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ABSTRACT Recently, photoplethysmography sensors in smart watches have been frequently used to
monitor heart rate. Because a photoplethysmography sensor flashes light on the skin and measures the
reflected light, the rate of flashing and sampling is directly related to its energy consumption. It is necessary to
reduce the rate to extend the battery life of a smart watch. In this study, to satisfy sub-Nyquist sampling, real-
time, and high accuracy requirements, we propose a novel heart rate tracking method that consists of online
compressive covariance sensing, signal subspace tracking, and spectral peak tracking. The proposed method
(average sampling rate: 1.4 Hz) showed better frequency tracking performance than the conventional spectral
peak tracking algorithm (sampling rate: 10 Hz) in time-varying heart rate simulations, and a statistically
significant difference between them was not observed in the real photoplethysmogram data. The trimmed
average absolute error was 1.04 beats/min. As a result, the proposed real-time heart rate tracking method
with sub-Nyquist sampling showed high accuracy.

INDEX TERMS Heart rate, photoplethysmogram, sub-Nyquist sampling, subspace tracking, spectral peak
tracking.

I. INTRODUCTION
With a growing population of cardiovascular disease,
heart rate (HR) monitoring is a crucial consideration in
mobile healthcare. Several factors cause changes in HR,
such as physical activity, autonomic nervous system, body
metabolism, age, venous return, and body size [1]. Recent
advances in smart watches with photoplethysmography sen-
sors have made it possible to track the HR throughout the
day. The photoplethysmography sensor measures changes
in the blood volume, and its frequency analysis is used for
instantaneous HR estimation [2].

Various algorithms have been developed for instantaneous
frequency estimation. Empirical mode decomposition [3],
wavelet transform [4], Wigner-Ville distribution [5], and syn-
chrosqueezing transform [6] allow efficient time-frequency
analysis, but are not suitable for real-time HR tracking.
Among the various instantaneous frequency estimators,
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an adaptive lattice notch filter (ALNF) has been used to
estimate the instantaneous HR and respiratory rate from pho-
toplethysmogram (PPG) with high accuracy and low com-
putational complexity [7], [8], [9]. To track the HR from
PPG contaminated by motion artifacts, Jhang et al. proposed
the TROIKA framework [10], which has been utilized in
many recent studies. In the TROIKA framework, a singular
spectrum analysis is employed to extract a clean PPG, and the
instantaneous HR is then estimated by spectral peak tracking
(SPT) consisting of 1) initialization, 2) peak selection, and
3) validation. The former step can be interpreted as a type of
signal subspace estimation, which is broadly used to improve
spectral accuracy [11], [12]. As a PPG filtering step, multiple
measurement vector model [13], adaptive filters [14], [15],
and ensemble empirical mode decomposition [16] have been
utilized, and multiple initialization SPT [17] and finite state
machine scheme [18] have been designed to improve the HR
tracking step.

Because the photoplethysmography sensor has a LED that
needs to flash at sampling instants, the rate of LED flashing
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and sampling is directly related to the energy consumption
of the smart watch [19]. It is important to reduce this rate
to extend the battery life of smart watches and bands. Com-
pressed sensing is well known technique to recover the orig-
inal signal from fewer samples than the Nyquist sampling
rate, but it cannot lower the LED flashing rate because it
demands a whole analog signal [20], [21], [22]. On the other
hand, sub-Nyquist sampling techniques such as nested sam-
pling [23], [24], [25], coprime sampling [26] and compressive
covariance sensing (CCS) [27], [28], [29] can reduce the
LED blinking rate as well as the sampling rate. The sub-
Nyquist sampling technique samples a signal at patterned
timing and reconstructs the covariance instead of signal itself.
Among sub-Nyquist sampling techniques, nested sampling
has redundant samples, and coprime sampling contains holes
in the covariance [24]. However, compressive covariance
sensing (CCS) [27], [28], [29] can achieve minimum redun-
dant sampling without holes in the covariance. Moreover,
the online version of CCS can handle non-stationary signals
(e.g., time-varying HR) [30].

An online CCS-based HR tracking method was proposed
in [19]. An adaptive covariance notch filter (ACNF) was pro-
posed to estimate HR from the covariance of PPG, but its HR
tracking performance was insufficient. To improve the esti-
mation accuracy, several subspacemethods based on a covari-
ance matrix, such as Multiple Signal Classification (MUSIC)
and Blackman-Tukey method, have been developed [31].
These algorithms demanded signal and noise subspaces, but
there was no algorithm to track these subspaces with only
the covariance without using the original signal. In this study,
to achieve high-fidelity frequency tracking, a signal subspace
tracking (SST) algorithm based on a covariance matrix was
designed. Finally, we propose a novel HR tracking method
that combines online CCS, SST, and SPT to satisfy real-time
processing, energy-efficient sampling, and high accuracy.
The proposedmethod is described in Section II. In Section III,
the HR tracking performance is assessed using simulations
and real PPG data. The results are interpreted and discussed
in Section IV. Finally, Section V concludes the study.

II. METHODS
The maximum HRs for normal adults are less than
3.5 Hz [32], [33], but may exceed in some patients [34], [35],
[36], [37], [38]. Moreover, since the HR is an average value
within a time window, the instantaneous HR can be higher
than the HR. In this study, we consider the upper limit of
instantaneous HR as 5 Hz and its Nyquist rate as 10 Hz. Sub-
Nyquist sampling is the only way to reduce the rate for sam-
pling and LED flashing of a photoplethysmography sensor.
In this study, we propose a novel HR tracking algorithm that
consists of online CCS, SST, and SPT to satisfy both sub-
Nyquist sampling and high accuracy (see Fig. 1).

A. ONLINE COMPRESSIVE COVARIANCE SENSING
Online CCS consists of compression and recovery steps.
In the compression step, online CCS utilizes a circular sparse

FIGURE 1. Block diagram of the proposed heart rate tracking method.

ruler (CSR) as the sampling pattern. A CSR has a higher
compressibility than a linear sparse ruler [29]. A CSR of
length (N-1) has M marks, which are integers between 0 and
N-1. For all integers l from 0 to N-1, the CSR must have at
least one pair of marks (m and m′) such that

(m − m′)%N = l (1)

where % means the modulo operator, and (1) represents the
distance l between two marks m and m’ of a CSR. The
compression ratio corresponds to M/N. A CSR with a long
length of (L-1) can be designed (L=N×B) by concatenating
the same B CSRs. In this study, we designed a CSR with
N = 57, M = 8, and B = 4, as illustrated in Fig. 2. Online
CCS samples the original signal with a CSR pattern and stores
the samples and their marks in a two-dimensional queue.
In the recovery step, the online CCS reconstructs the length
L covariance vector from the two-dimensional queue, and the
recovery algorithm is described in Algorithm 1.

In Algorithm 1, η is the forgetting factor (0 ≤ η < 1),
which is the parameter of the exponentially weighted moving
average; a high η leads to high accuracy but low convergence
speed. Hence, it is necessary to adjust η according to the
degree of non-stationarity. For example, when HR varies
dynamically, η should be low; however, a high η is suitable
for estimating static HR. Because filtering must be performed
after the covariance recovery step of the online CCS, we fil-
tered a covariance vector using a 5th order Butterworth band-
pass filter (0.7–3 Hz) as covariance filtering [19].

B. COMPRESSIVE SPECTRAL PEAK TRACKING
TheHR can be estimated from the covariance of PPG because
the Fourier transform of the covariance vector is a power
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FIGURE 2. Circular sparse ruler of length 56. (N = 57, M = 8).

Algorithm 1 Covariance Recovery of Online CCS
Input: Sample x and its mark i at iteration k
Output: Recovered covariance vector ck at iteration k
ck = ck−1
xk = [x, xk (1),. . . , xk (M·B-1)]
ik = [i, ik (1),. . . , ik (M·B-1)]
for b = 0:B-1

for m = 1:M
l = (ik (m+M·b)-i)% N+N·b
ck (l) = η·ck (l)+(1-η) · x·xk (m+M·b)

end
end
⋇ %: modulo operator

spectrum of PPG. To focus on the HR range (0.7–3 Hz),
we define a partial discrete Fourier transform matrix F as
follows:

F=


e
−j2πk1

0
L · · · e

−j2πk1
L
L

...
. . .

...

e
−j2πk2

0
L · · · e

−j2πk2
L
L

 ,


k1 = round(L

0.7
fs/2

)

k2 = round(L
3
fs/2

)

(2)

where fs is the sampling frequency and round() returns the
nearest integer. The frequency bin s for the HR is expressed
as follows:

s = F ck (3)

where ck is a covariance vector reconstructed using online
CCS. To ensure the stability of HR tracking, we smoothed s
as follows:

sPS = γ · sPS + (1 − γ ) · s (4)

where γ is the smoothing factor (0 ≤ γ < 1). Based on the
power spectrum sPS, the instantaneous HR is estimated using
SPT [10]. We denote this method as ‘‘CCS+SPT’’. Because
of the convergence time of online CCS, the initialization step

of the SPT is iterated until online CCS converges to 80%.
The number of iterations required for 80% convergence is
described in [30] as follows:

itr80% = ceil(M · B · (log10(20) − 2)/log10(η)) (5)

where ceil() denotes the nearest integer above the input value.
In the initialization step of the SPT, we consider an addi-
tional case in which there exists a peak pair with a harmonic
relation.

C. PROPOSED METHOD
Several subspace methods have been developed to achieve
accurate frequency estimation, such as the MUSIC and
Blackman-Tukey method. The principal eigenvectors U =

[u1. . .uP] of a covariance matrix form the basis of a signal
subspace, and the partial pseudospectrum of the Blackman-
Tukey method [31], [39] is computed as follows:

sBT =
1
P

∑P

i=1
λiFui (6)

where P denotes the number of principal eigenvectors. λi is
the eigenvalue and we assume that λi = 1 for i = 1∼P. In this
study, we set P as 3. To estimate U, we designed the SST
algorithm described in Subsection II-D. The instantaneous
HR can be estimated using the SPT with sBT. Finally, the
proposed HR tracking method is constructed by a combina-
tion of online CCS, SST, and SPT (see Fig. 1). We denote the
proposed HR tracking method as ‘‘CCS+SST+SPT’’.

D. SIGNAL SUBSPACE TRACKING
There are several methods for estimating the basis of the
subspace, such as principal component analysis and various
subspace tracking algorithms [40]. Because the principal
component analysis requires eigen decomposition with high
computational complexity O(N3B3), computationally effi-
cient subspace tracking algorithms have been proposed such
as the fast Rayleigh’s quotient-based adaptive noise subspace
(FRANS) [41] and fast data projection method (FDPM) [42].
Based on FRANS and FDPM, we designed a new fast SST
algorithm with only the covariance without using the original
signal. Similar to FRANS and FDPM, the proposed algorithm
maximizes the cost function J to track the signal subspace.
We have

J = tr(3s) = tr(UTCU ) (7)

where tr() denotes the trace of input matrix, 3s represents
the diagonal matrix of eigenvalues for a signal subspace,
and C is the covariance matrix in the form of a symmetric
Toeplitz matrix, which is transformed from the reconstructed
covariance vector ck . We can predict the basis of the signal
subspace using gradient of J as follows:

Û = U + µ̃
∂

∂U
tr(UTCU ) (8)

where µ̃ is the normalized value of a step size µ, given as
follows:

µ̃ = µ
/

|tr(C)| (9)
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Because the eigenvectors are orthogonal, we orthogonalize Û
using the orthogonalization matrix H of the FRANS [41] as
follows:

H = I−
1
r̃
(1 − 1

/√
1 + 2µ̃r̃ + µ̃2c̃r̃)UTCU (10)

where c̃ and r̃ correspond to the power of the signal and
sum of the eigenvalues for the signal subspace, respectively.
We implemented them as follows:

c̃ = tr(C) (11-1)

r̃ = tr(UTCU ) (11-2)

Finally, eigenvectors are normalized. The overall procedure
is summarized in Algorithm 2. Although FRANS and FDPM
can trace both the signal and noise subspaces, we adopted the
signal subspace scheme because it is more stable and robust
than the noise subspace tracking scheme.

Algorithm 2 Fast Signal Subspace Tracking for CCS
Input: Recovered covariance matrix C (size: NB ×NB)
Output: Signal subspace basis Uk (size: NB ×P) at itera-
tion k
1. Step size normalization

c̃ = |tr(C)|
µ̃ = µ

/
c̃

2. Gradient ascent optimization
Û = Uk−1 + µ̃CUk−1

3. Eigenvector orthogonalization
R = UT

k−1CUk−1
r̃ = |tr(R)|
H = I− 1

r̃

(
1 − 1

/√
1 + 2µ̃r̃ + µ̃2c̃r̃

)
R

Z = ÛH
4. Eigenvector normalization

Uk = normalize(Z)
⋇ tr(): the trace of an input matrix,

normalize(): normalization of the columns of an input
matrix

E. SIMULATION
To evaluate the frequency tracking performance, we consid-
ered three simulation types as follows:

x[n] = A cos(2πϕ(n)) + wGn(σ 2) (12)

ϕ̇(n) =


a. β

b. α · n+ β

c. α · cos(2πωn) + β

(13)

where α, β, and ω are arbitrary constants. wGn(σ 2) denotes
a white Gaussian noise with variance σ 2. The signal-to-
noise ratio (SNR) was set to 10 dB. ϕ̇(n) is the derivative
of ϕ(n) and is the reference instantaneous HR. The simu-
lation contains three different HR types: a, b, and c corre-
sponding to constant HR, increasing HR, and fluctuating HR,
respectively. We adjusted the simulated HR range between

1∼3 Hz. Specifically, the constant HR was assigned as a
uniformly distributed random number between 1.5∼2.5 Hz.
The starting frequency of the increasing HR was 1 Hz, and
the final frequency was a uniform random number between
2∼3 Hz. The amplitude of the fluctuating HR was 0.15 Hz,
and its base frequency was a uniformly distributed random
number between 1.5∼2.5 Hz. We performed a Monte Carlo
simulation with 100 independent simulations for each type of
simulation. Each HR tracking performance was evaluated by
measuring the error between the reference instantaneous HR
and its estimate.

F. DATA COLLECTION
Weused an open-source database (MITMIMIC database [43])
to evaluate the proposed method and isolated 100 datasets
that were less contaminated. PPG and ECG signals were
recorded at a sampling rate of 500 Hz for 10 min. The PPG
was downsampled to 10 Hz. The R-peaks of the ECG were
detected using Pan-Tompkins algorithm [44], and computed
the instantaneous reference HR from the interval between
successive R-peaks.

III. RESULTS
The performance of the proposed method was assessed using
simulations and real PPG data. For each signal, we calcu-
lated the mean absolute error (MAE) between the reference
and estimate and excluded the initial 100 samples from the
analysis because convergence time is required for the HR
tracking algorithms. We evaluated the performance of HR
tracking algorithms (ALNF, SPT, CCS+ACNF, CCS+SPT,
and proposed CCS+SST+SPT), and searched for their opti-
mal parameters that minimized the MAEs. For multiple com-
parisons, we performed Kruskal-Wallis test with Bonferroni
correction and defined p < 0.001 as statistically significant.
We used non-parametric Wilcoxon’s two-sampled signed-
rank test for post hoc analysis. To show the distribution of
MAEs, a box plot was used, where the top and bottom boxes
represent the 75th and 25th percentiles, and the center, top,
and bottom lines are the 50th, 90th, and 10th percentiles,
respectively. To calculate the average MAEs, a 10% trimmed
mean was used owing to its robustness to outliers.

We considered three simulation types: a. constant HR, b.
increasing HR and c. fluctuating HR. Multiple comparisons
for the HR tracking algorithms were performed, and there
were statistically significant differences for all HR types. Post
hoc tests for each simulation type showed that all p-values
were less than 0.001 in all comparisons (‘‘ALNF vs. SPT’’,
‘‘ALNF vs. CCS+ACNF’’, ‘‘ALNF vs. CCS+SPT’’, ‘‘ALNF
vs. CCS+SST+SPT’’, ‘‘SPT vs. CCS+ACNF’’, ‘‘SPT vs.
CCS+SPT’’, ‘‘SPT vs. CCS+SST+SPT’’, ‘‘CCS+ACNF
vs. CCS+SPT’’, ‘‘CCS+ACNF vs. CCS+SST+SPT’’, and
‘‘CCS+SPT vs. CCS+SST+SPT’’). As shown in Fig. 3,
MAEs of ‘‘CCS+SST+SPT’’ were significantly lower than
those of ‘‘CCS+ACNF’’, ‘‘CCS+SPT’’, and ‘‘CCS+SPT’’.
In time-varying HR simulations (type b and c), MAEs of
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TABLE 1. Average mean absolute errors on real PPG data.

‘‘CCS+SST+SPT’’ were significantly lower than those of
‘‘SPT’’.

For real PPG data (see Fig. 4), statistically signifi-
cant differences were observed in both multiple com-
parison and post hoc analysis in all comparisons except
for ‘‘SPT vs. CCS+SST+SPT’’ (see Fig. 5). MAEs of
‘‘CCS+SST+SPT’’ were significantly lower than those
of previous compressed algorithms (‘‘CCS+ACNF’’ and
‘‘CCS+SPT’’), and there was no statistically significant dif-
ference between the conventional SPT (sampling rate: 10 Hz)
and ‘‘CCS+SST+SPT’’ (average sampling rate: 1.4 Hz).
The average MAE of the proposed ‘‘CCS+SST+SPT’’ was
1.04 beats/min (see Table 1). Because there is a tradeoff rela-
tionship between the estimation accuracy and tracking speed
according to the value of η, we investigated the HR tracking
performance for all η values at 0.1 intervals, as shown in
Fig. 6.

IV. DISCUSSION
In this study, we proposed a novel HR tracking method
that satisfies the requirements of real-time processing,
energy-efficient sub-Nyquist sampling, and high accuracy.
Sub-Nyquist sampling is the only way to reduce the energy
consumption of the active sensor’s transmitter, and online
CCS is essential for non-stationary signal processing (e.g.,
time-varying HR tracking). Because the previous HR track-
ing method based on online CCS showed insufficient accu-
racy, in this study, we proposed an advanced method
comprising online CCS, subspace tracking algorithm, and
subspace-based frequency estimation. To the best of our
knowledge, this study is the first to report subspace-based
frequency tracking with sub-Nyquist sampling. The proposed
‘‘CCS+SST+SPT’’ (average sampling rate: 1.4 Hz) showed
better frequency tracking performance than conventional
SPT (sampling rate:10 Hz) in time-varying HR simulations,
and there was no statistically significant difference between
‘‘CCS+SST+SPT’’ and conventional SPT in real PPG data;
the averageMAE of ‘‘CCS+SST+SPT’’ was 1.04 beats/min.

The basis for a subspace can be formed by a set of eigen-
vectors of the covariance matrix, but repetitive eigen decom-
position results in huge computational burden. To solve the
computational complexity problem, the SST algorithm was
designed. Its computational complexity is O(NBP), where P
is the dimension of the subspace. Because the dimensions of
the signal subspace are much smaller than those of the noise
subspace, signal subspace tracking is more efficient. In addi-
tion, FRANS is more stable and robust for signal subspace

FIGURE 3. Distribution of MAEs between reference and estimated
frequency during simulation. (a) constant HR, (b) increasing HR and
(c) fluctuating HR.

tracking [42]. Hence, we combined the SST algorithm with
the online CCS and Blackman-Tukey method.
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FIGURE 4. HR tracking examples. Bold dotted line means the reference
HR. Black dotted, blue dash-dotted, green dashed, yellow solid, and red
bold lines represent the estimates of ALNF, SPT, CCS+ACNF, CCS+SPT, and
CCS+SST+SPT, respectively.

FIGURE 5. Distribution of MAEs between reference and estimated HR in
real PPG data.

In the proposed method, there is a time lag between the
true HR and its estimates (see Fig. 4). Because of the trade-off
relationship between accuracy and tracking speed according
to η, it is necessary to adjust the value of η according to the
degree of non-stationarity of the heart rhythm [30]. We inves-
tigated the HR tracking performance according to the value of
η, which determines the tracking speed. As shown in Fig. 6,
the ‘‘CCS+SST+SPT’’ was superior to the ‘‘CCS+ACNF’’
and ‘‘CCS+SPT’’ for all values of η.

The proposed HR tracking method (‘‘CCS+SST+SPT’’)
has several strong points. First, the proposed method dra-
matically reduces the rate for sampling and LED flash-
ing from 10 Hz to 1.4 Hz. Compared with previous
CCS-based HR tracking methods (‘‘CCS+ACNF’’), accu-
racy as well as compressibility (1.8 Hz→1.4 Hz) are
significantly improved [19]. Second, its computational com-
plexity, O(NBP·log(NB) + M2B2), is acceptable. Notably,

FIGURE 6. Trend of MAEs with respect to the value of η. Dotted black,
dash-dotted blue, dashed green, solid yellow, and bold red lines
represent the MAEs of ALNF, SPT, CCS+ACNF, CCS+SPT, and
CCS+SST+SPT, respectively.

computational efficiency is an important requirement for real-
time HR tracking. The computational complexities for the
online CCS and Blackman-Tukey methods are O(M2B2) and
O(NBP·log(NB)), respectively. If the frequency resolution of
the Blackman-Tukey method is improved, its computational
complexity will show a quadratic increase. Additionally, the
proposed SST has low computational complexity, O(NBP).

Despite the advantages of the proposedmethod, it has some
limitations. First, since the upper and lower peaks of the orig-
inal PPG cannot be found by sub-Nyquist sampling, the pro-
posed method is not suitable for the conventional algorithms
to estimate SpO2 and heart rate variability indices. Never-
theless, these drawbacks might be overcome with the devel-
opment of advanced algorithms. As specific evidence, the
instantaneous HR is related to the tachogram of the heart rate
variability analysis [45], and the covariance contains SpO2-
related information (AC and DC amplitudes of the PPG) [46].
Second, PPG is easily contaminated by motion artifacts.
Since most motion artifacts are within a low frequency band
(0.1∼2.5 Hz) [47], [48], aliasing due to motion artifact does
not need to be considered but interference in HR estima-
tion should be removed. Unfortunately, the proposed method
lacks denoising strategies and outlier tolerance. Although
there are several robust subspace tracking algorithms [40],
we utilized the FRANS and FDPM schemes owing to their
low computational complexities. As shown in Fig. 5., outliers
were observed in the estimates of ‘‘CCS+SST+SPT’’ as well
as ‘‘CCS+ACNF’’ and ‘‘CCS+SPT’’. Notably, existing sig-
nal processing algorithms cannot be directly utilized because
the signals acquired by sub-Nyquist sampling are not equi-
spaced. Therefore, it is necessary to develop denoising and
robust algorithms. For this reason, we validated the proposed
method using only less contaminated MIT-MIMIC data and
simulations. Although this study focuses only on HR tracking
performance, we plan to generate a new database measured
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in various situations to evaluate robustness performance in
future works.

V. CONCLUSION
We propose a novel HR tracking method that consists
of online compressive covariance sensing, signal sub-
space tracking, and spectral peak tracking; The proposed
‘‘CCS+SST +SPT’’ satisfies the requirements of sub-
Nyquist sampling, real-time processing, and high accuracy.
Its average sampling rate was 1.4 Hz, and averaged abso-
lute error was 1.04 beats/min. We expect that the proposed
‘‘CCS+SST+SPT’’ will be widely used in smart watches and
bands. In future work, we will apply it to various applications
(e.g., emotion recognition) and develop robust and denoising
algorithms for online CCS.
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