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ABSTRACT The asymmetric memristive diode bridge-based Sallen-Key Filter (AMSKF) achieved by
introducing an asymmetry diode bridge connected with a capacitor and an inductor to the Sallen-Key Filter,
is studied in this paper. Through the analysis of equilibrium point, the stability of the circuit is discussed.
Combined with the bifurcation diagram, it can be seen that the negative feedback gain of the Sallen-Key
Filter greatly affects the dynamics of the circuit. Diverse dynamical behaviors are discovered by means of
phase portraits and Lyapunov exponents, which include six types of typical oscillating behaviors: Period,
Quasi-period, Quasi-periodic bursting, Period-2 bursting, Chaotic bursting and Period-1 bursting. Especially,
bifurcation mechanisms of various bursting oscillating behaviors are researched by separating the formal
equations into two parts, consisting of the fast spiking subsystem and the slow spiking subsystem, based
on the fast-slow analysis method. Finally, Multisim experiments are carried out to validate the results of
numerical simulations. Compared with the Sallen-Key Filter cascaded with the symmetric memristive diode
bridge, the bursting oscillation with larger amplitude and the wider periodic bursting range by adjusting the
negative feedback gain are detected.

INDEX TERMS Sallen-key filter, memristive diode bridge, bursting, Andronov–Hopf bifurcation.

I. INTRODUCTION
Memristor, the concept of which was proposed by Leon
Chua in 1971 [1], is regarded as a new-type fundamental
circuit element apart from resistor, capacitor, and inductor.
As is known to all that the four aforementioned fundamental
elements can be employed to expressed the relationships
among circuit variables, as shown in Fig.1. Memristor whose
resistance would vary with respect to the amount of charge
flowing through the device fills a gap between the charge and
magnetic flux by demonstrating their relationships directly.
Particularly, memristors are widely used in nonlinear circuit
design [2] and neural network circuit [3], [4].

Working as the most fundamental feature of the circuit
components, memristor should appear universally in more
objects. In order to implement the function of memris-
tor on account of oscillating circuits based on memristors,
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FIGURE 1. The relationships among the four fundamental variables.

equivalent implementation schemes on the basis of math-
ematical models have been extensively studied. Recently,
The memristive diode bridge introduced by Bao and col-
leagues [5] is one of the most widely used models due to
its simple structure and no grounded limitation. Symmetrical
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structure the same as Wheatstone bridge with four diode
bridge arms [6], [7], [8], [9] can be observed in the diode
bridge-based generic memristive circuit. By selecting differ-
ent structures, such as the diode bridge cascaded with parallel
resistor and capacitor (RC) filter [5], [10], parallel inductor
and capacitor (LC) oscillator [11], or hybrid resistor, inductor,
and capacitor (RLC) filter [7], [8], [12], [13], several memris-
tive diode bridge emulators with different circuit schematics
and dynamical behaviors were proposed. However, symmetry
is a special case, while asymmetry is a universal phenomenon.
In fact, among items with memristive properties, the pinched
hysteresis loops are asymmetric about the origin [14], [15].
Meanwhile, the wave of researches on the phenomenon of
symmetric circuit topology in dynamical systems has been
stirred [16], [17], [18], [19], [20]. Symmetric memristive
diode bridge emulator has been widely employed in nonlinear
circuit design.

Bursting oscillations were originally used to describe an
important class of electrical dynamical phenomena in bio-
logical neurons for information transmission and exchange.
Also, bursting oscillations have been discovered in some
chaotic circuits based on memristors [21], [22]. A large num-
ber of literatures indicate that bursting oscillations are widely
found in dynamical systems such as physics, mathematics,
and circuits. For example, the pulse sequence bursting oscil-
lation of the fixed-off-time controlled buck converter [23],
the coexistence of memristor synaptic coupled adjacent neu-
rons [24], and the periodic and chaotic bursting oscillation
of the memristor-based Wien-bridge oscillator and low-pass
filter [22], [25]. Bifurcation of nonlinear systems induces
it to alternate between quiescent state and spiking state,
resulting in multiple modes of bursting oscillations. In [11],
the mechanism of various bursting oscillations of the same
system is deeply analyzed combined with equilibrium points
and Hopf bifurcation. Therefore, studying the mechanism
of this specific phenomenon has very important theoretical
and physical significance for in-depth understanding of the
intrinsic characteristics of the system.

The Sallen-key Filter (SKF) is a topology for designing
active filters, a variant of voltage-controlled voltage-source
(VCVS) filters, proposed by P. Sallen and E. L. Key at R. Lin-
coln Laboratory of MIT in 1955. By introducing memristors
into classical oscillation circuits or filter circuits, it is easy
to realize various nonlinear oscillations and obtain different
dynamic behaviors. Memristive circuits have rich dynamic
behavior, including chaotic and hyper-chaotic oscillations,
symmetric quasi-periodic and chaotic bursting oscillations,
symmetric period and chaotic bursting oscillations [22], and
coexistence in multi-stable patterns [26]. The structure of the
asymmetric diode bridge can bring change to the dynamical
behaviors, whereas there are no relevant studies on Sallen-
Key circuit currently.

According to the analysis above, the introduction of an
asymmetric bridge memristor into the SKF circuit is worth
studying. As a result, this paper will focus on the number
of diodes on the asymmetric memristive diode bridge, and

FIGURE 2. Circuit schematic of an asymmetric memristive diode
bridge-based sallen-key filter.

one of these situations will be selected to do some researches.
The framework of the article will be constructed as follows.
In Section II, AMSKF will be built and its mathematical
model will be established. In Section III, diverse dynamical
behaviors will be discovered by way of phase portraits and
Lyapunov exponents, which include several types of typical
oscillations. Especially, bifurcation mechanisms of various
oscillations will be researched with the increase of the control
system parameter. Then, circuit simulations by Multisim will
be carried out to confirm numerical simulations in Section IV.
Ultimately, the conclusion in line with previous studies will
be summarized in Section V.

II. AN ASYMMETRIC MEMRISTIVE DIODE
BRIDGE-BASED SALLEN-KEY FILTER
A. MATHEMATICAL MODELING
Different from the Sallen-Key RC filter in the literature [11]
and the Wien-bridge bandpass RC filter in literature [22],
an improved low-pass filter memristive oscillator circuit is
presented based on an asymmetry diode bridge cascaded with
a capacitor and a resistor, as depicted in Fig.2. The modified
memristive circuit contains dynamic elements of an inverting
amplifier, two capacitors, and a voltage-controlled generic
memristor, which has a bit of complex circuit topology.

The active voltage-controlled generic memristor is made
up of an inductor L, a capacitor C and an asymmetry diode
bridge. The terminal topology of circuit is plotted in Fig. 2.
The current i flowing through the memristor M , the voltage
v of which is numerically equal to the voltage across the
capacitor C1. The current iL serves as the current flowing
along the inductor L. Finally, the mathematical model of M
is expressed as

i = Ise
2ρ
k (v−vC )

− Ise−ρ(v+vC )

C
dvC
dt

= Ise
2ρ
k (v−vC )

+ Ise−ρ(v+vC )
− 2Is − iL

L
diL
dt

= vc

(1)

where k is the number of diodes on the asymmetrical bridge
arm which contains D2,D3 and D4 in Fig. 2.
In (1), the values of all the elements are listed in Table.1.

For the circuit schematic depicted in Fig.1, v1, v2 and vC are
the state variables representing the terminal voltages of three
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TABLE 1. Circuit parameters of the electronic elements.

capacitors C1, C2 and C . In conformity with the Kirchhoff
laws, the equations of the AMSKF are given in (2).

C1
dv1
dt

=
k1v1 − v2

R2
− Is[e

2ρ
k (v−vC )

+ e−ρ(v+vC )]

C2
dv2
dt

=
k1v1 − v2

R2
+

(k1 + 1) v1 − v2
R1

C
dvC
dt

= Ise
2ρ
k (v−vC )

+ Ise−ρ(v+vC )
− 2Is − iL

L
diL
dt

= vc

(2)

where v = v1 and k1 = Rf /Ri.
Since two adjustable resistors Rf and Ri affect the negative

feedback gain k1 of SKF, this article focuses on diverse
oscillation behaviors with the growth of the individual param-
eter k1. For the purpose of enabling the circuit to generate
oscillations, the negative feedback gain k1 of the AMSKF
should be greater than 2. As a result of this, the value range of
k1 is determined as (2, 2.6], in the purpose of achieving good
results. Other related parameters are listed in Table 1, among
which Ri = 3k�, R = R1 = R2 = 200�, C1 = C2 = 47nF ,
C = 470nF , L = 20mH , the parameters of five diodes are
chosen as ρ = 1/2nVT = 10.3093V−1 and Is = 5.84nA by
referring to [13].

In order to obtain the dimensionless equations of the circuit
equations (2) and decline the number of system parameters,
define

x = ρv1, y = ρv2, z = ρvc, τ = t/RC

a =
C
C1

, b = ρRIs, r = R2C/L (3)

After dimensionless processing, AMSKF can be expressed
by substituting (3) into (2) as

ẋ = a (k1x − y) − ab
[
e
2
k (x−z)

− e−(x+z)
]

ẏ = a (2k1 + 1) x − 2ay

ż = b
[
e
2
k (x−z)

+ e−(x+z)
]

− 2b− w

ẇ = rz

(4)

where the normalized system parameters in (4) can be
obtained from (3) as

a = 10, b = 1.0241 × 10−5, r = 0.94

FIGURE 3. The result of graphical analysis on y1 = −0.5x and

y2 = b

(
e

2
k x̄

+ e−x̄
)

.

k1 = (2, 2.6] , k = 3 (5)

Moreover, as is illustrated in (4), three parameters domi-
nate the system, including a, r, k1. In this paper, changes of
k1 are the main object of research.

B. EQUILIBRIUM POINT
Let the left side of the dimensionless equation be 0 to obtain
the following equations

0 = a (k1x − y) − ab
[
e
2
k (x−z)

− e−(x+z)
]

0 = a (2k1 + 1) x − 2ay

0 = b
[
e
2
k (x−z)

+ e−(x+z)
]

− 2b− w

0 = rz

(6)

Suppose that the equilibrium point is P (x̄, ȳ,̄ z), which is
the solution of (6). Thus, we can get the equilibrium point
of (4)

P =

[
x̄, (k1 + 0.5) x̄, 0, b

(
e
2
k x̄ + e−x̄ − 2

)]
(7)

where x̄ is the solution of the following equation

0.5x̄ + b
(
e
2
k x̄ + e−x̄

)
= 0 (8)

Obviously, by letting y1 = −0.5x, y2 = b
(
e
2
k x̄ + e−x̄

)
,

it can easily be obtained that both are monotonic functions.
From Fig.3, it can be inferred that there is only one intersec-
tion. Therefore, (8) only has one real root, indicating that the
system (4) only has one equilibrium point P0 = (0, 0, 0, 0).

Correspondingly, the simplified Jacobian matrix at the
equilibrium point P0 can be expressed as

J =


ak1 − ab

(
2
k + 1

)
−a −ab

(
−

2
k + 1

)
0

a (2k1 + 1) −2a 0 0

b
(
2
k − 1

)
0 b

(
−

2
k − 1

)
−1

0 0 r 0

 (9)

With the chosen parameters, the zero equilibrium point P0,
an unstable saddle-focus, always has two pairs of complex
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FIGURE 4. Dynamics with varying control parameter k1 (a) bifurcation
diagram of the variable x (b) Lyapunov exponents.

roots with two positive real parts and two negative real parts,
respectively.

III. DIVERSE OSCILLATING BEHAVIORS
In this part, Runge-Kutta ODE45 algorithmwith the ‘AbsTol’
and ‘RelTol’ set to 10−10 and 10−10 andWolf’smethodwhere
the time interval for calculating the finite time Lyapunov
exponents is set as 0.0012 s are employed for numerical simu-
lations. The phase portraits, bifurcation diagrams, Lyapunov
exponents and Poincare maps are combined together to ana-
lyze typical oscillating behaviors and corroborate mutually.
With the help of methods aforementioned, various dynamical
behaviors of AMSKF are displayed and researched in detail.

A. TYPICAL OSCILLATIONS
First of all, the initial values which is set as (0, 0.1, 0, 0) is
chosen as a typical example. The figures evolve with k1 are
shown in Fig.4, Fig.5 and Fig.6.
Deduced from Fig.4, the relevant parameters and the loca-

tions of figures about periodic and quasi-periodic oscillations
as well as quasi-periodic, periodic or chaotic bursting have
been listed in Table 2. Split the interval into seven parts,
as shown in Fig.4(a). Comparedwith symmetrical memristive
diode bridges [11], the region of chaotic behavior decreases,

FIGURE 5. Time series and phase trajectories in x-z plane for different
k1:(a) k1 = 2.01 (b) k1 = 2.1 (c) k1 = 2.23 (d) k1 = 2.27 (e) k1 = 2.38
(f) k1 = 2.6.

and by increasing the number of diodes on the asymmetric
bridge, an increase in the amplitude of xmax can be observed
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FIGURE 6. Poincare mapping with different k1:(a) k1 = 2.01 (b) k1 = 2.1
(c) k1 = 2.23 (d) k1 = 2.27 (e) k1 = 2.38 (f) k1 = 2.6.

from the bifurcation plots. Before k1 = 2.06, the system
is in a periodic oscillation state at the beginning. Based
on the Andronov–Hopf bifurcation route and the Lyapunov
exponents, it can be seen that in the range of 2.06 < k1 <

2.145, the values of Lyapunov exponents are characterized
as (0, 0, −, −), indicating that quasi-periodic oscillation hap-
pens. In the region of 2.145 < k1 < 2.25, quasi-periodic
bursting oscillation occurs with two negative Lyapunov expo-
nents. However, compared with quasi-periodic oscillations,
in the range of quasi-periodic bursting oscillations, it is clear
that there is silence from the time series. Within the scope
of 2.31 < k1 < 2.38, system (4) takes on chaotic bursting
where Lyapunov exponents are (+, 0, −, −). In addition to
the above four cases, periodic bursting also occurs, which
includes period-1 bursting and period-2 bursting with a zero
maximum Lyapunov exponents and three negative ones. Ulti-
mately, after k1 = 2.4, period-1 bursting can be observed.
Correspondingly, the time sequences of each behavior for

various x are plotted in Fig.5, which corresponds to the six
typical oscillation behaviors in Table 2. Although the time
series when k1 takes two points 2.23 and 2.27 look like the
same, it can be obtained by numerical observation that the

TABLE 2. Typical dynamical behaviors with different k1.

peak value is different in different bursting spikes in Fig.5(c)
and the peak value is almost the same in different bursting
spikes in Fig.5(d). To better distinguish the two phenomena
accurately, it is necessary to refer to Lyapunov exponents
and Poincare maps. In the range of quasi-periodic bursting,
Lyapunov exponents have two zero values and two negative
values, while period-2 bursting oscillation only has one zero
Lyapunov exponent and three negative Lyapunov exponents.
Moreover, the limit cycle in Fig.5(b) seems like a bowl, and
in Fig.5(c) the attractor takes on a gyroscopic state. The
trajectory lines are dense in quasi-periodic conditions and
sparse in periodic conditions.

Additionally, the Poincare maps [27] on the x = 0 section
and reveal approaches are taken for further distinguishing
the quasi-period and several bursting behaviors, as shown in
Fig.6. Obviously, when the system in Fig.2 is in the status
of period, there are two points in the Poincare map, such as
Fig.6(a). For chaotic circuits, there will theoretically be an
infinite number of points on the maps. However, if the points
on the section form a line, this phenomenon is called quasi-
period oscillations, such as Fig.6(b). Moreover, if the points
on the Poincare map form a two-dimensional figure, or even
a fractal structure, it can be judged to be a typical chaotic
bursting oscillation, such as Fig.6(e). In Fig.6(f), multi-period
bursting oscillation happens, where several scatter points are
presented in the image.

It is remarkable that when k1 ≤ 2, the AMSKF falls short
of the condition of self-excited oscillation, so we start from
k1 = 2. In particular, from the time series of state variables
x and z, x appears as a fast-scale bursting oscillation change,
while z appears as a slow-scale oscillation change, indicating
that (4) can be divided into fast and slow subsystems.

B. BIFURCATION MECHANISM OF SLOW
CHANNEL EFFECT
In the time series, there is a significant difference between the
envelope change of the fast variable x and the change of the
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slow variable z, which is caused by the slow passage effect of
the memristive filter circuit.

It is easy to see that the parameter b is approximately six
times smaller than the parameter a. Based on the fast-slow
analysis method, the two parts of the equation divided from
the system can be obtained separately. The fast subsystem is{

ẋ = a (k1x − y) − ab
[
e
2
k (x−z)

− e−(x+z)
]

ẏ = a (2k1 + 1) x − 2ay
(10a)

and the other slow subsystem which is described as{
ż = b

[
e
2
k (x−z)

+ e−(x+z)
]

− 2b− w

ẇ = rz
(10b)

The slow subsystem is coupled to the fast subsystem via the
slow variable z between the two 2-dimensional(2-D) subsys-
tems. Therefore, in (10a), the slow variable z can be viewed
as a specific parameter. The equilibrium point of (10a) can be
derived as

EFS =
[
x̂, (k1+0.5) x̂

]
(11)

where x̂ can be obtained by solving the simultaneous equa-
tions (10a) and (11)

0.5x̂ + b
(
e
2
k (x̂−z) + e−(x̂+z)

)
= 0 (12)

Meanwhile, the characteristic equation at EFS can be
depicted as

P
(
λ

)
= λ

2
+Aλ + B (13)

where A = a
[
2 − k1 + b

(
2
k e

2
k (x−z) + e−(x+z)

)]
,B =

a2
[
1 + 2b

(
2
k e

−
2
k z + e−z

)]
.

Since a, b, k > 0, the following inequality is always satis-
fied,

a2
[
1 + 2b

(
2
k
e−

2
k z + e−z

)]
> 0 (14)

indicating that (13) has no zero eigenvalues. Thus, there
is no fold bifurcation point in the fast subsystem. When the
condition (15) is satisfied, Hopf bifurcation appears with a
pair of pure imaginary eigenvalues, which demonstrates that
the Hopf bifurcation set is the same as (15).

2 − k1 + b
(
2
k
e
2
k (x−z) + e−(x+z)

)
= 0 (15)

When the control parameter k1 is determined, the Hopf
bifurcation value of the slow variable z can be modalized by
solving transcendental equations (12) and (15). In order to
clarify the oscillation mechanism in the TABLE 2, special
cases where k1 = 2.1 and k1 = 2.6 are taken as examples.
Through the simulations in MATLAB, the unique solution
is obtained. When k1 = 2.1, it can be calculated that z =

−8.9605. Likewise, when k1 = 2.6, it can be calculated that
z = −9.7728.

If the amplitude of the waveform z is higher than the
value of the Hopf bifurcation plane, which means that the

FIGURE 7. Bifurcation analyses (a) k1 = 2.1, quasi-periodic oscillation,
z = −8.9605, (b) k1 = 2.6, period-1 bursting oscillation, z = −9.7728.

TABLE 3. Comparison between the symmetric and asymmetric circuits.

characteristic equation has a solution of the eigenroot with a
real part greater than 0, indicating that the system is unstable
and the bursting oscillation state of the fast variable x is
caused by the slow variable z. Conversely, if the amplitude of
the waveform z is lower than the value of the Hopf bifurcation
plane, which denotes that the system is in the quiescent state.
Similarly, when the waveform of the variable z crosses the
Hopf bifurcation plane, to put it another way, z passes through
the Hopf bifurcation point, the real part of the eigenroot
changes from positive to negative, indicating that the stability
of the equilibrium point EFS evolves from unstable to stable.
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FIGURE 8. Multisim simulations with different Rf (a) period oscillation at Rf = 6.03k� (or k1 = 2.01) (b) quasi-period
oscillation at Rf = 6.3k�(or k1 = 2.1) (c) quasi-period bursting at Rf = 6.69k� (or k1 = 2.23) (d) period-2 bursting at
Rf = 6.81k� (or k1 = 2.27) (e)chaotic bursting at Rf = 7.14k� (or k1 = 2.38) (f) period-1 bursting at Rf = 7.8k�(or k1 = 2.6).
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As a result, the fast variable transits from a bursting state
(BS) to a quiescence state (QS), such as the the intervals of
a bursting state (BS) and a quiescence state (QS) shown in
Fig.7(b).

At the point of k1 = 2.1, the timing diagram of the
quasi-periodic oscillation is drawn in Fig.7(a), under the sit-
uation of which, it can be calculated that z = −8.9605. As is
shown apparently in Fig.7(a), the solid red line represents the
timing diagram of the variable z, and the black dotted line
represents the Hopf bifurcation plane. Glancing from it, there
is no intersection between the solid red line and the black
dotted line, and the solid red line is always above the black
dotted line, indicating that no Hopf bifurcation occurs and the
system is always in a state of bursting oscillation.

According to the analysis above, Table 3 is listed below to
compare the differences between the symmetric memristive
circuit and the asymmetric memristive circuit.

IV. CIRCUIT VERIFICATION
Following the above theoretical analysis, in order to verify
the numerical simulation results of the circuit schematics,
digital circuit experiments are carried out. According to the
circuit schematics in Fig.2, the terminal circuit parameters in
Table 1, the AMSKF is easily established. The circuit is built
with AD711KN, an integrated operational amplifier supplied
with a symmetric ±15 V DC voltage power. What’s more,
diodes of the same specification 1N4148 whose parameters
are selected as ρ = 1/2nVT = 10.3093V−1 and Is = 5.84nA
are chosen for bridge arms. Other basic electrical components
are four resistors, three capacitors, and one inductor whose
values are Ri = 3k�, R1 = R2 = 200�, C1 = C2 =

47nF , C = 470nF and L = 20mH , respectively. The
experimental results are gotten by adjusting the resistor Rf
to increase k1 in Multisim14.1. The experimental time series
as well as phase portraits in plane x − z are captured on the
oscilloscope, as shown in Fig.8, which are exactly the same
to Fig.5.

V. CONCLUSION
In this article, through adding an asymmetry diode bridge
cascaded with a capacitor and a resistor to the Sallen-Key Fil-
ter, AMSKF was designed. Circuit schematic and its equilib-
rium stability analysis were carried out along with dynamics
were investigated comprehensively by numerical simulations
and experimental measurements. In particular, bifurcation
mechanisms with respect to its parameter of various bursting
oscillating behaviors in AMSKF were characterized with
the method of fast-slow analysis. Compared with the sym-
metric memristive diode bridge-based Sallen-Key Filter, the
bursting oscillation with larger amplitude and the wider peri-
odic bursting range by adjusting the negative feedback gain
were detected in AMSKF. In addition, the built model can
be further extended by varying the number of diodes on
the diode-bridge arm or exploring in high-pass Sallen-Key
Filter.
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