s′, r, done← env.step(a)
Q(s, a) ← Q(s, a) + β[r + γ max Q(s′, a′) −

Q(s, a)]
s← s′

end while
end while

Function approximation technique is considered a com-
mon way to deal with the Q-Learning algorithm limita-
tions by making it effective even in continuous state and
action spaces [39]. The approximation may be as simple
as linear function approximation [40], but more complex
approximations, like using neural networks as a data struc-
ture, are also possible. This work takes from the Deep Q-
Learning (DQN) [41] algorithm, utilizing a deep neural net-
work for state-action mapping and therefore being suitable
to a significantly wider range of problems. For example, the
DQN successfully played Atari games, outperforming human
experts [37]. The basic version of the algorithm was extended
in multiple ways. The most significant improvements are (1)
the prioritized experience replay, (2) double Q-learning, (3)
duelling networks, and finally, (4) theRainbow. The Rainbow
is a combination of all improvements to deep reinforcement
learning that allowed achieving top results compared to other
variants [42] and may be considered to be the state-of-the-art
solutions for DQN models as well as reinforcement learning
models in general.

Algorithm 2 presents the procedure of the DQN in one
of its simplest forms - with ER but without other additional
enhancements. To represent the environmental state as the
input to the neural network, the φ function converts it to the
fixed-length vector. The neural network is trained with a vari-
ant of the Q-learning algorithm, updating the weights with
a stochastic gradient descent algorithm. The process can be
controlled by defining the discount factor similar to the basic
Q-Learning. Applying the ER mechanism is an additional
difference compared to the basic Q-Learning algorithm. The
algorithmmay be sensitive to data correlation and the order of
executed steps, which may result in forgetting what it learned
based on past experiences. ER effectively solves the problem
by storing collected experience in a buffer and performing

Algorithm 2 Deep Q-Learning
Require: trials
Require: N
Require: m
Q(φ(s), a) - initialize arbitrarily
RM ← ∅
current_trial ← 1
t ← 0
while current_trail ≤ trials do

done← False
st ← env.reset()
while done is False do

if U [0, 1] < ϵ then
at ← rand

else
at ← best(φ(st )) - based on policy derived

from Q
end if
st+1, rt , done← env.step(a)
if size of RM ≥ N then

Drop the oldest experience RM [0]
end if
RM := RM ∪ {(φ(st ), at , rt , φ(st+1))}
st ← st+1
SM of size m ⊆ RM
for all sm in SM do

φ, a, r, φ′← sm
y = r + γ max Q(φ′, a′, θ)
Perform a gradient descent on:
(y− Q(φ, a, ; θ))2

end for
end while

end while

a learning process based on randomly chosen samples as
described in Section III-A. As a result, the neural network
weights stabilize because of breaking the sample’s correlation
and learning multiple times on the same experience.

The experiments were performed for the deep Q-learning
algorithm with a basic DQN setup (calledQ-Learning in the
experiments section V) and also for the algorithm with DQN
in the Rainbow setup (called DQN).

C. LEARNING CLASSIFIER SYSTEMS
LCS concept was developed by JohnHolland in the 1970s [1].
The term has been used to elucidate the family of machine
learning (ML) algorithms that emerged from a founding con-
cept designed to model complex adaptive systems by collec-
tively gathering knowledge and applying it in a piecewise
manner [2]. Note that LCSs can be regarded as a model for
Reinforcement Learning [43] or, more precisely, rule-based
evolutionary RL [44].

LCS stores information using a concept of a classifier.
A classifier is a rule (specifying the environmental conditions

VOLUME 11, 2023 41193



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

and corresponding action, such as IF-THEN clause) with
some additional statistics. The entire knowledge derived from
the environment is stored as a population of classifiers [P]
and is refined with each interaction with the environment.
New classifiers might be introduced into population [P] in
two ways - either by covering process or by GA.

Covering creates classifiers precisely matching environ-
mental perception and then applying random perturbations.
On the other hand, genetic algorithms try to introduce new
offspring into a population by mixing genotypes of the most
promising parents using certain genetic operators, such as
mutation or cross-over.

All rules existing in a population are constantly refined
with each interaction with the environment. Metrics that
describe the rule’s usefulness are responsible for deciding
whether a given rule should be kept or discarded.

The most significant advantage of LCS is the possibility of
modelling the system’s output (different domains) using a set
of understandable IF-THEN rules that cover only the portion
of the input space. This approach breaks the initially complex
problem into many simpler pieces. Another beneficial feature
is the ability to model complex patterns such as non-linear
feature interaction (epistasis) or heterogeneous associations.

LCS families comprise very different architectures, strate-
gies, and representations, including Michigan and Pittsburgh
approaches, strength- and accuracy-based fitness, single- and
multi-step learning. [2]. XCS is considered the most mature
and examined representative of LCS, an example of model-
free RL. Its design drives it to form an all-inclusive and accu-
rate representation of the problem space rather than focusing
on higher payoff niches.

Recent advancements focus mainly on problems
related to:

• Knowledge visualization and rules compaction
[45], [46] - new visualization techniques, termed as
Feature Importance Map, Action-based Feature Impor-
tance Map and Action-based Feature’s Average value
Map successfully produce human-discernable results for
the investigated complex Boolean problems. Domains,
where the pattern consists of 6435 different cooperating
rules, were translated into concise graphs, facilitating
tracking of the overall training progress.

• Learning with incremental data [47], [48] - a solution
for extracting knowledge and utilizing it in further exper-
iments using various deep convolutional blocks. The
proposed method obtained better accuracy than other
state-of-the-art algorithms using the investigated image
datasets.

• Classifying images using convolutional autoencoders
[48], [49], [50] - high-dimensional problems are inves-
tigated by an ensemble of LCSwith deep-learning meth-
ods. The input is compressed using the autoencoder and
later processed by the LCS algorithm. Promising appli-
cations involve designing an intrusion detection system
[51] or classifying MNIST images [52].

• Dealing with perceptual aliasing environments [53]
by utilizing a feature of vertebrate intelligence allow-
ing multiple simultaneous representations of an envi-
ronment at different levels of abstraction. Considering
states at a constituent level enables the system to place
them appropriately in holistic-level policies for multi-
step problems.

D. ANTICIPATORY LEARNING CLASSIFIER SYSTEMS
In 1993 Hoffmann proposed a theory of Anticipatory Behav-
ioral Control [54] that was further refined in [55]. It distin-
guishes between the following points:

1) Any behavioral act or response (R) is accompanied by
anticipation of its effects.

2) The anticipations of the effects Eant are compared with
the real effects Ereal .

3) The bond between response and anticipation is
strengthened when the anticipations were correct and
weakened otherwise.

4) The R - Eant relations are further differentiated by
behavioral relevant stimuli.

That insight into the presence and importance of anticipa-
tions in animals and man leads to the conclusion that repre-
senting and utilizing them in animats would be beneficial.

The first approach was undertaken by Stolzmann in
1997 [56]. He presented a system called ACS (Anticipatory
Classifier System), enhancing the classifier structure with an
anticipatory or effect part that anticipates the effects of an
action in a given situation. New classifiers were introduced
by a dedicated component realizing Hoffmann’s theory -
Anticipatory Learning Process (ALP).

Later in 2002, Butz presented an extension called
ACS2 [7]. Most importantly, he modified the original
approach by an explicit representation of anticipations and
by applying learning components across the whole action set
[A]. Algorithm 3 presents the main learning loop of ACS2,
whereas the general framework of learning process in ACS2
is presented in Fig. 2. The learning process is executed for a
predefined number of trials. The environment is initialized
as an entry part of every trial, and the main learning loop
begins. In every iteration, a match set [M ] is selected from
the population. It contains all classifiers thatmatch the current
environmental state. Then, particular action aexec is executed
on the environment. According to the ϵ parameter, to a certain
extent, it can be selected randomly. The action set [A] is
determined, and the learning phase begins. If it is a single-
step problem, the trial ends after the first iteration; otherwise,
the process continues until the environment is terminated. The
discovery component consisting of ALP and GA refines the
structure of the classifier, while the learning component (RL)
cares about adjusting reward predictions.

One of the main advantages of the ACS is the inter-
pretability of the model’s output. The classifiers can be eas-
ily understood and interpreted by humans, explaining the
model’s decision-making process and providing some knowl-

41194 VOLUME 11, 2023



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

Algorithm 3 ACS2
Require: trials
Require: do_ga← True or False
current_trial ← 1
t ← 0
while current_trail ≤ trials do

done← False
st ← env.reset()
[A]t−1← ∅
while done is False do

[M ] ⊆ [P] for st , i.e. [M ] := {cli|st ∈ cli.C}
if is NOT first step of episode then

ALP on [A]t−1 considering [M ], st−1, aexec, st
RL on [A]t−1 considering rt−1, [M ]
if do_ga and t − 6cl∈[A]t−1cl.num∗cl.tga

6cl∈[A]t−1cl.num
> 2GA

then
GA on [A]t−1 considering [P], [M ], st , t

end if
end if
if U [0, 1] < ϵ then

aexec← rand(A)
else

aexec← best(A)
end if
[A]t ⊆ [M ] for aexec i.e. [A] := {cli|cli.a = aexe}
st−1← st
st , rt−1, done← env.step(aexec)
[A]t−1← [A]t
if done is True then

ALP on [A]t−1 considering st−1, aexec, st , t
RL on [A]t−1 considering rt−1
if do_ga and t − 6cl∈[A]t−1cl.num∗cl.tga

6cl∈[A]t−1cl.num
> 2GA

then
GA on [A]t−1 considering [P], st , t

end if
end if
t ← t + 1

end while
current_trial ← current_trial + 1

end while

FIGURE 2. General framework of ACS2 learning process.

edge about the environment. In contrast to typical LCS, ACS
employs a unique approach by utilizing successive percep-
tions of the environment to predict (anticipate) any potential

FIGURE 3. Episode Replay Memory (ERM). ERM is formed by the
concatenation of time correlated samples < si

t , ai
t , r i

t , si
t+1 >, where

i = 1, 2, . . . , N denotes the episode number, and t = 0, 1, . . . , H − 1 is
the sample index in each episode.

modifications thatmay occur as a result of executing an action
in a specific scenario.

Recently, ACS2 was extended by Probability-Enhanced
Predictions [57] and The Behavioral Sequences [58] to han-
dle the perceptual aliasing issue in non-deterministic envi-
ronments. The averaged reward criterion was successfully
applied in multi-step environments [59], and ACS2 was
applied in real-valued environments [60].

E. ACS2 WITH EXPERIENCE REPLAY (ACS2-ER)
The ASC2-ER extension [10] proved to facilitate the
increased utilization of collected experience, which helps to
achieve similar results with a significantly decreased number
of samples used for learning.

Themainmodification to integrate the ERmechanismwith
ACS2 was in the input of the learning process. The base
ACS2 model was executed based on the currently perceived
experience. On the other side, in the modified version, the
past perception (experience) is stored in the memory buffer,
and the learning process is executed on m randomly sampled
batch from that buffer.

Algorithm 4 presents the detailed procedure. The ER sig-
nificantly changes the number of executions of learning itera-
tions. Compared with ACS2 n executions, for the model with
the ER extension, it is n∗m−Nwarmup executions for the same
number of steps performed, where m stands for the number
of samples for replay per iteration and Nwarmup stands for the
minimum number of samples collected before the learning
process starts.

IV. ACS2 WITH EPISODE-BASED EXPERIENCE REPLAY
(ACS2-EER)
Reinforcement learning problems can be viewed from
a sampling-based, and an episode-based perspective
[11], [30], [61]. For the first RL learning type, a policy
selects an action at−1 (aexec) for each state st−1 of the whole
episode (trajectory) < s0, a0, r0, s1 >, < s1, a1, r1, s2 >,

. . . , < st , at , rt , sH >, whereH is the horizon of the episode.

VOLUME 11, 2023 41195



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

Algorithm 4 ACS2-ER
Require: trials
Require: do_ga← True or False
Require: N
Require: m
Require: N_warmup
current_trial ← 1
t ← 0
RM ← ∅
while current_trail ≤ trials do

done← False
st ← env.reset()
[A]t−1← ∅
while done is False do

[M ] ⊆ [P] for st , i.e. [M ] := {cli|st ∈ cli.C}
if U [0, 1] < ϵ then

aexec← rand(A)
else

aexec← best(A)
end if
st−1← st
st , rt−1, done← env.step(aexec)
at−1← aexec
if size of RM ≥ N then

Drop the oldest experience RM [0]
end if
RM := RM ∪ {(st−1, at−1, rt−1, st )}
if size of RM ≥ N_warmup then

SM of size m ⊆ RM
for all sm in SM do

s, a, r, s′← sm
[M ] ⊆ [P] for s,
i.e. [M ] := {cli|s ∈ cli.C}

[A] ⊆ [M ] for a, i.e. [A] := {cli|cli.a = a}
[M ]′ ⊆ [P] for s′,
i.e. [M ] := {cli|s′ ∈ cli.C}

ALP on [A] considering [M ]′, s, a, s′, t
RL on [A] considering r, [M ]′

if do_ga and t − 6cl∈[A]cl.num∗cl.tga
6cl∈[A]cl.num

> 2GA

then
GA on [A] considering [P], [M ]′, s′, t

end if
end for

end if
t ← t + 1

end while
current_trial ← current_trial + 1

end while

In the episode-based RL, the policy tries to assess the quality
of a parameter vector θ that has been used during the whole
episode [11].

Sampling-based RL (SLR) algorithms, especially those
from DQN family, proved their ability to speed up and stabi-
lize the learning process. Despite the success, SLR algorithms

Algorithm 5 ACS2-EER
Require: trials
Require: do_ga← True or False
Require: N
Require: m
Require: N_warmup
current_trial ← 1
t ← 0
ERM← ∅
while current_trail ≤ trials do

RM← ∅
done← False
st ← env.reset()
[A]t−1← ∅
while done is False do

[M ] ⊆ [P] for st , i.e. [M ] := {cli|st ∈ cli.C}
if U [0, 1] < ϵ then

aexec← rand(A)
else

aexec← best(A)
end if
st−1← st
st , rt−1, done← env.step(aexec)
at−1← aexec
RM := RM∪{(st−1, at−1, rt−1, st )}
t ← t + 1

end while
if size of ERM≥ N then

Drop the oldest experience ERM [0]
end if
ERM := ERM ∪ {RM}
if size of ERM≥ N_warmup then

episodes of size m ⊆ ERM
for all episode in episodes do

for all sm in episode do
s, a, r, s′← sm
[M ] ⊆ [P] for s,
i.e. [M ] := {cli|s ∈ cli.C}

[A] ⊆ [M ] for a, i.e. [A] := {cli|cli.a = a}
[M ]′ ⊆ [P] for s′,
i.e. [M ] := {cli|s′ ∈ cli.C}

ALP on [A] considering [M ]′, s, a, s′, t
RL on [A] considering r, [M ]′

if do_ga and t − 6cl∈[A]cl.num∗cl.tga
6cl∈[A]cl.num

> 2GA

then
GA on [A] considering [P], [M ]′, s′, t

end if
end for

end for
end if
current_trial ← current_trial + 1

end while

are known to be data usage and computation inefficient, often
requiring many rounds of interaction with the environments

41196 VOLUME 11, 2023



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

FIGURE 4. Storing and sampling trajectories from Episode Replay Buffer
(ERM) by ACS2 with Episode-based Experience Replay.

to obtain satisfactory performance. Moreover, these algo-
rithms break temporal correlations between samples to sta-
bilise neural networks and improve data efficiency. As a
result, most SLR algorithms work well only with dense
rewards.

In contrast to SLR algorithms, episode-based RL (ERL)
algorithms proved the ability to smooth control trajectories
in robotics and to learn from sparse or even non-Markovian
rewards.

To employ episode-based learning into the ACS2 learning
scheme, the ER mechanism was modified to replay entire
episodes instead of single samples. The Experience Replay
Buffer (ERM) has been separated from Replay Buffer. ERM
consists of N sampled episodes τ , collected during the ACS2
learning phase, whereas i-th episode τi contains a sequence of
experiences from a starting state s0 to the state of the episode
horizon sH (see Fig. 3). The general learning framework of
ACS2 with Episode-based Experience Replay is presented in
Fig. 4.

Modifying the ER mechanism to replay entire episodes
instead of single samples facilitates the possibility of more
predictable and more stable learning. It is better structured as
it ensures the model continuously learns from all experiences
from the episode instead of just random partial pieces of
information from separate experiences.

The parameters added to ACS2 along with ER are still
applicable but with refined meaning:
• N - size of Replay Memory Buffer.
• m - number of episodes to be replayed.
• Nwarmup - number of minimum episodes collected before
the learning begin.

The integration of EERwith ACSwas possible by applying
the following modifications:
• At the beginning of the process, the Replay Memory
Buffer (RM ) is initialized as a fixed-length queue hold-
ing N most recent elements.

• The learning process (including ALP and RL), as well as
GA, are not executed during every step using the current

perception anymore. Instead, the experience (including
st−1, at−1, rt−1, st ) is added to the ERM and at the end
of the episode experience ERM is added to the RM .

• Until the Nwarmup number of experience episodes are
collected in the RM , the learning process is not executed
at all. It is called a warmup phase.

• When the warmup phase ends, as part of every trial, the
m collected episodes are drawn uniformly from the RM ,
and for each episode for each experience sample, the
learning process and (optionally) the GA are performed.

Algorithm 5 presents the detailed procedure. The EER
significantly changes the number of executions of learning
episodes (so also learning iterations - steps). Compared with
ACS2 n episodes, the model with the EER extension is n∗m−
Nwarmup episodes learning executions for the same number
of episodes performed. The number of learning iterations
is considered similar compared with ER with the same m
parameter value.

V. EXPERIMENTS
ACS2-EER was implemented and evaluated in Python lan-
guage [13].1 Testing environments were created in full com-
pliance with the OpenAI Gym [12], [13]2 interface. All con-
ducted experiments are reproducible by using tools such as
Python scripts and Jupyter Notebooks, which are included in
the repository3 and in Zenodo.4

Experiments with Q-Learning and DQNmodels III-Bwere
executed for benchmarking purposes. Bothmodels are widely
used in problem-solving efficiently through reinforcement
learning [34]. For execution, theRLLib5 librarywas used. The
library contains multiple RLmodels built on top of a common
interface [62].

All conducted experiments were independent and
repeated 30 times. The results presented in plots and tables
are averaged using 30 executions. For each environment 5000
trials were executed.
The ACS models parameters are:
• ϵ = 0.5 - probability of executing random action,
• β = 0.05 - learning rate,
• γ = 0.95 - RL discount factor,
• θr = 0.9 - reliability threshold - quality level when the
classifier is treated as ‘‘reliable’’,

• θi = 0.1 - inadequacy threshold,
• dosubsumption = true - whether to perform subsump-
tion operation,

• doga = false - use of genetic generalization algorithm,
• m = 3 - the number of samples (ER) / episodes (EER)
to replay,

• N = 10000 - the size (capacity) of RM,

1https://github.com/ParrotPrediction/pyalcs
2https://github.com/ParrotPrediction/openai-envs
3https://github.com/GodspeedYouBlackEmperor/pyalcs-

experiments/tree/feature/acs2per/notebooks/publications
/2022_acs2_with_episode-based_experience_replay

4https://zenodo.org/record/6631660
5https://docs.ray.io/en/master/rllib/index.html

VOLUME 11, 2023 41197



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

• Nwarmup = 1000(ACS2 − ER), 25(AC2 − EER) - the
length of warm-up phase.

Parameters m, N and Nwarmup are specific only for ACS2-ER
and ACS2-EER.

The Q-Learning model parameters are67:
• ϵ = 0.5 - probability of executing random action,
• explore = true - the explore mode,
• lr = 0.0005 - the learning rate,
• m = 32 - the number of samples to replay,
• N = 50000 - the size (capacity) of RM,
• Nwarmup = 1000 - the length of warm-up phase.
The DQN model parameters are89:
• ϵ = 0.5 - probability of executing random action,
• explore = true - the explore mode,
• lr = 0.0005 - the learning rate,
• m = 32 - the number of samples to replay,
• N = 50000 - the size (capacity) of RM,
• Nwarmup = 1000 - the length of warm-up phase,
• n_step = 10 - N-step for Q-learning,
• noisy = True - whether to use noisy network to aid
exploration. This adds parametric noise to the model
weights,

• num_atoms = 4 - number of atoms for representing
the distribution of return - when this is greater than 1,
distributional Q-learning is used,

• v_min = 0 - minimum value estimation,
• v_max = 1000 - maximum value estimation.
The above parameters configuration allowed to achieve the

Rainbow [42] setup.
The experiments were performed only for multi-step envi-

ronments. All the testing problems are different types (with
varying complexity) of the Maze benchmark, which is one
of the best-known and most studied by RL-based algorithms,
recently even by quantum machine learning [63].

Results were verified by the Bayesian Estimation tech-
nique as an alternative to null hypothesis significance test-
ing (NHST) [64]. It is more intuitive than the calculation
and interpretation of p-value results, provides more detailed
information and allows for more consistent inference from
the data.

Two metrics were selected to evaluate the performance of
the compared models in each environment and an additional
one (percentage of optimal actions) for reference:
• Steps in a trail – the fewer steps in a trial means the path
to the food was shorter. The shorter the path the model
proposes, the closer its policy is to the optimal one.

• Knowledge – represented by the percentage of possible
environment transitions for which a reliable classifier
that predicts the next state successfully exists.

6https://docs.ray.io/en/latest/rllib/rllib-algorithms.html
7https://github.com/ray-project/ray/blob/master/rllib/algorithms/

simple_q/simple_q.py
8https://docs.ray.io/en/latest/rllib/rllib-algorithms.html#dqn
9https://github.com/ray-project/ray/blob/master/rllib/algorithms/

dqn/dqn.py

TABLE 1. Mazes’ Parameters.

• Optimal Actions – represented as a ratio of the number of
available cells in the maze for which the model proposes
one of the optimal actions to a number of all available
cells. The higher the metric, the higher the chance the
model will propose the optimal action, which should
convert to fewer steps to the food.

A. ENVIRONMENTS
1) MAZE
A maze environment is a problem for inspecting multi-step
capabilities of LCS. It is represented as a two-dimensional
grid, where each field can be occupied by an obstacle, food
item, or just be empty. In all episodes, the animat is inserted
into a random cell and perceives its immediate surroundings
starting with the field to the north and coding clockwise. Thus
the observation space has a length of L = 8, the eight adjacent
cells. It can also perform eight simple moves to the adjacent
fields. However, it has no effect when the action is impossible
(i.e. leads to a position blocked by an obstacle). The trial
ends when the animat lands the cell with food n (obtaining
reward r = 1000) or when the maximum number of 50 steps
is exceeded (reward r = 0).
Experiments were performed on ten different and deter-

ministic Maze environments (see Fig 7). Eight of them (F1,
F2, F3, T2, T3, 4, 5, 7) are well-known and tested [65], while
the rest two were proposed by us to verify how models work
in more complex setups.10 Let us call themX1 and X2 herein.
The following parameters can describe the mazes:
• size - total number of all states,
• obstacles - number of obstacles,
• empty - number of empty cells in a maze,
• density - the ratio of obstacles to empty fields,
• max path - length of the longest optimal path to the food,
• avg path - the average length of optimal paths to the
food.

Table 1 presents the environment parameters.

B. RESULTS
• Both ACS2-ER and ACS2-EER models performed sig-
nificantly better than the base ACS2model. Fig. 9 shows
that for all of the environments, the achieved knowl-
edge level for ACS2-ER and ACS2-EER models were
equal (for less complexmazes, the 100% knowledgewas

10https://github.com/GodspeedYouBlackEmperor/openai-
envs/tree/feature/mazeX/gym_maze/envs

41198 VOLUME 11, 2023



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

FIGURE 5. Posterior distribution of means for a number of executed steps per trial modeled with Student-t distribution.

TABLE 2. Mean number of executed steps per trial. ACS models.

TABLE 3. Mean number of executed steps per trial. Q-Learning and DQN
model. ACS2 repeated for a reference.

achieved by all of the ACS models) or greater than for
the ACS2 model. Bayesian distribution for the number
of trials required to gain 95% knowledge presented in

TABLE 4. Mean for a trial when 95% of knowledge is obtained.

Fig. 6 shows that ACS2-ER and ACS2-EER models
learn much quicker than the base ACS2 model. The
difference grows along with the maze size and com-
plexity, and for the two biggest mazes, 5000 trials were
not enough for the ACS2 model to gain 95% knowl-
edge, while for -ER and -EER models, it took less than
2000 trials. The exact values are presented in Table 4.
The difference can also be observed in the Bayesian
distribution of average executed steps per trial presented
in Fig. 5 as well as in Table 2. For all of the medium
and big-size mazes, the difference in the metric was
significant in favour of ACS2-ER and -EER models.
The difference not in all small mazes can be observed,
and even for some of them, the ACS2 model obtained

VOLUME 11, 2023 41199



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

FIGURE 6. Posterior distribution of means for a trial when 95% of knowledge is obtained modeled with Student-t distribution.

FIGURE 7. Maze environments. Maze5 on the left, Maze7 on the right.
Black rectangles denote obstacles, symbol $ stands for a food.

slightly better results. The main reason for that is proba-
bly the length of the warmup phase (1000 samples for
-ER and 25 episodes for -EER), as for all this time,
the models, in contrast to ACS2, are not learning at all.
If just a few trials are required to improve model quality
significantly, the time ‘wasted’ for the warmup phase is
an essential factor.

• ACS2-EER model for all environments gained knowl-
edge more quickly than the ACS2-ER model. The learn-
ing speed can be observed in Fig. 9, and the better results
are also confirmed by the Bayesian distribution shown
in Fig. 6. ACS2-EER gained not only 95% knowledge
quicker than the -ER model, and the standard deviation
is lower, which may suggest that the model with EER
extension is learning more stable and more predictably.

The exact number of trials to gain 95% of knowledge
with standard deviation is presented in Table 4.

• The average steps per episode metric shows a similar
tendency as knowledge when comparing ACS2-EER
and -ER models. The EER model in almost all mazes
achieved better results, but the difference is again better
visible for more complex mazes as presented in Fig. 8.
The Bayesian estimated in Fig. 5 shows that the dif-
ference is more subtle than it was for the knowledge
metric. The reason is that a significant difference in
model quality may only result in a slight difference in
average steps per trial. Also, in this case, the standard
deviation is usually lower for the EERmodel, whichmay
lead to the conclusion that the model is learning more
stable and predictably.

• The percentage of optimal actions metric is an effective
way of rating the model quality as it correlates with
a total number of steps in trials metric as presented
in Fig. 10. For example, for Maze4, the percentage of
optimal actions is higher for the EER model compared
to ER until about the 2000 trial, and both have similar
values. The same tendency can be observed in steps
in Fig. 8 - until about the 2000 trial, the number of
average steps per trial is slightly lower for EER, and
after that, it seems to be almost equal. Also, the Bayesian

41200 VOLUME 11, 2023



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

FIGURE 8. Number of steps in trials. Plotted with moving-average of 100 last trials for clarity.

FIGURE 9. The percentage of models’ knowledge.

distribution in Fig. 5 and exact values in Table 2 show a
tiny difference in total. In another example, for the most
complex MazeX2, the percentage of optimal actions is
higher for the EER model during the entire learning
process, and the same trend is shown in the average
number of steps per trial. It can be concluded that the
percentage of optimal actions metric is a more direct
way of rating the model quality. However, calculating
the metric requires full environmental knowledge and
cannot be easily applied to other environments. The
problem does not exist for the average steps per trial
metric.

• Q-Learning and DQN models performed significantly
worse than all of the ACS models, and the difference
correlates with the maze complexity. The models were
able to learn high-quality solutions for smaller mazes.
For example, as shown in Fig. 8 for the most straight-
forward - MazeF1, both models - DQN and Q-Learning,
despite a small quantity of delay at the start, were able
to achieve similar performance as a base ACS2 and
DQN model was even able to overtake the base ACS2
model (but not ER or EER models) in the later phase of
learning. The more complex the maze, the more difficult
it is for Q-Learning and DQN models. Fig. 8 shows that

VOLUME 11, 2023 41201



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

FIGURE 10. Percentage of optimal actions the models propose.

TABLE 5. Top 4 classifiers for ACS2 model in MazeF4 environment.

starting from Maze7, the models for 5000 trials could
not learn solutions even similar in quality compared
to ACS2 models. For the most complex environment,
MazeX2, the Q-Learning model is almost not learning.
The poor performance of Q-Learning and DQN models
is confirmed by Bayesian distribution in Fig. 5 and exact
values in Table 3. However, no attempts were made
to tune the models’ parameters, so the comparison is
instead for reference rather than proving some models’
advantages over others.

C. CLASSIFIERS INTERPRETATION
Table 5 shows the top 4 classifiers with the highest fitness for
one of the runs for the ACS2 model evaluated on the MazeF1
environment. Condition and anticipation have the same shape
as agent perception, represented as a state of 8 consecutive
cells starting from the one above an agent. 0 - stands for an
empty cell, 1 - obstacle, 9 - reward, # symbol in condition
means don’t care (it matches with any state), in anticipation,
means the state for this cell does not change. The first two
classifiers match with the cells next to the food, and both
propose an action that results in reaching the food directly.
Their reward is 1000, equal to the reward of reaching the food.

The following two classifiers match the cells two steps
ahead of the food, and they both propose an optimal action to
shorter the distance. Their anticipated perception includes the
reward state symbol (9) with the discounted reward of 950.

VI. CONCLUSION
Deep learning has recently achieved significant success in
classifying high-dimensional data. Unfortunately, as black-
box models, they struggle to understand their performance.
On the contrary, LCS, as the white-box model, evolves
the knowledge in the IF-THEN rules (classifiers), enabling
humans to interpret the regularities embedded in the data
easily.

The paper indicates that the proposed ACS2 with
Episode-based Experience Replay has the potential to
improve learning capabilities, also compared to the deep
learning approach while retaining interpretive ability. Future
researchers are encouraged to validate and build upon this
work using the publicly available source code.

The answer to why ACS2-(E)ER performs so well in a
multi-step environment is an issue which requires further
study, especially in the context of the RL-based algorithms.
Moreover, we identified the following research areas:
• More insight into the EER’s operating mechanism and
potential improvements.

• More exhausted empirical studies focused on more up-
to-date ER strategies [21] and attempt to integrate those
with the ACS2 model.

• Advanced analysis and comparison of ACS models’
classifiers structures and evolution during the learning
process.

REFERENCES
[1] J. H. Holland and J. S. Reitman, ‘‘Cognitive systems based on adap-

tive algorithms,’’ in Pattern-Directed Inference Systems. Amsterdam,
The Netherlands: Elsevier, 1978, pp. 313–329.

[2] R. J. Urbanowicz and W. N. Browne, Introduction to Learning Classifier
Systems, 1st ed. Berlin, Germany: Springer, 2017.

[3] D. Pätzel, A. Stein, and J. Hähner, ‘‘A survey of formal theoretical advances
regarding XCS,’’ in Proc. Genetic Evol. Comput. Conf. Companion,
Jul. 2019, pp. 1295–1302.

41202 VOLUME 11, 2023



Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

[4] T. Hansmeier and M. Platzner, ‘‘An experimental comparison of
explore/exploit strategies for the learning classifier system XCS,’’ in Proc.
Genetic Evol. Comput. Conf. Companion, Jul. 2021, pp. 1639–1647.

[5] A. Stein, R. Maier, L. Rosenbauer, and J. Hähner, ‘‘XCS classifier system
with experience replay,’’ in Proc. Genetic Evol. Comput. Conf., Jun. 2020,
pp. 404–413.

[6] W. Stolzmann, ‘‘An introduction to anticipatory classifier systems,’’
in Learning Classifier Systems (Lecture Notes in Computer Science),
P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Berlin, Germany:
Springer, 2000, pp. 175–194.

[7] M. V. Butz, Anticipatory Learning Classifier Systems, vol. 4. Berlin,
Germany: Springer, 2002.

[8] T. Miller, ‘‘Explanation in artificial intelligence: Insights from the social
sciences,’’ Artif. Intell., vol. 267, pp. 1–38, Feb. 2018.

[9] V. Martin Butz and W. Stolzmann, ‘‘An algorithmic description of ACS2,’’
in Advances in Learning Classifier Systems, P. L. Lanzi, W. Stolzmann,
and S. W. Wilson, Eds. Berlin, Germany: Springer, 2002, pp. 211–229.

[10] O. Unold, N. Kozlowski, and L. Smierzchala, ‘‘Preliminary tests of
an anticipatory classifier system with experience replay,’’ in Proc.
Genetic Evol. Comput. Conf. Companion, Boston, MA, USA, Jul. 2022,
pp. 2095–2103, doi: 10.1145/3520304.3533996.

[11] M. P. Deisenroth, G. Neumann, and J. Peters, ‘‘A survey on policy search
for robotics,’’Found. Trends Robot., vol. 2, nos. 1–2, pp. 1–142, Aug. 2013.

[12] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

[13] N. Kozlowski and O. Unold, ‘‘Integrating anticipatory classifier systems
with OpenAI gym,’’ in Proc. Genetic Evol. Comput. Conf. Companion,
Jul. 2018, pp. 1410–1417.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
and S. Petersen, ‘‘Human-level control through deep reinforcement
learning,’’ Nature, vol. 518, pp. 529–533, Feb. 2015.

[15] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952.

[16] H. Zou, T. Ren, D. Yan, H. Su, and J. Zhu, ‘‘Reward shaping via meta-
learning,’’ 2019, arXiv:1901.09330.

[17] S. Sinha, J. Song, A. Garg, and S. Ermon, ‘‘Experience replay with
likelihood-free importance weights,’’ in Proc. Learn. Dyn. Control Conf.,
2022, pp. 110–123.

[18] M. Brittain, J. Bertram, X. Yang, and P. Wei, ‘‘Prioritized sequence expe-
rience replay,’’ 2019, arXiv:1905.12726.

[19] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. van Hasselt, and D. Silver, ‘‘Distributed prioritized experience
replay,’’ 2018, arXiv:1803.00933.

[20] C. Wang and K. Ross, ‘‘Boosting soft actor-critic: Emphasizing recent
experience without forgetting the past,’’ 2019, arXiv:1906.04009.

[21] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, ‘‘Hindsight expe-
rience replay,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1–11.

[22] B. Manela and A. Biess, ‘‘Curriculum learning with hindsight experience
replay for sequential object manipulation tasks,’’ Neural Netw., vol. 145,
pp. 260–270, Jan. 2022.

[23] P. Liu, C. Bai, Y. Zhao, C. Bai, W. Zhao, and X. Tang, ‘‘Generating
attentive goals for prioritized hindsight reinforcement learning,’’ Knowl.-
Based Syst., vol. 203, Sep. 2020, Art. no. 106140.

[24] B. Li, T. Lu, J. Li, N. Lu, Y. Cai, and S. Wang, ‘‘ACDER: Augmented
curiosity-driven experience replay,’’ inProc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2020, pp. 4218–4224.

[25] M. Fang, C. Zhou, B. Shi, B. Gong, J. Xu, and T. Zhang, ‘‘DHER:
Hindsight experience replay for dynamic goals,’’ in Proc. Int. Conf. Learn.
Represent., 2019, pp. 1–12.

[26] P. Sun, W. Zhou, and H. Li, ‘‘Attentive experience replay,’’ in Proc. AAAI
Conf. Artif. Intell., Apr. 2020, vol. 34, no. 4, pp. 5900–5907.

[27] Q. Wei, H. Ma, C. Chen, and D. Dong, ‘‘Deep reinforcement learning with
quantum-inspired experience replay,’’ IEEE Trans. Cybern., vol. 52, no. 9,
pp. 9326–9338, Sep. 2022.

[28] Z. Ren, D. Dong, H. Li, and C. Chen, ‘‘Self-paced prioritized curriculum
learning with coverage penalty in deep reinforcement learning,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2216–2226, Jun. 2018.

[29] Y. Oh, J. Shin, E. Yang, and S. J. Hwang, ‘‘Model-augmented prioritized
experience replay,’’ in Proc. Int. Conf. Learn. Represent., 2022, pp. 1–26.

[30] H. Zhang, C. Xiao, H. Wang, J. Jin, and M. Muller, ‘‘Replay memory as
an empirical MDP: Combining conservative estimation with experience
replay,’’ in Proc. The 11th Int. Conf. Learn. Represent., 2023, pp. 1–27.

[31] L. Rosenbauer, A. Stein, R. Maier, D. Pätzel, and J. Hähner, ‘‘XCS as a
reinforcement learning approach to automatic test case prioritization,’’ in
Proc. Genetic Evol. Comput. Conf. Companion, Jul. 2020, pp. 1798–1806.

[32] L. Rosenbauer, A. Stein, D. Patzel, and J. Hahner, ‘‘XCSF with experience
replay for automatic test case prioritization,’’ in Proc. IEEE Symp. Ser.
Comput. Intell. (SSCI), Dec. 2020, pp. 1307–1314.

[33] A. Stein, S. Menssen, and J. Hähner, ‘‘What about interpolation? A radial
basis function approach to classifier prediction modeling in XCSF,’’ in
Proc. Genetic Evol. Comput. Conf., Jul. 2018, pp. 537–544.

[34] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[35] L.-J. Lin, ‘‘Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,’’ Mach. learn., vol. 8, nos. 3–4, pp. 293–321,
1992.

[36] P. Cichosz, ‘‘An analysis of experience replay in temporal difference
learning,’’ Cybern. Syst., Int. J., vol. 30, no. 5, pp. 341–363, 1999.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602.

[38] C. J. Watkins and P. Dayan, ‘‘Q-learning,’’ in Machine Learning. Boston,
MA, USA: Kluwer, 1992, pp. 279–292.

[39] H. van Hasselt, ‘‘Reinforcement learning in continuous state and action
spaces,’’ in Reinforcement Learning (Adaptation, Learning, and Optimiza-
tion), vol. 12, M. Wiering and M. van Otterlo, Eds. Berlin, Germany:
Springer, 2012, doi: 10.1007/978-3-642-27645-3_7.

[40] S. F. Melo and M. I. Ribeiro, ‘‘Q-learning with linear function approxima-
tion,’’ in Learning Theory. Berlin, Germany: Springer, 2007, pp. 308–322.

[41] J. Fan, Z. Wang, Y. Xie, and Z. Yang, ‘‘A theoretical analysis of deep
Q-learning,’’ in Proc. 2nd Conf. Learn. Dyn. Control, vol. 120, 2020,
pp. 486–489.

[42] M. Hessel, J. Modayil, H. V. Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, ‘‘Rainbow: Combining
improvements in deep reinforcement learning,’’ in Proc. AAAI Conf. Artif.
Intell., Apr. 2018, vol. 32, no. 1, pp. 1–8.

[43] J. H. Holland, L. B. Booker, M. Colombetti, M. Dorigo, D. E. Goldberg,
S. Forrest, R. L. Riolo, R. E. Smith, P. L. Lanzi, W. Stolzmann, and
S. W. Wilson, ‘‘What is a learning classifier system?’’ in Learning Clas-
sifier Systems: From Foundations to Applications. Berlin, Germany:
Springer, 2000, pp. 3–32.

[44] M. V. Butz, Rule-Based Evolutionary Online Learning Systems, vol. 259.
Berlin, Germany: Springer, 2006.

[45] Y. Liu, W. N. Browne, and B. Xue, ‘‘A comparison of learning classifier
systems rule compaction algorithms for knowledge visualization,’’ ACM
Trans. Evol. Learn. Optim., vol. 1, no. 3, pp. 1–38, Sep. 2021.

[46] Y. Liu, W. N. Browne, and B. Xue, ‘‘Visualizations for rule-based machine
learning,’’ Natural Comput., vol. 21, pp. 243–264, Jan. 2021.

[47] M. Irfan, Z. Jiangbin, M. Iqbal, Z. Masood, M. H. Arif, and
S. R. U. Hassan, ‘‘Brain inspired lifelong learning model based on neural
based learning classifier system for underwater data classification,’’ Exp.
Syst. Appl., vol. 186, Dec. 2021, Art. no. 115798.

[48] M. Irfan, Z. Jiangbin, M. Iqbal, Z. Masood, and M. H. Arif, ‘‘Knowl-
edge extraction and retention based continual learning by using convolu-
tional autoencoder-based learning classifier system,’’ Inf. Sci., vol. 591,
pp. 287–305, Apr. 2022.

[49] M. Irfan, Z. Jiangbin, M. Iqbal, and M. H. Arif, ‘‘Enhancing learning clas-
sifier systems through convolutional autoencoder to classify underwater
images,’’ Soft Comput., vol. 25, no. 15, pp. 10423–10440, Aug. 2021.

[50] R. J. Preen, S. W. Wilson, and L. Bull, ‘‘Autoencoding with a classifier
system,’’ IEEE Trans. Evol. Comput., vol. 25, no. 6, pp. 1079–1090,
Dec. 2021.

[51] S.-J. Bu and S.-B. Cho, ‘‘A convolutional neural-based learning classi-
fier system for detecting database intrusion via insider attack,’’ Inf. Sci.,
vol. 512, pp. 123–136, Feb. 2020.

[52] K. Matsumoto, R. Takano, T. Tatsumi, H. Sato, T. Kovacs, and
K. Takadama, ‘‘XCSR based on compressed input by deep neural network
for high dimensional data,’’ in Proc. Genetic Evol. Comput. Conf. Com-
panion, Jul. 2018, pp. 1418–1425.

[53] A. Siddique, W. N. Browne, and G. M. Grimshaw, ‘‘Frames-of-reference-
based learning: Overcoming perceptual aliasing in multistep decision-
making tasks,’’ IEEE Trans. Evol. Comput., vol. 26, no. 1, pp. 174–187,
Feb. 2022.

VOLUME 11, 2023 41203

http://dx.doi.org/10.1145/3520304.3533996
http://dx.doi.org/10.1007/978-3-642-27645-3_7


Ł. Śmierzchała et al.: Anticipatory Classifier System With Episode-Based Experience Replay

[54] J. Hoffmann, Vorhersage Und Erkenntnis. Göttingen, Germany: Hogrefe,
1993.

[55] J. Hoffmann and A. Sebald, ‘‘Lernmechanismen zum erwerb verhaltenss-
teuernden wissens,’’ Psychologische Rundschau, vol. 51, no. 1, pp. 1–9,
Jan. 2000.

[56] W. Stolzmann, ‘‘Antizipative classifier systems,’’ Ph.D. thesis, Fachbereich
Mathematik/Informatik, Univ. Osnabruck, Osnabruck, Germany, 1997.

[57] R. Orhand, A. Jeannin-Girardon, P. Parrend, and P. Collet, ‘‘PEPACS:
Integrating probability-enhanced predictions to ACS2,’’ in Proc. Genetic
Evol. Comput. Conf. Companion, Jul. 2020, pp. 1774–1781.

[58] R. Orhand, A. Jeannin-Girardon, P. Parrend, and P. Collet, ‘‘BACS: A thor-
ough study of using behavioral sequences in ACS2,’’ in Proc. Int. Conf.
Parallel Problem Solving Nature. Cham, Switzerland: Springer, 2020,
pp. 524–538.

[59] N. Kozlowski and O. Unold, ‘‘Anticipatory classifier system with aver-
age reward criterion in discretized multi-step environments,’’ Appl. Sci.,
vol. 11, no. 3, p. 1098, Jan. 2021.

[60] N. Kozlowski and O. Unold, ‘‘Internalizing knowledge for anticipatory
classifier systems in discretized real-valued environments,’’ IEEE Access,
vol. 10, pp. 33816–33828, 2022.

[61] F. Otto, O. Celik, H. Zhou, H. Ziesche, N. A. Vien, and G. Neumann,
‘‘Deep black-box reinforcement learning with movement primitives,’’
2022, arXiv:2210.09622.

[62] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, ‘‘RLlib: Abstractions for distributed
reinforcement learning,’’ in Proc. 35th Int. Conf. Mach. Learn., 2018,
pp. 3053–3062.

[63] N. D. Pozza, L. Buffoni, S. Martina, and F. Caruso, ‘‘Quantum reinforce-
ment learning: The maze problem,’’ Quantum Mach. Intell., vol. 4, no. 1,
pp. 1–10, Jun. 2022.

[64] J. Kruschke, ‘‘Bayesian estimation supersedes the T test,’’ J. Exp. Psychol.,
Gen., vol. 142, p. 573, Jul. 2012.

[65] A. J. Bagnall and Z. V. Zatuchna, ‘‘On the classification of maze prob-
lems,’’ in Foundations of Learning Classifier Systems. Berlin, Germany:
Springer, 2005, pp. 305–316.

ŁUKASZ ŚMIERZCHAŁA received the B.Sc.
and M.Sc. degrees from the Wroclaw University
of Science and Technology, in 2018 and 2022,
respectively. His research interest includes learn-
ing classifier systems.

NORBERT KOZŁOWSKI was born in Poland,
in 1990. He received the B.Sc. degree from the
Department of Electronics, Wroclaw University of
Science and Technology, in 2014, theM.Sc. degree
in advanced informatics and control, in 2015, and
the Ph.D. degree in computer science, in 2022.
His research interest includes anticipatory learning
classifier systems with a particular interest in the
real-valued input signals.

OLGIERD UNOLD received the M.Sc. degree in
automation systems, in 1989, the M.Sc. degree in
information science, in 1991, and the Ph.D. and
D.Sc. degrees in computer science, in 1994 and
2011, respectively. He is currently a Full Professor
with the Department of Computer Engineering,
Wrocław University of Science and Technology.
His research interest includes adaptive machine
learning methods.

41204 VOLUME 11, 2023


