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ABSTRACT The proliferation of technologically advanced and mobile devices poses risks to public safety
and security. These threats can be mitigated by systems equipped to perform timely identification and
tracking of devices and their operators. In pursuit of these capabilities, we propose an automated sensing
platform designed specifically for trackingmultiple, mobile radio frequency (RF) targets. There are a number
of challenges involved with tracking multiple moving RF sources. We formulate the task as an iterative state
estimation and path planning process, whereby the sensor platform first estimates the positions of the targets
through observation of the RF environment and then plans and executes a movement path. By developing
a sensor model informed by RF propagation theory, we construct a particle filter based state estimator with
the potential to track multiple targets using only signal strength observations. In addition, we propose a path
planning technique rooted in uncertainty minimization and safety based constraints. Finally, we validate
the proficiency of the proposed methods with simulated experiments. Through analysis of tracking metrics
and localization performance we show the benefits of our proposed active sensing techniques as they apply
to tracking multiple RF targets. We demonstrate the robustness of our method to various environmental
scenarios by testing with a multitude of realistic and challenging experimental parameters (e.g., speed of the
sensor platform, number of targets, speed of targets, level of signal-to-noise ratio (SNR)). The results indicate
that our method performs better than other state-of-the-art tracking methods, with significant improvements
seen in the most difficult scenarios with higher speed targets. In these and other settings, our method is more
often able to localize the targets and with less error and uncertainty in position estimation. We also show that
our method is computationally efficient and scales well to an increasing number of targets.

INDEX TERMS Multitarget tracking, path planning, radio frequency signals, particle filters.

I. INTRODUCTION
The subject of target tracking has a rich history with
applications spanning a number of domains. In this paper we
explore the area of multitarget tracking as it relates to radio
frequency (RF) sources. A study concerning the tracking of
RF sources has great significance during our current times
where the number of devices communicating with RF signals
is constantly increasing. Advances in manufacturing have
resulted in devices capable of dynamicmobility and advanced
computation while also maintaining an inconspicuous, low-
profile form factor. In the wrong hands, or even through
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misguided use, these devices pose a security risk that could
be mitigated with the appropriate tracking capabilities. The
ability to quickly locate these troublesome devices is of the
utmost importance to emergency personnel, first responders,
police, military, and security organizations. A motivating
example comes from a warning by the National Interagency
Fire Center [1] which details the risks of operating Unmanned
Aerial Systems (UAS) near wildfires. They explain how
the operation of a UAS near the vicinity of a wildfire
creates a risk for air-based fire fighting operations. A number
of incidents across the U.S. have resulted in fire fighting
operations being suspended until the interfering devices no
longer pose a risk to the firefighters. There exists enterprise
products which seek to alleviate this problem [2], [3], but

43472 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1395-4818
https://orcid.org/0000-0002-5022-063X
https://orcid.org/0000-0003-1735-5425


L. Tindall et al.: RF Signal Strength Based Multitarget Tracking With Robust Path Planning

FIGURE 1. Model of the system architecture composed of RF signal
sensing, multitarget tracking with particle filter based state estimation
and intelligent path planning.

they come at expensive costs and rely on specialized hardware
systems.

The task of tracking targets in the RF domain presents
unique challenges as a result of the properties of elec-
tromagnetic wave propagation. While there exists many
mathematical models for describing the theoretical behavior
of RF signals, real systems are subject to a number of
impairments with significant impacts [4] on tracking perfor-
mance. Furthermore, as opposed to other sensing modalities,
RF signals can be extremely noisy, with interference from the
environment and other signals.

This work focuses on the task of multitarget tracking. This
presents a number of additional challenges compared to the
task of single target tracking. When tracking multiple targets
the method must take into account the movements of both
the sensor and all the targets. It is also difficult to make
observations that are informative of all target locations. Due
to the nature of RF signals, there is a complicated non-linear
relationship between the positions of the antennas and the
associated signal power that is measured. A robust method
will take into consideration all these factors as well as the
relative speeds of the sensor and targets.

As seen from the system architecture model in Fig. 1,
the method proposed in this work splits the problem of
multitarget tracking into multiple iterative steps. The com-
ponents include RF signal strength sensing, state estimation
and intelligent path planning. In the state estimation step,
the sensor platform uses signal observations to update its
belief about the target states. The belief state is represented
by a multitarget particle filter. The filter utilizes Bayesian
inference with a sensor model informed by realistic RF
antenna and propagation theory. In the path planning step,
the sensor platform uses its current belief of the target
states to determine a movement action for tracking all the

FIGURE 2. An example of the multitarget tracking system with four
targets.

targets. We propose a heuristic-based robust and efficient
path planning algorithm (REPP) that is designed to minimize
target uncertainty and obey safety constraints across a variety
of challenging tracking scenarios. In comparison to similar
RF multitarget tracking methods, we validate our proposed
method against a set of more challenging scenarios where
targets can travel at higher rates of speed relative to the sensor
platform. We also test with other challenging conditions such
as low SNR levels and additional targets. Our goal is to
show the robustness of our proposed method by proving
that it remains performant across a variety of environmental
scenarios that could be encountered in a deployment of such
a tracking system.

The major contributions of this work are as follows:
• An end-to-end belief based system for tracking multiple,
moving targets using only RF emissions.

• A sensor model informed by RF antenna propagation
theory which enables multitarget tracking using a single
sensor platform.

• A novel sensor path planning method uniquely formu-
lated for belief based multitarget tracking scenarios.

• An analysis of critical trade-offs relating to localization,
tracking accuracy, estimation uncertainty and computa-
tional efficiency through simulated experiments.

II. RELATED WORKS
This section provides a review of related works within the
domains of RF signal tracking and active sensing.

A. TARGET TRACKING
The topic of RF signal tracking has a rich history with
a multitude of sensor systems and localization methods.
A majority of work focuses on the tracking of a single,
stationary target using a network of sensors [5] or mul-
tiple sensor measurements [6]. The resulting simultaneous
signal observations at multiple locations allow for the
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direct estimation of a target’s location using least-squares
regression. Other works have attempted to extend these
techniques to the tracking of multiple stationary targets using
a sensor network [7]. These approaches are constrained by
the assumption that the number of sensors in the network
is typically much greater than the number of targets [8].
Performing tracking using a large sensor network is also
costly, and requires precise synchronization of the constituent
sensors.

Of particular relation to the methods proposed herein
are those works which track targets using a single sensor
platform [9], [10], [11], [12], [13]. The vast majority of
these systems constrain themselves to tracking a single
target, which is either stationary or moving with known
dynamics. In contrast, the methods proposed here endeavour
to perform mobile, multitarget tracking using only a single
sensor platform receiving emissions from the target sources.
The constraints imposed on this system would enable a
low-cost implementation with capabilities comparable to
systems of much greater cost. Such a system could be
deployed quickly in unknown environments, without prior
configuration. RF focused multitarget tracking has also
been attempted [14], [15]. Many of these methods test on
scenarios where the targets are moving slowly relative to
the sensor. To be able to track UAS or other fast moving
targets, additional methods and analysis are needed. Target
tracking methods based on Random Finite Sets (RFS) have
also been formulated for use with RF sources [16], [17].
While these approaches offer excellent tracking performance
and comprehensive coverage of target dynamics they are
computationally expensive and often intractable without
additional assumptions and constraints.

B. RADIO FREQUENCY SIGNALS
When developing methods for RF signal processing, the
exact form of the input signal plays an important role. For
the task of RF target tracking, the typical signal formats
are time of arrival (TOA) [18], time difference of arrival
(TDOA) [19], angle of arrival (AOA) [5], [6], and received
signal strength (RSS or RSSI) [10], [20]. TOA, TDOA,
and AOA based methods require either multiple antennas or
specialized antenna [11] arrays to perform well. They also
depend on precise synchronization between the antennas,
in order for the measurements to be accurate. The strict
requirements imposed by these methods make them costly to
implement and deploy.

Alternatively, RSS is captured by a single RF receiver
without the need for any synchronization or additional
sensors [21]. Signal strength decreases according to the
inverse square of the distance between the transmitting and
receiving antennas. The dependence of RSS on the locations
of the relevant antennas therefore allows it to be used for RF
target tracking. Signal strength is also heavily dependent on
the propagation environment. Attenuation caused by fading,
multipath, and other RF impairments can inject large amounts

of noise into the RSS measurements [22] and influence the
SNR of the signal. The path loss of an RF signal describes
the attenuation caused by the distance the signal travels in
addition to the previously mentioned impairment effects.
It is often difficult to model the exact path loss of a signal
because of its dependence on unknown characteristics of
the environment [23]. The complex relationship between
RSS and antenna location makes the resulting localization
inaccurate.With the proposed state estimation techniques, the
uncertainties caused by RSS measurements can be mitigated
in order to perform accurate target tracking.

C. PATH PLANNING AND ACTIVE SENSING
The term active sensing has multiple definitions within the
domains of machine learning and RF sensing. In the context
of this paper, active sensing includes the broad class of
methods with a moving sensor, and more specifically sensors
moving with intelligent path planning control methods.
There have been numerous techniques developed for learning
the decision processes responsible for intelligent motion.
Active sensing methods applied to target tracking typically
involve a reward formulated for localization [24]. These
rewards primarily aim to minimize the uncertainty of the
belief state [25] or maximize information gain [9], [26].
For certain contexts, such as those focused on security
and safety, the unknown emergent behaviors could be
considered nonoptimal. In this work we consider alternative
optimizations that prioritize minimizing belief uncertainty
and maintaining safe distances from the targets.

Within the RF domain, active sensing often refers to
systems that generate and output electromagnetic energy [27]
which then reflects off of the target and returns information
about the target. These radar systems [12] can be used to
provide precise location and movement information about
the target. Importantly, the methods proposed here do not
fall under this category of active RF sensing. Rather, the
system relies only on receiving and processing the RF
emissions originating from the targets themselves. Systems
built on emission observations provide much less information
than their active counterparts, but are also much cheaper
to implement [28]. When combined with intelligent sensor
control and state estimation techniques, the deficiencies of the
lower fidelity observations are diminished to a level at which
they can be used to perform mobile multitarget tracking.

III. METHODS
A. PROBLEM FORMULATION
We formulate the problem of RF multitarget tracking as an
iterative decision process combining state estimation and path
planning. In this formulation, the proposed sensor platform
is the agent, whose actions represent the decision process.
Furthermore, the sensor platform cannot directly observe the
underlying state of the environment, that is, the location of
the targets. Instead, the platform maintains a belief of the
underlying state informed by RF signal observations and a
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sensor model dictating the likelihood of an observation given
a possible state. The belief is a probability distribution across
all possible states. The belief state informs a heuristic-based
path planning algorithm which determines the movement
of the sensor platform. In the subsequent sections, we will
describe the details of these components.

B. STATES
One of the principal goals of this multitarget tracking method
is to ascertain the positions of the targets as they move
over time. We consider a 2D environment with a fixed
number of mobile target transmitters N . The target state is
x ∈ R2, where x is the position of the target in a 2D
Cartesian coordinate system. Accordingly, the environment
state captures the positions of all targets, X = [x1 . . . xN ].
The sensor state s ∈ R3 contains the 2D position of the sensor
and its heading. We assume the sensor has perfect knowledge
of its own state.

C. SENSOR MODEL
Regarding the sensor observations made by our system,
we utilize a track-before-detect (TBD) approach where
the signal power measurements are used without any
thresholding. In an environment with multiple mobile target
transmitters, the signal power measurements at the sensor
platform are determined by the log distance path loss model:

PL(d) = Ptx − Prx(d)

= PL(dref )+ 10 γ log10(
d
dref

)+ Xn (1)

where PL is the path loss between the antennas, d is the
distance between the antennas, Ptx is the power at the
transmitter antenna, Prx is the power at the receiver antenna,
dref is a reference distance used for characterizing the power,
γ is the path loss exponent, and Xn is a zero-mean Gaussian
random variable with standard deviation σfading, representing
the attenuation caused by shadow fading. Furthermore, the
Friis transmission formula [29] details the dependence of the
received power on specific variables of the system:

Prx =
PtxGtxGrxc2

(4πdf )2
(2)

where Gtx is the directivity of a transmitter antenna in the
direction of the receiver antenna, Grx is the directivity of the
receiver antenna in the direction of the transmitter antenna, c
is the speed of light, and f is the signal frequency.
To mitigate the difficulties of tracking multiple RF targets

with a single antenna, we explicitly model the directivities
G of the antennas with a pre-determined radiation pattern.
By modeling the directivities of the antennas our state
estimation methods are equipped with prior knowledge
dictating the strong effect direction has on the received
signal power. Fig. 3 shows the radiation pattern for a Yagi-
Uda antenna. This is a common type of directional antenna
with a single main lobe and various side lobes. The main
lobe indicates the intended direction for receiving signals

FIGURE 3. Radiation pattern of a Yagi-Uda antenna.

as it corresponds to the direction with the largest and
smoothest gain. The various side lobes have lower gains,
which correspond to a decrease in the received signal power.
As such, the directivity of an antenna with respect to a second
antenna is a function of the angle between them, G(θ). For
simplicity, we discretize the gain values from Fig. 3 such that
θ ∈ {0◦, 1◦, . . . , 359◦}.
It follows that the likelihood of a received signal strength

observation z is characterized by a Gaussian distribution:

p(z|X) = p(z|Prx) =
1

σz
√
2π

e
−(z−Prx )2

2σ2z (3)

where z is the sensor’s signal strength observation. The
combined observation resulting from all targets is Z =

[z1 . . . zN ]. As indicated by (1) and (2), Prx is a function of
the positions of the targets relative to the sensor platform,
in addition to antenna and signal characteristics. In practice,
some or all of the dependent variables will be unknown, and
will require estimation as part of the solution methods. In our
case, the antenna and signal characteristics are assumed to be
known prior, leaving the target positions to be estimated.

In an effort to validate the use of simulated signal strength
values we conducted a collection of real signal strength values
using a UAV and corresponding controller. Fig. 4 shows
a heatmap of the measured signal strength values versus a
corresponding heatmap of the simulated values for the same
locations. The simulated values were generated using (2). The
similarities across both heatmaps reflect the inverse-square
law in RF power levels as it applies to the distance from an
emitting source. The discrepancies can be attributed to noise
in the environment and multipath propagation effects.

D. STATE ESTIMATION
The belief state distribution represents the estimation of the
underlying state of the environment. For the task of tracking
multiple RF targets we propose the use of a multitarget
particle filter [30]. Each particle is represented by a weight
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FIGURE 4. Measured signal strength from a drone test flight compared
with simulated values.

w and a state estimate x̂. The weighted collection of discrete
particles acts as the belief distribution over possible target
states. Details on the composition of individual targets states
can be found in section III-B. Accordingly, the belief state
distribution b, for each target n is a collection of weighted
particles:

bn = {(w(i), x̂(i)) : i ∈ {1, . . . ,M}} (4)

whereM is the total number of particles.
We used the Sequential Importance Resampling [31]

regime for our multitarget particle filter. This process
proposes new particles by sampling from a generative model
of environment state transitions and then weighting particles
according to the observation likelihood function. The new
particle distribution is created by resampling M times
according to the likelihood weights, thereby eliminating
belief states which do not align with observations. Using the
signal strength observation likelihood from (3), the weights
w(i)
∝ p(z|x̂(i)) provide a quality assessment of each particle.

The likelihood values are first normalized and then used as
weights for resampling with replacement of the proposed
particles. The general form of the state transition model is
given by:

xt ∼ p(xt |xt−1, at−1) (5)

where details of the state kinematics follow directly from the
path planning action at−1, and any other assumptions made
during the simulation.

E. PATH PLANNING
The primary objective of the sensing agent in the RF
multitarget tracking task is to continuously localize all
the targets by minimizing the uncertainty of their belief
distributions. The difficulty in this task is centered around

planning a path which enables the sensor to make use-
ful observations in pursuit of this goal. As detailed in
section III-C, the signal strength observations are dependent
on the positions and orientations of both the sensor and the
targets. The noise in the sensor observations andmotion of the
targets makes the planning problem difficult. Many methods
approach this problem by applying information theoretic
objective functions [14] as the criterion for an action policy.
While these methods offer theoretical guarantees of reducing
the belief uncertainty, they are computationally expensive.
In an effort to produce methods capable of running on low-
resource edge devices, we propose a robust and efficient
path planning (REPP) algorithm with a low computational
burden. The path planner uses RF theory, statistics and
geometry to account for multiple fast moving targets and
noisy observations.

By observing the antenna pattern in Fig. 3, it is clear
the area with the largest gain and flattest gain gradient is
at the front of the antenna. Accordingly, signal strength
observations from a particular source will have the least
variance when that source is positioned in the direction of
the front of the antenna. It follows that an optimal path for
tracking an RF target will orient the front of the antenna
towards the target. While this approach is sufficient for
accomplishing the primary objective of the tracking task,
it fails to consider certain realities that may arise in a real
implementation. When tracking multiple mobile targets it
is often desired to maintain a minimum distance between
the sensor and the targets for reasons including safety and
counter-detection. It is also critical to ensure that all targets
are able to be tracked. With fast moving targets at unknown
positions, it is easy for the belief distributions to rapidly
expand while the sensor is centered on another target.

When tracking multiple mobile targets simultaneously,
the naive strategy must be augmented to account for the
additional difficulties. With only one antenna to track
multiple targets, the sensor platform must temporarily focus
on a single target, then cycle its focus onto the other targets.
To accomplish this, the sensor initializes a set of targets
F = {n | 0 ≤ n ≤ N − 1} representing the targets to
be focused upon. When a target is focused upon, its index
is removed from the set, and when the set is empty it is
reinitialized. Through this cyclic process, the sensor rotates
its focus through every target and ensures that all targets are
continually tracked.

As mentioned previously, an optimal RF sensing strategy
will orient the front of the antenna towards a target,
but to maintain safe operating conditions we apply an
additional criterion which dictates that a specified distance be
maintained between the sensor and all targets. To accomplish
this, we create a list of path proposals and then select the
proposal which satisfies a threshold distance constraint with
a bias towards proposals that move the sensor towards all
targets. For each target currently in set F three proposals
are created. In formulating the proposals, we use the means
of the particle filters as estimates for the target positions.
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While using the mean of the particle filter may seem to be
a gross oversimplification of the possible state distribution
represented by such a filter, through experimentation we
observe that the particles tend to quickly converge to approx-
imately unimodal distributions. Furthermore, the mean is
computationally cheap to compute and appears to contain
sufficiently informative information regarding such unimodal
distributions.

Using the mean of the filter as an estimate of the target
position, the first proposal directs the sensor in a path directly
towards the target. The second and third proposals are created
by forming a circle of radius rmin centered at the target
position and then finding the path of the sensor towards the
resulting two tangents of the circle. From these three, the
proposal which results in the sensor having a minimum sum
of distances to all targets is selected for the next step. In the
final step, all remaining proposals are checked to ensure they
satisfy the safety constraint. Specifically, the particle filter
is rolled out according to the proposed trajectory, and the
distance between the resulting particle states and the sensor is
compared to the distance threshold rmin. If the distance is less
than the threshold this means the sensor is within the safety
buffer zone surrounding a target. The expected value of the
inequality is evaluated for each target, and if the maximum
of these values is less than or equal to a safety constraint
threshold S, then the proposal is used for the sensor action
a:

max
n∈1,...,N

E(dist(ŝ, x̂n) < rmin) ≤ S

max
n∈1,...,N

1
M

M∑
i=1

1(0,rmin)(dist(ŝ, x̂
(i)
n )) ≤ S (6)

IV. SIMULATION EXPERIMENTS
A thorough analysis evaluating the effectiveness of the pro-
posedmethods was conducted through computer simulations.
Considering the motivating example from section I, we strive
to create a simulated environment that mimics the scenario
of UAV tracking. This setup provides a challenging task
which showcases the unique strengths of our method. Table 1
lists the values of various parameters used throughout the
experiments. These were chosen specifically to match the
physical and RF constraints present in UAV tracking. In all
settings, each target has an omni-directional antenna attached
statically, with negligible directivity between the target and
sensor platform. Additionally, the sensor platform contains
one directional Yagi-Uda antenna attached statically where
the main lobe is oriented to point towards the direction of
forward movement of the sensor. For the scope of these
experiments, we limited our setting to 2D to lower the
computational burden. The methods can be generalized to 3D
without modification.

All simulations are conducted in a 2D environment with
unbounded dimensions where each time step is 1 second.
At each time step, the sensor receives a signal strength

Algorithm 1 Path Planner
Input: targetSet {// initial value {n|0 ≤ n ≤ N − 1}}
Output: Control actions for chosen path
1: notFound ← {n | max (std_dev (X̂n)) > σmax}

2: objectOfInterest ← argmin
n∈notFound

std_dev (X̂n)

3: for n ∈ targetSet do
4: P← proposals(n)
5: if P ̸= ∅ then
6: p∗ ← argmin

p∈P

∑
n′∈targetSet

n′ ̸=n

distance (Xn′ , p)

7: if safety_constraint (p∗) then
targetSet.remove (n)

8: if targetSet = ∅ then
9: targetSet ← {n | 0 ≤ n ≤ N − 1}

10: end if
11: return p∗
12: end if
13: end if
14: end for

// if no optimal path found
15: P← default_paths()
16: p∗ ← argmin

p∈P
distance (objectOfInterest, p)

17: return p∗

TABLE 1. Experiment Parameters.

observation from each target, and then performs a movement
action. The targets move at constant speeds with the specific
speed depending on the experiment. The targets randomly
change their heading±30◦ with probability 10% at each time
step.

At the start of each experiment the targets are each placed
at random locations with distances to the sensor platform in
the range of 50 to 100 meters. The particle filter is initialized
with random positions at distances of 1 to 200 meters from
the sensor platform. During operation, the particle filter
resamples from the random prior with probability 1%.

Each experiment is run until all targets are simultaneously
localized or a maximum of 400 time steps has been reached.
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FIGURE 5. Time-lapses of the multitarget tracking simulations with varying sensor and target speed parameters. (a) sensor speed = 3 m/s,
target speed = 0.1 m/s (b) sensor speed = 2 m/s, target speed = 0.5 m/s (c) sensor speed = 1 m/s, target speed = 1 m/s.

Targets are considered localized if the standard deviation
of each particle filter dimension is below a threshold. For

all experiments this threshold was set to 35 meters. Each
experimental setting is repeated 100 times and the results
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TABLE 2. Result Metrics.

averaged. Fig. 5 shows time-lapses of various simulation
experiments. The simulations were run using a Python script
on a computer with 16 GB of RAM and 10 CPU cores.

V. RESULTS
Here we present the results of our experiments. We demon-
strate the robustness of our method by showing how its
performance does not decrease when faced with fast moving
targets, scaling the number of targets, and decreases in
SNR. To illustrate the unique benefits of our proposed
REPP method, we compare against LAVAPilot [15], another
path planning method designed for RF multitarget tracking.
To validate the efficiency of our method we compare against
an information theoretic approach, where the Monte Carlo
tree search (MCTS) algorithm was run using Shannon
entropy to determine node value. The MCTS method
determines optimal actions by continually selecting nodes
in the search tree, expanding the search tree, simulating
playouts, and then updating action values accordingly.
We formulate the search tree using the particle filter from
section III-D and a discretized action space. To demonstrate
the benefits of our method we present a collection of results
and analysis. First, we examine the overall performance of
our method through a variety of tracking metrics. Next,
we discuss the localization performance through plotting of
the estimation error and variance. Finally, we consider the
efficiency of the methods by documenting the time needed
for path planning. Through quantitative analysis of tracking
performance and computation time, we show the strengths
of our proposed method in relation to other state-of-the-art
techniques.

From Fig. 5 we see several examples of tracking exper-
iments from start to end. In all cases the particle filter

belief state quickly converges to approximately unimodal
or bimodal distributions. In cases where the targets move
quickly or the experiment is prolonged, it is clear that the filter
distribution follows the changing states of the targets. Due
to the heuristics contained in our REPP method, the sensor
path typically maintains a central location in relation to the
targets, and often crosses back over previous path locations.
By biasing the path proposals towards the center of the targets
and forcing the system to cycle target focus, the sensor path
often crosses over itself multiple times. We assert that in the
case of multiple, fast moving targets, this type of centralized
path is crucial for tracking all targets. Without the bias and
cycling the sensor can move too far from a distant target
to the extent that the target state distribution diverges and
localization becomes impossible.

In Table 2 we have included a collection of metrics
that cover key characteristics for determining tracking
performance. For these experiments we varied the speed
of the sensor as well as the speeds of the targets. This
setting aims to highlight the unique challenges posed by
tracking targets with speeds similar to the sensor platform.
The localization metric shows the probability of the method
satisfying the localization stopping criterion before the end
of the simulation. The specifics of the stopping criterion
are detailed at the end of section IV. Here we see that
REPP outperforms LAVAPilot in all but two cases, with
the largest improvement being +41%. Next, the localization
time shows the average time in seconds for the method
to achieve the localization criterion. Again, our method
outperforms the alternative in all but one case, with the
largest improvement being −64.33 seconds. In the final two
columns we report the root mean squared error (RMSE)
and standard deviation. These metrics are reported for the
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FIGURE 6. Histograms showing the distribution of experiment duration times. Early stopping (i.e., localization successful) criterion
is detailed in section IV. If the localization criterion is not met by 400 time steps then the experiments are manually stopped. Speed
parameters are varied across experiments.

final time step of the experiment. In a majority of the
experimental scenarios our method has lower RMSE with
the largest differences attributed to improvements with our
method. Despite the standard deviation column having mixed
results, the largest differences are also improvements with our
method.

In situations where targets were moving quickly and
at large distances apart our method was better able to
manage the overarching task of localizing all the targets.
LAVAPilot would spend too much time localizing a single
target while the uncertainty of the other targets estimates
increased quickly. We believe that forcing the sensor to cycle
its focus between targets is essential to tracking fast moving
targets. When targets were slow moving our method was
able to localize the targets in fewer time steps compared
to LAVAPilot. In many deployment scenarios, there is a
critical need for fast localization and even seconds could
be significant to the users of the system. Compared to
LAVAPilot, REPP consistently localized the targets more
often and in less time, with the greatest difference being over
a minute.

In Fig. 6 we plot histograms representing the distribution of
the duration of each experiment. Experiments are completed
when the localization criterion from section IV has been
satisfied or manually ended at a maximum of 400 time steps.
Fast localization is desired in multitarget tracking, therefore
distributions with weight in lower time steps are preferred.
Counts in the last bin represent experiments in which the
localization criterion was not satisfied and the experiment
wasmanually stopped. These results show that in themajority
of cases our REPP method not only satisfies the localization
criterion more often but also achieves faster localization.
From these results it is clear that across all experimental
settings it is more challenging to localize targets with faster
speeds. Even in easier tracking scenarios, where the targets
are slow moving, our method achieves localization in fewer
time steps.

In Fig. 7 we plot the localization error of the path planning
methods. We use root mean squared distance error (RMSE)
between the mean particle estimates and their respective true
target locations as the metric for localization performance.
From these plots we can form multiple insights about
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FIGURE 7. Localization error of our REPP method versus LAVAPilot [15]. The plots show the root mean squared distance error in meters across the
duration of the experiments. Results are averaged across all targets. Speed parameters are varied across experiments.

FIGURE 8. Comparison of the root mean square distance error with
different numbers of targets.

the relative performance of the two methods. While the
localization error increases with target speed, our method is
more robust in this case, seeing less of an increase in error
compared to LAVAPilot. This represents one of the most
challenging tracking scenarios, where the distance between
the sensing platform and the targets can often grow. When
the sensor speed is significantly faster than the target the

FIGURE 9. Comparison of the root mean square distance error with
different levels of fading attenuation applied to the signal strength
observation.

methods converge to similar performances. Of note in Fig. 7,
the REPP line in the plot of the top row, first column (sensor
speed = 1 m/s, target speed = 0.1 m/s) does not cover the
full time span because all experiments reached the stopping
criterion by 180 seconds.

To further support our claims of robustness, we show that
our method remains performant when scaling to additional
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FIGURE 10. Maximum of the standard deviations from each particle filter dimension. Results are averaged across all targets. Speed
parameters are varied across experiments.

FIGURE 11. Localization error of our REPP method compared with
LAVAPilot [15] and MCTS. The plots show the root mean squared distance
error in meters across the duration of the experiments. Results are
averaged across all targets. The sensor speed parameter is varied across
experiments.

targets and when the SNR of the received signals is increased.
In Fig. 8 we show that doubling the number of targets being

FIGURE 12. Maximum of the standard deviations from all particle filter
dimensions. Comparison of our REPP method versus LAVAPilot [15] and
MCTS. Results are averaged across all targets. The sensor speed
parameter is varied across experiments.

tracked has no significant impact on RMSE, even with fast
moving targets. The methods generally perform the same
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TABLE 3. Path planning computation time.

with REPP showing slight improvements in some cases.
In Fig. 9 we show that decreasing the SNR also has no
significant impact on the performance of the method. In the
case with greater SNR (i.e., less fading attenuation), our
method outperformed the alternative in all cases.

In Fig. 10 we display boxplots of the maximum standard
deviation from each particle filter dimension averaged
across all targets. These plots show how the uncertainty
of the particle filter belief state decreases throughout the
experiment. An effective tracking method will have the
uncertainty quickly decrease and remain stable. Given
the setting and the mobility of the targets, it is reasonable
to expect the uncertainty of the filter to plateau rather than
continually decrease. From these results we see that when
the sensor speed is slower our method clearly outperforms the
alternatives. With faster sensor speeds our method has similar
performance if not slightly worse. Considering all metrics for
tracking performance, this shortcoming does not appear to
be substantial in the overall comparison of the two methods.
Furthermore, our method performs better in the more difficult
tracking scenarios where target speeds are fast and sensor
speeds are slow.

In Table 3, Fig. 11 and Fig. 12 we compare REPP with
LAVAPilot [15], another heuristic-based path planner and
MCTS, an information-based path planner. We include this
comparison to highlight the differences between heuristic
and information based path planners. In general, heuristic-
based methods are computationally cheaper but do not match
the tracking performance of information-based methods,
which include theoretical guarantees of optimality. Table 3
highlights the significant difference in computation time
between the different methods. We vary N to show how
computation time scales with the number of targets being
tracked. In both cases, the heuristic-based methods require
only a few milliseconds of computation time for planning,
which is sufficient for real-time tracking systems. Conversely,
the information-based MCTS requires 6.35 and 16.61 sec-
onds, which would make real-time tracking impossible.
Furthermore, REPP is computationally efficient when scaling
to tracking additional targets. Here we observe a 160%
increase in planning time compared to a 203% increase with
LAVAPilot [15].

From Fig. 11 we see that the MCTS method reaches a
minimal RMSE faster than the other methods. Despite this,
REPP converges to a similar error within approximately
140 seconds. In the most challenging case, where the

sensor speed is slowest, REPP performs similarly to MCTS
while LAVAPilot [15] has higher error. In Fig. 12 we
make similar observations regarding the methods and how
they influence the standard deviation of the particle filter.
Again, the MCTS method minimizes the standard deviation
faster than the heuristic approaches. Beyond approximately
140 seconds, REPP performs almost identically to MCTS
while LAVAPilot [15] is never able to lower the standard
deviation to the same amounts. Despite the marginal local-
ization improvements with MCTS, the immense planning
time required for the information-based method makes it
unsuitable for a real-time tracking system with multiple,
mobile targets.

VI. CONCLUSION
In this paper, we have proposed a method called REPP, which
combines state estimation and a path planning algorithm for
the purposes of tracking multiple mobile RF targets. Using a
sensor model based on realistic RF propagation conditions,
the particle filter maintains a belief distribution of all target
positions using only signal strength observations as input.
The belief state is used by a path planning component which
plans the actions taken by the sensor platform. The path
planning algorithm seeks to minimize the uncertainty of
the target belief distributions while also maintaining a safe
distance from all targets. In comparison to state-of-the-art
RF multitarget tracking methods, ours is robust to both fast
moving targets and low SNR conditions, and scales well
with additional targets. Experiments demonstrate that our
method is up to 41% more likely to achieve the localization
criterion and up to 64.33 seconds faster at satisfying
the criterion. Furthermore our method is computationally
efficient, and requires much less planning time than other
comparable methods. In similar conditions our method
spent 0.0086 seconds for planning, while an information-
based approach was much slower at 16.61 seconds. Adding
difficulty to the tracking task by increasing the number of
targets and lowering the SNR did not impact the better
performance of our model. This level of efficiency and
robustness is critical to real life scenarios where mobile,
rogue RF devices need to be tracked in a timely manner in
noisy environments.
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