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ABSTRACT Background: Glomerular lesion recognition is one of the most crucial steps in the diagnosis of
kidney disease. Deep learning, which relies on large numbers of pathology images, assists pathologists to
access glomerular lesions more efficiently, objectively and accurately. However, due to different pathological
development of glomeruli, complicated lesion patterns, and limited resolution of pathology images, there
is annotation noise in datasets, making the deep learning model under- or over-fit. Methods: In this
paper, we propose a novel noisy label learning model for lesion recognition in glomerular datasets with
annotation noise. The model integrates uncertainty-based noisy label discriminator, contrastive learning,
and consistency regularization to achieve high signal-to-noise supervision, pathology feature extraction, and
utilization of pathology images. Results: We constructed large-scale glomerular datasets from 870 kidney
disease cases using different stainings including Periodic acid-Schiff (PAS), Masson Trichrome (MT) and
Periodic Schiff-Methenamine (PASM). Intensive experiments demonstrated the superiority of the proposed
model for glomerular lesion recognition compared to other methods, as 25% of the lesions had f1 − score
above 85%, 43.75% had f1−score above 80%, and 75% had f1−score at or above 70%. Additionally, further
experiments demonstrate the effectiveness of each module. Conclusions: The noisy label learning model
proposed is able to recognize the most glomerular lesions, with the annotation noise discrimination and
large amounts of pathology images utilization, laying the foundation for the development of computer-aided
evaluation system for the renal pathology.

INDEX TERMS Glomerular Lesions recognition, pathology images, annotation noise, noisy label learning,
deep learning.

I. INTRODUCTION
According to statistics, about 10% of adults have chronic
kidney disease (CKD), which severely threatens life and
health [1]. The glomerulus is the basic unit of kidney and
plays an essential role in reflecting the onset, development
and progression of kidney disease. Pathologists need to

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

recognize glomerular lesions using several stainings, includ-
ing PAS, MT, PASM and Hematoxylin and Eosin (H&E). For
a case, pathologists perform a comprehensive and objective
analysis of dozens of glomeruli on tissues, which involves
complex morphological aspects due to different stainings and
the superposition of multiple lesions. This routine work could
be more efficient and reproducible with computer assistance.

Commonly, labeling glomerular lesions is the first step
of deep learning. Though annotation quality is crucial for
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FIGURE 1. Examples of annotation noise. The lesion patterns are listed on the left. It is noted that the PAS(-) means that the
mesangial matrix is significantly increased, with light staining under PAS staining. Rows 1-3 are from PAS, MT and PASM. ✓and ×

indicates the presence or absence of a lesion. Annotation noise arises from different causes. For example, in column 1 of row 1,
glomerulus incorrectly labeled ‘‘GS’’ has developing glomerular change, as aproximately global sclerosing with some opening
capillary lumens still being seen. In column 2 of row 2, due to the limited resolution, we cannot determine whether the red
stained area is only ‘‘wire-loop deposits’’ or accompanied by SFN (red arrow). In column 1 of row 3, the glomerulus is labeled EP,
but the ground truth is nodular sclerosis (green arrow) and a few foaming cells in the capillary (red arrow). This may be due to
unobtrusive anomalous structures caused by the superposition of multiple lesions.

performance of computer assistance, noisy labels are present
in the glomerulus dataset as shown in Fig. 1. First, some
glomeruli are in the process of pathological development,
whose lesions are atypical. Second, multiple lesions can
coexist within a single glomerulus. Third, some fine struc-
tural alterations, such as vacuolations or spikes of base-
ment membrane, could not be well recognized owing to
limited resolution of light microscopy images. Comprehen-
sive consideration of information from electron microscopy
or immunofluorescence may be necessary in assessing the
lesion. In summary, due to the above causes, annotation noise
is generated to severely affect deep learning.

The current neglect of the significance of annotation noises
in the datasets bottlenecks the performance of learning-based
classification. When using a traditional loss function, the
incorrect penalty to the deep model due to annotation noise
can have a severe impact on model training. Several studies
have proposed noise-robust loss [2], [3], [4], thus overcoming
the effect of noise by robust penalty. However, such methods
do not explicitly deal with the negative of noisy labels, and
thus do not alleviate the problem of underfitting or overfitting
when the dataset contains annotation noise.

In order to separate the noise from the dataset and thus
explicitly perform direct processing of noisy samples, meth-
ods based on noise label recognition are proposed [5],
[6]. After noisy data is collected, some work directly dis-
cards noisy samples and uses only clean labels for super-
vision [7]. This paradigm has the potential to discard both
valuable correct labels and samples that help the network
learn discriminative features. This brute-force approach can
limit the generalization performance of the network. Other

works have used label correction to correct the possible
mislabeling of these samples. The label correction can gen-
erate pseudo-labels or label distributions of noisy samples,
thus replacing the original potentially noisy labels [8], [9].
Although these methods can provide the network with super-
vised training with higher signal-to-noise ratio, incorrect
label correction puts a constraint on the further improvement
of the network performance.

To explicitly handle noisy labels and efficiently mining the
glomerular images to improve the lesion recognition capabil-
ity of the model, we propose a noisy label learning framework
consisting of three modules. The noise label discriminator
(NLD) robustly divides the dataset into a clean part and a
noisy part based on sample uncertainty. NLD excludes the lat-
ter from the computation of the supervised classification loss,
thereby avoiding the effect of annotation noise. The contrast
learning (CL) module employs a Siamese network to extract
sample features and constructs constraints on the model using
the similarity relationship between samples. CL promotes the
network to encode pathological features by forcing samples
with higher similarity to be closer together in the feature
space, and samples with lower similarity to be mutually
exclusive. Compared to label correction, the unsupervised
paradigm of CL can ensure the confidence of dependency
information for network training to avoid semantic ambi-
guity. The consistency regularization (CR) module utilizes
the teacher-student model to further enhance the network to
capture lesion-related pathological features.

The contributions of this paper are summarized as follows:
• This paper presents a noisy label learning framework for
accurate, generalizable glomerular lesion recognition

41326 VOLUME 11, 2023



J. Li et al.: Glomerular Lesion Recognition Based on Pathology Images

for PAS, MT, and PASM staining based on a large
glomerular dataset with annotation noise.

• This paper designs an uncertainty-aware noisy label dis-
criminator to achieve more efficient label discrimination
and improve the signal-to-noise ratio for classification
tasks.

• This paper uses Siamese model-based contrastive learn-
ing and teacher-student model-based consistency reg-
ularization to encode pathological features more effi-
ciently and robustly.

The remainder of this paper is organized as follows. Sec-
tion II reviews recent work on glomerular lesion recognition
and noisy label learning with contrastive learning and sume-
supervised learning. The details of the proposed method are
described in Section III. The experimental results are pro-
vided in Section IV. Section V presents the discussion about
our work. Finally, Sections VI concludes this paper.

II. RELATED WORKS
A. GLOMERULAR LESION RECOGNITION
Glomerulopathy is a manifestation of kidney disease at the
nephron-unit level, and its assessment is necessary for a
full diagnosis of nephrosis. Pathological image-based lesion
recognition is one of the main tools. However, for one case,
pathologists generally need to identify hundreds of glomeruli
in detail, which involves complex morphological aspects of
the glomerular lesion caused by different stainings and the
superposition of multiple lesions. The present learning-based
work is performed by full supervision on the construction
of high-accuracy datasets. Some work is carried out for the
glomerulus with a single lesion [10], [11]. [12] proposes to
use uncertainty-aware module to improve the model’s ability
to recognize lesions. In other works, multi-stage method is
used to construct the recognition of multiple lesions [13]. The
processing of annotation noise in large-scale datasets needs to
be further considered, especially in glomerular pathological
images with extremely complex pathological patterns.

B. NOISY LABEL LEARNING
Deep learning has been able to match human performance
in relatively clean datasets [14], [15], [16], [17], as well
as in computational pathology [18], [19]. However, for the
histopathological image data, the heterogeneity of tissues and
diseases leads to the difficulty, burden and subjectivity of
annotation, which leads to the elevated cost of achieving high-
quality annotation. Noisy label learning can help to address
this issue, which can be divided into implicit and explicit
handling of annotation noise. The implicit method is mainly
to design noise robust loss function, so as to alleviate the
non-robustness caused by only using traditional cross entropy
loss to understand noisy labels [2], [3], [4]. Explicit methods
will distinguish between clean and noisy labels and use dif-
ferent methods to process [20], [21], [22]. In previous studies,
samples with noisy labels were directly discarded [7], which
may lead to the loss of some valuable discriminant features

during training, because such samples are more likely to be
incorrectly labeled. In order to solve this problem, the label
correction method was introduced [9], [23], which improved
the efficiency of data mining in the network.

C. CONTRASTIVE LEARNING
Contrastive learning is a paradigm of self-supervised learn-
ing that enables models to achieve similar performance to
supervised learning [24], [25], [26]. The principle of con-
trastive learning is to narrow the distance between anchors
and positive samples by designing a contrastive loss func-
tion and repel anchors and negative samples in the feature
space. Without labels, contrastive learning can enhance the
network to encode salient features and learn better feature
representations.

D. SEMI-SUPERVISED LEARNING
The proposal of semi-supervised learning is for the case
where some samples are missing labels. In addition to super-
vised information from labeled samples, semi-supervised
learning also uses all labeled and unlabeled samples to pro-
vide the network with additional knowledge about the data
distribution, which can better help the network estimate
decision boundaries. Semi-supervised methods include con-
sistency regularization [27], self-training [28], collaborative
training [29].

III. METHODS
A. DATASET
We collect kidney specimens of 870 patients at Xijing Hospi-
tal in Xi’an, China. The tissues were from the main nephropa-
thy case, including DN (Diabetic Nephropathy), FSGS (Focal
Segmental Glomerulosclerosis), AAGN (ANCA-Associated
Glomerulonephritis), MN(Membranous Glomerulopathy),
ORGN (Obesity-Related Glomerulopathy), AGBM (Anti-
Glomerular Basement Membrane disease), LN (Lupus
Nephritis), EPGN (Endocapillary Proliferative Glomeru-
lonephritis), MPGN (Membranoproliferative Glomeru-
lonephritis), TIN(Tubulointerstitial nephritis), CrGN (Cres-
centic Glomerulonephritis), IgAN (IgA Nephropathy) and
HSP (Henoch-Schonlein Purpura). Each case was sliced on
12 consecutive levels, with both H&E and PAS having four
levels and both MT and PASM having two. The tissues
stained by PAS, MT, and PASM were scanned to obtain
whole slide images (WSIs) by slide scanning image sys-
tem of Shenzhen Shengqiang Technology Co.,. The dataset
includes 842 PASWSIs, 803MTWSIs and 838 PASMWSIs.

We detected glomeruli at 5× equivalent magnification
(1.68 um/pixel) using pretrained Mask R-CNN [30], and
extracted glomerulus onto images at 20×. It is noted that
the images were not intentionally selected to have compli-
cations such as large size differences and multiple lesions
superimposed, and only one level for each staning is used.
We extracted 17901, 15820 and 19197 glomeruli from PAS,
MT and PASM, respectively, and randomly split the data
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TABLE 1. The information of three datasets.

into training, validation and test sets according to the cases,
as described in Table 1.

Since different stainings highlight different structures, the
pathologist only assesses the lesion specified for the stain-
ing. Similarly, when performing annotation, glomeruli are
labeled only with the staining-specified lesion shown in
Table 1. NOA means none of all staining-specified lesions.
To achieve accurate validation during training and evaluation
after training, the validation and test datasets were annotated
by two advanced pathologists to guarantee correct labeling.
For much larger training datasets, the interns perform the
annotation.

B. PROBLEM SETTINGS
In the classification of glomeruli with noisy labels, our goal is
to find a mapping function f between the pathological images
spaceX and the annotated set with noise Ŷ . The ground truth
space Y without noisy labels is potentially available but prac-
tically inaccessible to us due to insignificance in the lesion,
insufficient resolutions in images, annotation workload and
subjectivity. Traditionally, to optimize model f with clean
labelis obtained, a supervised loss function L is designed to
penalize the difference between themodel prediction f (x) and
the ground truth y, as the optimal model is

f ∗
= argminE(x,y) (X ,Y)[L(f (x), y)]. (1)

The difference between Ŷ andY bring thismethod the seman-
tic ambiguity, thus falling into overfitting and mislearning.
Therefore, we need to identify a new optimization way to find
a mapping function f , so that training with {X , Ŷ} yields an
appreciable generalization performance on a clean test set.

C. THE OVERVIEW OF THE PROPOSED MODEL
The overview of themodel is shown in Fig. 2. Before training,
Mask R-CNN is used to detect the glomeruli on the WSIs
followed by the annotations. The labels in the training dataset
are considered to consist of clean and noisy labels, which are
updated dynamically during training. The annotation noise
interferes with the network and shows excessive uncertainty
in the prediction of the image. Therefore, noisy label dis-
criminator (NLD) performs the recognition of noises by

calculating sample uncertainties, where samples with higher
uncertainties are considered carrying noisy labels.

During training, augmentation A transforms one image
to generate two different images, and these two images are
fed into Siamese networks that share weights. One of the
networks computes a supervised classification loss on clean
data, which drives the feature extractor to biasly encode the
pathological features associated with each lesion.

In addition to the supervised classification loss, the
Siamese network computes an unsupervised contrast loss.
It uses a mapping layer to project two sets of homologous
images into the same feature space.Both images originating
from the same image are consistent in terms of the semantic
information of the glomerular lesion. This implies that the
distances between their features in the new feature space
should be relatively close. This regularization encodes the
same semantic features closer to each other in the projection
space and vice versa, motivating the feature extractor to
learn salient features. It is computed using an unsupervised
contrastive loss for both clean and noisy data.

In addition to contrastive learning, a teacher-student model
is used to perform consistency regularization. The teacher
model is obtained by exponential moving averaging (EMA)
from one of the Siamese models called student model.
It prevents the student from getting stuck in local optima
and provides more stable predictions. This is achieved by
constraining the agreement between student and teacher
predictions.

D. MODEL DETAILS
1) NOISY LABEL DISCRIMINATOR
The space Ŷ of the dataset constructed from clinical data
carries a lot of label noises consisting of a potentially clean
annotation space Ŷc and a noisy annotation space Ŷn due to
insignificant lesion structure variation, insufficient resolution
of the microscopic images, heavy and subjective annotation.
Under the traditional paradigm, the training can be standard-
ized by minimizing the difference between the prediction
f (x) and y ∈ Ŷc, so that it captures lesion-related features.
However, it is harmful to use y ∈ Ŷd directly for supervised
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FIGURE 2. The overview of the proposed model. The detection and annotation are performed before the model training.

training, which can severely mislead the optimization of the
network and make the network fall into overfitting or local
optimum.

To address the above issues, NLD is designed to further
distinguish noisy samples from clean ones. In general, lesions
cause structural changes in the glomeruli. A typical lesion
structure will help to give a higher confidence in the anno-
tation, while an atypical one tends to increase subjectivity.
For deep neural networks, the uncertainty value of the typical
lesion structure prediction tends to be lower, and vice versa.
Therefore, we use uncertainty as a metric to distinguish clean
samples from noisy ones. The operation of NLD consists
of three steps. First, the uncertainty is calculated for each
sample. The sample uncertainty was defined as the maximum
information entropy of the prediction of each category:

Uxi = max
1≤c≤C

−(fc(xi)logfc(xi) + (1 − fc(xi))log(1 − fc(xi))),

(2)

where i and j are the index of training samples and cate-
gories respectively, and C mean the total categories of this
stain. Second, samples with the largest uncertainty of p%
are selected as noisy samples. Third, noisy samples with
stain-related lesion labels are returned as clean samples, since
the number of positive labels is much smaller than the number
of negative labels. After each epoch of training, the obtained
grouping information of clean and noisy samples is used in
the next round, so the clean and noisy samples are updated
dynamically.

2) CONTRASTIVE LEARNING
After obtaining clean and noisy samples, we employ unsu-
pervised contrast loss to exploit the rich image features of
noisy samples to improve the feature extraction ability of the

network.The computation process of contrast loss is shown in
Figure 3. In one batch, image xi is transformed into xi1 ∈ R
andxi2 by random augmentation A. xi1 and xi2 are fed into
the encoder of the Siamese network, and finally go through
the projection layer P to obtain embeddings zi1 ∈ R128 and
zi2 ∈ R128. Another image xj in the same batch goes through
exactly the same steps to finally obtain zj1 ∈ R128 and zj2 ∈

R128. P is a multilayer perceptron (MLP), which contains a
hidden layer, ReLU activation layer and fully connected (FC)
layer.P encodes the 2048-dimensional features obtained from
the encoder to 128 dimensions, and the vector contains the
semantic information of the current sample in the underlying
feature space.

We use the normalized temperature-scaled cross entropy
loss [25] as the contrast loss. For each anchor zi1 in a batch,
its homologue zi2 is the positive sample carrying the same
semantic information, while all other samples zk (k ̸= i) are
negative samples. The contrast loss serves to maximize the
similarity between the anchor and positive samples, while
minimizing that between the anchor and negative samples.
The formula of the loss function is

Lcl = −log
esim(zm,zn)/τ∑2N

k=1 1k ̸=me
sim(zm,zn)/τ

, (3)

where sim means cosine similarity function and N is the size
of the batch.

3) CONSISTENCY REGULATIZATION
The student model performs supervised classification loss
by NLD using clean labels thus achieving efficient feature
extraction, while utilizes unsupervised contrastive loss to
further enhance the ability to extract features. During train-
ing, clean and noisy data are dynamically updated, therefore
the prediction of the student model fluctuates continuously.
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FIGURE 3. The overview of the contrastive learning. The encoders share the same weights.

To prevent instability and stucking in local optima in training,
we take EMA of student as the teacher with more stable
parameter updates to constrain the training.

During training, the teacher is a moving exponential
weighted average of the student, updated by the formula:

θ ‘t = αθ ‘t−1 + (1 − α)θt , (4)

where θ ‘ and θ means the teacher model and student model
respectively, t means the iteration index. α is the smoothing
parameter, controlling the smoothing of the parameters of
the teacher. The teacher’s prediction contains the student’s
history information and is therefore more stable. We define
the consistency loss function to perform the regularization as

Lcr =
∥∥fθ (x) − fθ ‘ (x)

∥∥
2 . (5)

During inference, the output of the student model are set as
final predictions.

4) BACKBONE AND OVERALL OPTIMIZATION OBJECTIVE
In this paper, pretrained ResNet-101 [31] was used as the
backbone. The number of output nodes is set as the number of
lesion categories of each staining. The binary cross-entropy
loss function was used as

Lc =

∑
i

C∑
c

−[yiclog(pic) + (1 − yic)log(1 − pic)], (6)

where pic means the predicted probability of cth category of
the i sample.

The overall optimization objective of the proposed method
is

min
θ

Lc + wclLcl + wcrLcr , (7)

where wcl and wcr are the loss weights and θ is the model
parameters.

IV. RESULTS
A. EXPERIMENTS SETUP
To validate the efficiency of the proposed method on three
noisy glomerular datasets with different stainings (PAS,
MT and PASM), we compare it with other methods for noisy
label learning. Furthermore, we perform intensive experi-
ments to demonstrate the usefulness of each module and
discuss the effect of different sets of hyperparameters and
implementations. At each trial, the model that performs best
on the validation set is saved for inference.

1) TRAINING SETTINGS
We train the proposed noisy label learning framework with
Adam optimizer with a learning rate of 1e-4, using NVIDIA
A100 GPUs and the batch size was set to 32. All images are
resize to (224 pixles, 224 pixels), and are utilized random
flip, rotation, scaling, random brightness and contrast shift
and normalization as augmentation methods. NLD was run
from beginning with the value of p set as 10, which means
the top p% uncertain samples are considered to be labeled
incorrectly. The starting epoch of CL was set to 10, with the
temperature τ set as 0.5 and wcr set as 0.1. The teacher model
was introduced from the 15th epoch, where the maximun
value of α was set to 0.9 and wcr is set as 0.1. α was defiend
as

α = min(1 −
1

ec − es + 1
, 0.9), (8)

where ec and es are the current and starting epoch, respec-
tively.

2) EVALUATION METRICS
During training, the model with the highest average f1-score
of each category on the validation set is considered the best
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TABLE 2. The comparison of different methods.

model. In the inference process, the average f1 − score and
accuracy of each lesion on the test set are used as the evalua-
tion metrics. We define mean f1 − score as mean− f1 which
is calculated as

mean− f1 =
1
C

C∑
c=0

2PcRc
Pc + Rc

, (9)

where Pc and Rc are the precision and recall of cth category,
respectively. The mean− acc are the average accuracy of all
categories.

B. COMPARISON TO OTHER METHODS
To verify the superiority of our method, we compare the
following methods:

• Baseline: Pretrained ResNet-101.
• RobustLoss: Baseline, equipped by symmetric cross-
entropy (SCE) loss which is robust to annotation
noise [4].

• NoiseDrop: Two pretrained ResNet-101s with weight
sharing performing co-teaching, with noisy samples dis-
carded [7].

• LabelCorrection: Pretrained ResNet-101with correction
for noisy labels [32].

• Proposed: The proposed method.

The results are presented in Table 2, with the best perfor-
mance indicated in bold letters. The proposed method shows
the best mean − f1 on both PAS and PASM, and was com-
parable to LabelCorrection on MT. Due to data imbalance,
mean− accs is about the same and our method is better than
Baseline significantly. As mean − f1 is fair for unbalanced
datasets, our model is superior to other methods.

To further demonstrate the enhancement, we list f1−scores
of each lesion using Baseline and proposed method in Fig. 4.
In summary, the proposed method achieves accurate results,
where 25% (4/16) of the lesions had f1 − score above 85%,
43.75% (7/16) had f1 − score above 80%, and 75% (12/16)
had f1 − score at or above 70%. Among them, GS is with
the highest f1 − score for three stainings (all around 90%).
f1 − score of MH, PAS(-) and Cre in PAS is over 80%, but
f1 − score of SS is lower. f1 − score of SFN and Cre in
MT is around 70%. f1 − score of Cre in PASM reaches over
85%, while IS, SS, and SFN are lower. From a comparative
point of view, the proposed method achieves improvements
over Baseline. The huge improvements include PAS-PAS(-)
(+5.16%), PAS-Cre (+4.97%), MT-SFN (+5.66%), MT-Cre
(+6.31%), PASM-EP (+5.00%) and PASM-Cre (+5.50%).

Additionly, there are significant gains for PAS-SS (+2.72%),
MT-GS (+2.43%), PASM-MP (+2.43%), and GS (+2.83%).

C. VISUALIZATION
To demonstrate the evidence the model locate to recognize
lesions, we use Grad-CAM [33] to visualize the feature maps,
depending on which model makes the recognition. Fig. 5
illustrates that by discriminating and processing noises, the
proposed model focuses on the fine-grained lesion-related
regions. A detailed description is given below.

• For PAS, the model identified mesangial regions with
dense mesangial cells to recognize MH in 5.a. The
PAS(-) in 5.b is predicted with the most PAS-negative
mesangial matrix found. In 5.c and 5.d, SS and Cre are
recognized; moreover, the model precisely focuses on
the segment sclerosis and proliferation of glomerular
parietal epithelial cells.

• For MT, SFN in 5.e is recognized by identifying the
fibrinoid necrosis of capillary wall. For Cre in 5.f andGS
in 5.g, the model pays attention to proliferating parental
epithelial cells and global sclerosis. In 5.h, the model did
not capture valid features for NOA.

• For PASM, the model focuses on the whole of the crum-
pled glomerulus for IS in 5.i. In 5.k, the MN is predicted
by identifying vacuolar degeneration of basement mem-
brane. In 5.k and 5.l, the model identifies most areas
where vacuolar degeneration of basement membrane
and where the endocapillary proliferation exists, for MN
and EP, respectively.

D. ABLATION STUDY
In this section, we perform extensive ablation experiments
to demonstrate the effectiveness of the proposed module,
and in addition, we discuss the role of hyperparameters and
ensemble inference methods.

1) ABILITIES OF MODULES
To demonstrate the significance of each module, we compare
the models presented in Table 3. ✓means the use of modules.
As in rows 2-4, NLD, CL, and CR all result in improve-
ments compared to Baseline in row 1. This illustrates the
effectiveness of these modules in enhancing discriminating
noise discrimination and feature extraction. However, mix-
ing modules makes the results complicated. For example,
Baseline+NLD+CL performs better than Baseline+NLD on
most metrics, while Baseline+NLD+CR performs worse than
Baesline+CR. As proposed, the combination of NLD, CL,
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FIGURE 4. The results of the proposed method on all categories of three stainings.

FIGURE 5. Visualization of Grad-CAM of the proposed model. Row 1-3 are PAS, MT and PASM, respectively. The color bar on the
left represents the attention value.

and CR achieves the best results, beating other methods on
all metrics.

2) IMPLEMENTATION OF NLD
To verify the effectiveness of the NLD, we compare the fol-
lowing models: (1) Baseline; (2) Baseline + Loss-based NLD
(L-NLD) [34]; (3) Baseline + Uncertainty-based NLD with
p% = 10% (U-NLD-p = 10%); (4) Baseline + Uncertainty-
based NLD with p% = 30% (U-NLD-p = 30%); (5) Base-
line + Uncertainty-based NLD with p% = 50% (U-NLD-
p = 50%). L-NLD determines the noisy labels based on the
classification loss, which is fit and calculated by Gaussian
mixture model (GMM), with samples with the largest loss of
10% considered as noisy ones. The results shown in Table 4

illustrate U-NLD-p=10% is the best. Compared to Baseline,
L-NLD gain improved only on PAS, while U-NLD outper-
forms Baseline with p=10% or 30%. For a too large value of
p as 50%, the performance of U-NLD is worse.

3) INFLUENCE OF TEMPERATURE
To investigate the effects of temperature τ in the contrast
loss, we compare the performance under different values of
0.01, 0.1 and 1. The results are illustrated in Table 5. The
model with tau set to 0.5 performs the best, with both the
mean−f1 on PAS and PASMbetter than themodels with other
threshold. ForMT,model with tau set to 1 has the best highest
mean−f1. Generally, model with tau set to 0.1 performsworst
for all three stainings.
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TABLE 3. Comparison of different implementations.

TABLE 4. Comparison of different implementation of NLD.

TABLE 5. Comparison of different temperatures.

V. DISCUSSION
Comprehensive information on glomerular lesions patterns
is vital for kidney disease diagnosis. While deep learning
can assist to achieve more objective, efficient and accurate
recognition, its performance is sensitive to annotation noise.
In this paper, we propose a novel noisy label learning model
on glomerular images with annotation noise by discriminat-
ing noisy samples through NLD, and leveraging CL and CR
to enhance the encoding of pathological features.

A. SUPERIORITY OF THE PROPOSED METHOD
Experiments demonstrate the superiority of the proposed
method. Baseline focuses too much on mislabeled labels, and
RobustLoss limits the over-dependence of clean labels with-
out directly handling the noises. ForNoiseDrop, the discarded
may have correct labels and carry discriminative information,
so this method may lead to inadequate learning of features.
As LabelCorrection may perform inaccurate label correction
due to its dependence on models trained on noisy datasets,
new noises will be introduced to hinder the optimization.
For the proposed method, the noisy labels are discriminated
using the uncertainty-based method. Unlike the above works,
it treats noisy labels as unlabeled ones and employs CL and
CR to enhance the encoding capability in an unsupervised
manner. This not only excludes noisy labels for the supervised
loss, but also facilitates the construction of decision bound-
aries.

Compared to Baseline, the proposed model brings gains
on different lesions. The greatest gain is for PAS-PAS(-),

PAS-Cre, MT-SFN,MT-Cre, PASM-EP and PASM-Cre, with
all the improvements being more than 5%. For most of these
lesions, a significant number of samples helps to perceive
pathological features. However, the sensitivity to annotation
noise causes the Baseline to be incorrectly optimized. How-
ever, for the proposed method, noisy labels can be separated,
thus using large amounts of samples to improve under unsu-
pervision.

For different lesions, our method shows different
performance:

- Collectively, the best performance is for GS and Cre,
with the f1−scores are near 85% and even over 90%. The
glomerulus of GS has almost no visible glomerular cap-
illary loop cavity, with an uniform sclerotic state. In Cre,
the parietal epithelial cells proliferated significantly in
Bowman’s cystic, accompanied by inflammatory cell
infiltration and changes in capillary loops. With anno-
tation noise discriminated by the proposed uncertainty-
based NLD, the model uses clean labels to learn GS
and Cre and enhances the ability to encode features
by CL and CR. This results in optimal recognition and
visualization shown in Fig. 4 and Fig. 5.

- Most lesions of PAS and PASM are well recognized. For
PAS, f1−score for MH and PAS(-) both reach over 80%.
For MH, the width of mesangial area and number of
mesangial cells are different in degrees (mild, moderate
and severe). For these variable global morphologies of
the glomeruli, the proposed model excludes annotation
noises to extract degree-agnostic semantic features effi-
ciently. For PAS(-), the mesangial matrix is increased
and PAS staining is light (indicating the deposition of
amyloid in the mesangial area). Our proposed method
benefits from high signal-to-noise learning to capture
such features to construct decision boundary, improving
f1 − score by more than 5% compared to Baseline.
For PASM, MN, MP and EP are well predicted by
identifying finer structures of the basement membrane
and capillaries, the basement membrane and cells in the
capillaries shown in Fig.4. In the proposed model, the
low-level semantic features represent finer pathological
information that can be extracted under the supervision
of the correct labels when noises are excluded. There-
fore, the performance is considerably improved.
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FIGURE 6. Examples of samples predicted as noisy ones by the proposed NLD. Colomn 1 and 2 refer to L-NLD, while column 3 and
4 refer to U-NLD. Colomn 1 and 3 mean the right NLD discrimination, while Colomn 2 and 4 mean the wrong discrimination. Red
labels are predicted to be noisy.

- The recognition of PAS-SS, PASM-IS, PASM-SS and
PASM-SFN is complicated by their progressive and
high-resolution properties. Moreover, the sample num-
ber is too small to perceive lesion-related features. For
SS, the difference in the proportion of affected capillary
loops leads to a large variation in the degree of sclerotic
homogeneity. A small fraction causes SS to be over-
whelmed in other lesions, while a large fraction may be
similar to GS. Similarly, for IS, the different degree of
wrinkling leads to complexity. For SFN, it is necessary
to identify that the basement membrane of capillary loop
is broken under PASM staining. This requires not only
a combination with electron microscopy or immunoflu-
orescence, but also a considerable number of lesion
samples. For one case, the glomeruli with SFN may
only account for a small fraction of all glomeruli, so the
number of SFN we obtained is limited. More images are
needed to improve the perception of these lesions.

B. INFLUENCE OF DIFFERENT IMPLEMENTATIONS OF NLD
In pathological datasets, NLD improves the generalization
ability of the model. First, U-NLD performs better than
L-NLD. For L-NLD, the correlation of classification losswith
the probability of being noisy is weak, and the noisy labels
degrades the GMM,while U-NLD ismore label-independent.
Second, larger p% (p=50) means half of the samples are
dropped to lead to a loss of salient features, thus making
recognition worse. Third, we visualize some noisy labels
discriminated in Fig. 6. Both NLD can recognize noisy labels,
while correct labels may be incorrectly discriminated. For
handling these noises, NoiseDrop and LabelCorrection dis-
card valuable lesion-related features or inevitably introduce
new noises. However, the proposedmodel process in an unsu-
pervised manner. It takes full advantage of the pathological

features provided by the large number of images, avoids
introducing new noise, and ultimately performs the best.

C. INFLUENCE OF DIFFERENT TEMPERATURES OF CL
The role of temperature is to regulate the degree of attention
the network pays to hard samples. Based on the experimental
results, a smaller temperature is more focused on separat-
ing samples from similar hard samples, but may destroy
valuable underlying semantic structures. When t is 0.1, the
network pays much attention to hard samples, resulting in the
destruction of the original semantic structure, thus performs
the worst. When t is 1, the network does not gain from
computation of unsupervised contrast loss. When t is 0.5,
the network not only makes use of noisy samples to improve
the performance of pathological feature extraction, but also
avoids falling into local optimum, so it achieves the best.

VI. CONCLUSION
Deep learning for glomerular lesion recognition is lim-
ited by annotation noise arising from different progression
of pathological development of the glomeruli, insignificant
lesion structures, and insufficient information under light
microscopy. We propose a novel noisy label learning model
that excludes noisy labels based on sample uncertainty and
mining large-scale datasets to enhance the encoder to extract
pathological features using CL and CR. On the PAS, MT,
and PASM datasets, the proposed method outperformed in
recognizing multiple lesions, and the effect of each module
was demonstrated. Our work assists pathologists to perform
efficient, objective and accurate recognition of glomerular
lesions and lay foundation for the research of computer aided
diagnosis for renal pathology.

There are still some shortcomings that need to be
improved. Our work provides new ideas for developing algo-
rithms on large-scale noisy datasets, but the performance on
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complex glomerular lesion recognition needs a further boost.
Larger datasets are required to observe a more diverse patho-
logical features of lesions. In addition, the self-supervised
pre-training with glomerular correlation will be performed to
extractmore salient pathological features, whichwill improve
generalization.
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