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ABSTRACT Data analysis in modern times involves working with large volumes of data, including time-
series data. This type of data is characterized by its high dimensionality, enormous volume, and the presence
of both noise and redundant features. However, the “curse of dimensionality’” often causes issues for learning
approaches, which can fail to capture the temporal dependencies present in time-series data. To address
this problem, it is essential to reduce dimensionality while preserving the intrinsic properties of temporal
dependencies. This will help to avoid lower learning and predictive performances. This study presents
twelve different dimensionality reduction algorithms that are specifically suited for working with time-series
data and fall into different categories, such as supervision, linearity, time and memory complexity, hyper-
parameters, and drawbacks.

INDEX TERMS Time-series data, dimensionality reduction, high-dimensional data, machine learning.

I. INTRODUCTION

Massive amounts of information are the focus of modern data
analysis. The increase in data volume is evident not just in the
number of samples collected over time, but also in the number
of attributes or features [1]. Nowadays, high dimensionality is
a common feature of time series and large datasets. A dataset
with a larger number of features generally contains more
information, but as the number of features grows, there may
be an increase in noise and redundancy. Additionally, big data
can be challenging to analyze and visualize due to its higher
dimensionality. The complexity of high-dimensional data not
only increases computational demands and storage require-
ments, but it can also cause traditional learning approaches
to fail in certain cases, leading to the “‘curse of dimension-
ality” [2]. The curse of dimensionality describes the prob-
lems that arise while categorizing, organizing, and analyzing
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high-dimensional data that do not exist in low-dimensional
domains [3]. Working with high-dimensional data makes
knowledge discovery and pattern recognition tasks more
challenging due to the abundance of redundant and irrelevant
features.

Reducing dimensionality is a viable approach to address-
ing this problem. By reducing the number of features in the
data, this technique aims to improve data quality. Remov-
ing unimportant and irrelevant attributes through dimension-
ality reduction allows machine learning algorithms to run
more accurately in less time as well as reducing computa-
tional complexity. However, it is imperative that the result of
dimensionality reduction (lower feature space) still preserves
important and significant information about the original rep-
resentation. Higher dimensionality can be handled through
different ways such as supervised, unsupervised, linear, and
non-linear dimensionality reduction techniques.

The ‘curse of dimensionality’ is perceived as more cru-
cial in the case of time-series data because of expanding
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usage of this sort of data in data mining. Time-series data
are collections of chronological observations of temporal
objects that can be constructed by collecting data from var-
ious applications at specific intervals [4], [5]. A time series
analysis can assist in understanding the underlying process,
the pattern of change over time, or the evaluation of the
consequences of either a planned or unexpected intervention.
Large volume, constant updates, and high dimensionality are
the main properties of time-series data [6]. Time-series data
is often collected over an extended period, which can result
in high data dimensionality. As a result, it is often necessary
to reduce the dimensionality of time-series data to facilitate
analysis and processing [7]. When reducing time-series data,
it is important to ensure that the primary characteristics and
representation of the original data are maintained. This will
help to improve the performance of the time-series data,
as the reduced data must still accurately capture the essential
features of the original data [8].

There is a dearth of literature discussing dimension-
ality reduction methods specifically for time-series data,
and no thorough investigations have been conducted in
this area. This survey aims to fill this gap by focusing
solely on dimensionality reduction techniques for time-series
data. The paper provides a review of twelve state-of-the-
art techniques and presents a comprehensive investigation
along with a brief comparison of these methods. The struc-
ture of the paper is as follows: Section II briefly intro-
duces the selected dimensionality reduction methods for
time-series data. In Sections III through 8, we discuss
Autoencoder, Principal Component Analysis, Kernel Prin-
cipal Component Analysis, Laplacian Eigenmap, Singu-
lar Value Decomposition, and Locally Linear Embedding,
respectively. Next, Sections IX through 14 cover Isometric
Mapping, Maximum Variance Unfolding, Locality Preserv-
ing Projections, Diffusion Maps, Discrete Fourier Transform,
and Discrete Wavelet Transform, respectively. In Section XV,
we compare the discussed dimensionality reduction meth-
ods for time-series data. Finally, Section XVI concludes the

paper.

Il. SELECTION OF DIMENSIONALITY REDUCTION
METHODS FOR TIME-SERIES DATA

In recent times, multiple dimensionality reduction techniques
data have been proposed, however, none of them is effec-
tive for time-series data. For instance, (1) Piecewise Trend
Approximation which only focuses on the local trend of
the data [9], (2) Piecewise Vector Quantized Approxima-
tion which performs poorly for non-stationary datasets [10],
(3) Piecewise Constant Approximation that estimates every
time-series only with constant value segments [11], (4) Piece-
wise Aggregate Approximation where choosing the number
of segments as a parameter is challenging and highly data
dependent [12], (5) Sliced Inverse Regression which suf-
fers from the presence of outliers [13], (6) Factor Analysis
has become less popular as it is quite similar to Principal
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Component Analysis (PCA) [14], (7) Independent Compo-
nent analysis where the order of the independent components
is ambiguous [15]. Due to these issues, we did not consider
these algorithms for time series data in our work.

In contrast, we review the following twelve state-of-
the-art dimensionality reduction algorithms for analyzing
time-series data. We select these twelve techniques for the

following reasons:
1) Autoencoder: Autoencoder tends to provide better per-

formance by using the latent features of the time-series
data for learning, and can predict the unseen data
efficiently [16].

2) Principal Component Analysis (PCA): PCA is one of
the most widely used dimensionality reduction meth-
ods due to its simplicity [17]. By utilizing the linear
transformation of the Eigen Decomposition, it contains
more information, identifies outliers effectively, and
reduces the time-series data dimension effectively [18].
This method can also be employed for non-stationary
data.

3) Kernel PCA (KPCA): KPCA is a variant of PCA that
is highly efficient for dealing with non-linear time-
series data [19]. It also considers the combination of the
predictive features intrinsically for the optimization of
the dimension reduction for time-series data [20].

4) Laplacian Eigenmap (LE): LE efficiently handles
non-linear time-series data [21]. Furthermore, it has the
potential to produce the best classification result for
time-series data. [22].

5) Locally Linear Embedding (LLE): LLE converts
high-dimensional time-series data on a manifold into
a lower-dimensional format while preserving the input
data points’ local properties. [23].

6) Isometric Mapping (Isomap): Isomap is a manifold-
based method that adjusts the local structure of the
input data to perform well on non-linear time-series
data [24].

7) Singular Value Decomposition (SVD): SVD decom-
poses the input time-series data matrix into a simpler
form, making the underlying data structure clearer to
comprehend [25]. It also aids in the efficient visual-
ization of time-series data and the speedy analysis of
time-series data [26].

8) Maximum Variance Unfolding (MVU): MVU’s
trustworthiness and continuity evaluation appear to
have enormous potential for the dimensionality reduc-
tion of time-series data [27]. The terminology ‘trust-
worthiness and continuity’ explains how well a
dataset’s local properties are retained after dimension-
ality reduction [27].

9) Locality preserving projection (LPP): LPP aims
to preserve the neighborhood local structure of
time-series data as much as possible [28].

10) Diffusion map (DM): Short-circuiting in a time
series data graph appears to be highly adaptable to
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TABLE 1. Notations and description.

Notation Description
A input dataset
a; input data samples
a; input data samples
Y output dataset
Yi output data samples
Yj output data samples
n input dimensions
d output dimensions
N total samples
K kernel function

K kernel matrix

m nearest neighbor
G neighborhood graph
M connectivity matrix

diffusion distance [29]. This trait makes DM a reli-
able dimensionality reduction technique for time-series
data. In addition to dimensionality reduction, DM pro-
vides effective time-series data visualization [30].

11) Discrete Fourier Transform (DFT): The fundamen-
tal idea behind DFT is that any complex signal can
be expressed by the overlap of a limited number of
waveforms, each denoted by a single complex num-
ber termed a Fourier coefficient [31]. The ability to
minimize dimensionality is the most basic benefit of
representing a time series in the frequency domain.
It is a useful method for time-series data since it mini-
mizes the quantity of the data without losing too much
information.

12) Discrete Wavelet Transform (DWT): DWT can pro-
vide both the time and frequency information of the
time-series data simultaneously, along with the advan-
tage of dimension reduction of the input time-series
data [32].

Table 1 shows the notations that are commonly used in this
paper.

Ill. AUTOENCODER

Autoencoder is an unsupervised artificial neural net-
work (ANN) that reduces the dimension of the input data
from high to low by stacking up a layer of non-linear
transformations [33]. It is also known as a replicator neu-
ral network (NN) as it replicates the input data to the out-
put. Autoencoder is a widely used method for time-series
data analysis which helps in the reduction of the input data
dimension. For example, [16], [34], [35], [36], [37] used
Autoencoder based methods for time-series data analysis and
dimensionality reduction.

An Autoencoder is composed of 3 different layers;
1) encoder layer, 2) code layer, and 3) decoder layer [38].
The encoder layer is a feedforward, fully connected NN that
transforms the original input space to a compressed lower
dimensional representation. This compressed output is the
distorted version of the original input data. The mid layer of
Autoencoder is the code layer, which imposes a bottleneck
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in the network and contains the reduced representation of
the input. Then it passes the compressed input data to the
decoder layer. The decoder is a feedforward network that
attempts to reconstruct the original input data from the code
layer. In simple words, the decoder layer tries to reverse the
encoding process by recreating the higher dimensional space
from the encoded low dimension.

Now, if the encoder function is i, and the decoder func-
tion is ¢, then the conversion of the input data A is the
following [39]:

viA—F (1)
6:F — A )

where ¥ maps the original data A to a latent space F and ¢
reconstructs the original data from F.

In this case, data reconstruction error is observed which is
defined as the difference between the original input data and
the reconstructed data [39]. Autoencoder tries to obtain the
original data structure from the lower dimensional represen-
tation by minimizing the reconstruction error. The formula of
the reconstruction error (£) [39] is shown in Eq. 3.

LAAY=A—-4A 3)

where A and A’ are the original input data and the recon-
structed input data respectively. The reconstruction error can
also be referred to as ‘loss’ of the Autoencoder.

Though the Autoencoder is one of the most widely used
dimensionality reduction algorithms, it only works well if
the input features are correlated. If the input features are
independent, it performs badly and produces lossy output
as compared to the original input. Furthermore, because the
Autoencoder does not need to learn from dense layers, it may
instead use convolutional layers, which are superior at reduc-
ing the dimensionality of the image, video, and time-series
data [40].

IV. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is an unsupervised
technique that is one of the widely used dimensionality reduc-
tion techniques for dealing with the high dimensionality for
time-series data [41]. It is a linear transformation method and
computationally less expensive [42]. As a result, applying
PCA helps to run the MLAs faster while the structure of the
original dataset is sustained [43]. Hence, many researchers
believe PCA 1is appropriate for reducing the dimensionality
of time-series datasets [44], [45], [46], [47].

PCA first determines the maximum variance of a dataset
[48]. Then it calculates the covariance matrix which depicts
the information of the correlation of the features using the
formula given below [49]:
cov(fi, ) = Z(fl[ J;:/)(fZ; f2) (4)
here, f1 and f> are two random features of the input data set,
f1 and f> are the mean of f; and f> respectively, N is the number
of total data points.
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The next step is to find the Eigen values and Eigen vectors
of the covariance matrix. The Eigenvectors represent the
information of the data direction which are known as the
principal components (PCs) whereas the eigenvalues consti-
tute the information of data variance in that direction. So,
PCs are the new linear combinations of the primary features.
During this transformation, the PCs are sorted in descend-
ing order and the top-most g number of PCs are selected
as g features which contain the most important information
from the dataset. Suppose, if the input data matrix A is of
n-dimension, then PCA reduces it to a dimension of d where
d <n.

The key factor of PCA lies in the projection of the dataset.
With the re-orientation of the data from the original axes
to the new axes represented by the PCs, the data are then
transformed into the new subspace. From there, PCA tries to
find out the best line on which the projected data points have
the maximum variances [50].

PCA makes the feature selection process easier by scoring
the features from the most important to less. As a result,
depending on the application, the most significant set of
features can be chosen from the dataset. It is a non-iterative
process, which eliminates correlated features and reduces
overfitting problems [43]. However, PCA does not perform
well in the case of non-linear data [48]. Also, It is recom-
mended to standardize the input dataset before applying PCA.

V. KERNEL PCA
PCA does not work well with nonlinear time-series data
because it produces a non-optimal subspace [51]. Kernel
PCA (KPCA) can manage the non-linearity of time-series
data in these instances by generalizing the linear PCA
approach into the non-linear case by using a ‘kernel trick’
[52]. In the new feature space, KPCA maps time-series data to
a higher dimension, where data becomes linearly separable.
Authors in [53], [54], and [55] used KPCA for the reduction
of dimensionality for time-series data.

Given a kernel function K, KPCA generates a new feature
space for the non-linear data. The kernel function or kernel
trick K works using the following equation [56]:

K(aj, a)) = ¥(@)" .y (a)) )

where, a; and g; are two random data samples. The input data
a; is first mapped to a higher dimension ¥ (a;) by KPCA.
So, rather than using the input dataset A, it maps A to a
high dimensional feature space ¥ (A). Then, in that higher-
dimensional feature space, it calculates the linear PCA [52].
By incorporating the kernel trick, it indirectly manipulates the
dot product of the samples a; of A under ¥, and maps a; to
¥ (a;) which makes the method computationally cheaper [57].
Several kernel functions can be utilized to perform KPCA.
Some of the most widely used kernel functions are Radial
Basis Function (RBF), Linear Kernel Function, Polynomial
Kernel Function, Sigmoid Kernel, etc. where they work using
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the following equation [58], [59]:

2
RBF : K(a;, aj) = exp (— M)

c
(©)

Linear Kernel : K (a;, aj) = a,-Taj +c 7)
Polynomial Kernel : K (a;, aj) = (a;, a;)P ®)

Sigmoid Kernel : K(a;, a;) = tanh(Bo(a;, a;) + 1) (9)

here, a; and g; are two random data samples. ¢, By, and
B1 are constants that need to be priorly specified by the user
[60]. p is the degree of the polynomial which also needs
to be predefined. When the data is non-linearly separable,
the RBF kernel is utilized [61]. The linear kernel is used
for linearly separable data [62]. The polynomial kernel is
used to represent the similarity between the data points in a
feature space over the polynomials of the original variables
[63]. And the sigmoid kernel is employed mostly for neural
networks [64].

The selection of the kernel function in KPCA determines
the form of mapping from the original variable space to the
high dimensional feature space for dimensionality reduction.
However, KPCA can lead to memory issues in the case of
huge datasets [65].

VI. LAPLACIAN EIGENMAPS

Laplacian Eigenmap (LE) is a manifold-based unsupervised
learning that works for non-linear time-series data [66]. This
algorithm has a tendency to preserve the local geometrical
properties of data points i.e. neighboring data samples in the
initial data space remain neighbors in the reduced space. LE is
widely used in the reduction of the dimension of time-series
data [21], [67], [68].

LE first tries to join the neighboring points from a
n-dimensional input vector A and constructs a neighborhood
graph G. It uses the concept of the laplacian of the graph [69].
The neighboring points are identified using the following two
methods [70]:

o ¢-ball method: two points a; and a; of the input vector A
are neighbors if || @; — a; ||< €. € is the radius of a ball
which is centered at a; and the point is determined as a
linear combination of all other data points inside the ball
[71]. This method considers the geometrical properties
of the samples, however, it can lead to the construction
of more than one connected graph [70]. Moreover, the
selection of the parameter € is difficult [72].

o KNN method: Two points @; and a; of the input vector
A are neighbors if a; is amongst the m nearest neighbors
of a; or vice versa. In contrast to the previous method,
the selection of the parameter m is easier, though this
method is not so geometrically instinctive [70].

LE wuses two approaches: heat kernel approach and

simple-minded approach [73] to provide weight to the con-
necting edges of any two points g; and g; in graph G. These
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are as follows [70]:

2
llaj—ajll

heat kernel approach : Wij = exp™ — © (10)

. 1, if a; and g; are connected
simple approach : Wj; = .
0, otherwise

(1)

where, T is a parameter which can be any real number and W;;
is the weight between the two data points ¢; and ;.

Later, LE tries to find a lower-dimensional subspace where
all the local properties of neighboring points are well sus-
tained by minimizing the following cost function [74]:

Y =D lyi—y 1> Wy (12)
ij

Here, Y is the low dimensional representation of the input
matrix A. y; and y; are the lower dimensional representations
of a; and a; respectively. Then, LE calculates ‘Laplacian
matrix (L)’ of G using the following formula [75]:

L=W-D (13)

where D is a diagonal matrix which contains the row sums
of the weight matrix W, so that D;; = Zj Wi;. Now, using
the laplacian matrix L and the diagonal matrix D, the cost
function given in equation (12) can be redefined as an Eigen
decomposition problem which is shown below:

Dlyi—y 1P wy=2y.Ly" (14)
.

By optimizing the cost function, Laplacian Eigenmap tries
to ensure that similar data points are mapped together in the
low dimensional manifold by maintaining the local distances
[76]. However, it can be considered as a limitation of LE that
it preserves only the local properties of the neighboring data
points [77].

VII. SINGULAR VALUE DECOMPOSITION
Singular Value Decomposition (SVD) is an unsupervised,
linear method that is a widely used dimensionality reduction
technique for time-series data [78]. SVD is used for the
dimension reduction of time-series data by many researchers
[26], [79], [80]. It decomposes a real or complex matrix A into
three matrices and exhibits the useful characteristics of the
primary matrix. This method is a data-driven generalization
of the Fourier transform which is based on simple linear
algebra [81]. With the help of SVD, the matrix rank can be
generated and a lower rank estimation of the matrix decom-
position can be acquired. The number of linearly independent
rows or columns in a matrix is referred to as its rank [82].
The decomposition of a real matrix A, having a dimension
of (N x n) by SVD is [83]:

A=UxvT (15)

Here, U and V are two unitary orthogonal matrices where for
both matrices, the dot product of two columns of a matrix
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isequalto Oie., UT. U =U.UT =TorVI.V=Vv.VT =1
[48]. U has a dimension of (N x r) and V has a dimension of
(r xn). U and V are known as the left singular vector and the
right singular vector respectively and X is a diagonal matrix
having a dimension of r x r where the non-diagonal ele-
ments are zero, and the diagonal elements are non-negative.
These non-negative values in X are known as singular values.
Hence, the matrix ¥ can be represented as:

o1
T = o (16)

Oy

Here, r is the rank of the matrix A, where r = min(N, n), and
the singular values are ordered as o1 > o2 > ... > o, > 0.

SVD then reconstructs the primary matrix A to a lower rank
f by using the following equation [84]:

Y = Urs V) (17)

here, Y is the lower dimensional output which only holds the
information of the first f values. Uy, ¥y and VfT are truncated
versions of U, Y and V7T and that’s why such an SVD is
called ‘Truncated SVD’ [85].

Despite many positives, SVD can be computationally
expensive. It works fine on a user-defined matrix but does
not work well in adaptive or experimental procedures [86].
However, it is a preferred dimensionality reduction algorithm
for the prediction problem [48].

VIIl. LOCALLY LINEAR EMBEDDING

Locally Linear Embedding (LLE) is an unsupervised, non-
linear method that computes the low dimensional embedding
of the input time-series data from a high dimensional space by
preserving the geometric features of the original time-series
data [87]. It recognizes the fundamental structure of the data
and can generate highly non-linear embedding applied LLE
for the dimensionality reduction for the time-series data [71],
[88], [89].

If a well-sampled vector A consists of N real values, each
having a dimension of n, LLE starts the dimensionality reduc-
tion by constructing a nearest neighbor graph. It computes
nearest neighbors (m) using the euclidean distance or any
other local metrics-based formula. The number m should be
chosen carefully, otherwise, LLE will fail to illustrate the
global geometry. Then, it reconstructs each data point from
its neighbors and calculates the reconstruction error using the
following formula [71]:

EW)=D " lai— > Wy |’ (18)
i J

here, a; contributes to the optimal weight W;; while recon-
structing the data point a;. This reconstruction error is mini-
mized while fulfilling two requirements [71]:
« a;is reconstructed using its neighboring data only which
implies to W;; = 0if a; and g; are non-neighbor samples.
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« the sum of the rows of the weight matrix W is equal to 1
i.e., Zj Wij =1.

Lastly, LLE uses the obtained weights to embed the points
in the low dimensional subspace by computing a low dimen-
sional vector Y having d dimension (where d < n) with the
weight that is defined earlier and it is done by minimizing the
cost function as follows [90]:

)= 15i— > Wy I (19)
i J

The key feature of LLE is that it is capable of handling
non-linear data where other dimension reduction algorithms
may fail [48]. It also uses the neighborhood concept of the
data points where choosing the neighborhood parameter m
plays a vital role [91]. In addition to that, LLE can handle
sparse matrices effectively which results in less computa-
tional time and space. However, this algorithm is sensitive
to noise and fails to perform well on noisy data [91].

IX. ISOMETRIC MAPPING

Isometric Mapping (ISOMAP) is an unsupervised non-
linear time-series data dimensionality reduction technique
that is considered as one of the earliest manifold learn-
ing approaches [92]. A manifold learning approach can be
defined as an approach to non-linear dimensionality reduc-
tion. ISOMAP tries to retrieve the intrinsic geometry of the
data points by maintaining the geodesic distances among the
data in a lower-dimensional space. In the low dimensional
space, the nearby data samples stay close and far away data
samples stay distant from each other [93]. This technique is
broadly used by several researchers for time-series data [94],
[95], [96].

ISOMAP first constructs a neighborhood graph G by iden-
tifying the neighbors of an input data (a;). For identifying the
neighboring points, it uses the e-ball method or KNN method
like LE [97]. Here, the edges among the neighboring points of
the graph are weighted using their euclidean distances. Then,
it estimates the geodesic distance by calculating the shortest
path between all the data points of the neighborhood graph G,
which can be performed by Dijkstra’s shortest path or Floyd’s
algorithm [98]. A pairwise geodesic distance matrix dg is
formulated using the geodesic distance between each of the
data points.

At the last step of ISOMAP, it embeds dg to a lower
dimension with the help of the classical Multi-Dimensional
Scaling (MDS), which is a non-linear and unsupervised fea-
ture extraction algorithm [99]. MDS transforms this matrix
dg to a kernel matrix K, using the following formula [100]:

K, =H.dg.H (20)
here, H is a centering matrix which can be defined as [101]:
Hel—2 (ee”) 21)
=1— —.(ee
N

where, N is the total number of data samples, [ is an identity
matrix and e is a column vector containing all 1s. After
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determining the kernel matrix K,,,, eigen decomposition of K,
is estimated as K,,, —> M .D.M T where Dis a diagonal matrix
that contains the eigenvalues and M is a matrix containing the
respective eigenvectors [100]. Finally, top d eigenvectors are
selected as the d dimensions.

Generally, ISOMAP performs really well for data that lies
on a well-sampled manifold [102]. However, it performs
poorly in case of scattered data distribution, especially for
far away data samples. Moreover, it can be computation-
ally expensive as it is an extension of the classical MDS
algorithm [103].

X. MAXIMUM VARIANCE UNFOLDING

Maximum Variance Unfolding (MVU), previously referred
to as semi-definite embedding (SDE), has been proven to be
an effective non-linear unsupervised dimensionality reduc-
tion approach [104]. It is considered as a variant of KPCA
that aims to overcome KPCA’s shortcomings in dealing with
non-linear high dimensional time series data [105]. Some
studies have employed MVU for time-series data [106],
[107], [108].

As mentioned in Section V, KPCA allows PCA to be per-
formed in higher dimensional space specified by the kernel
function (K). But there is no clarity on how the optimal
kernel function K should be determined. The goal of MVU
is to determine the optimal kernel that fully unfolds the
manifold of data. Using semidefinite programming (SDP),
MVU finds the optimal kernel for manifold unfolding [109].
Semi-definite programming (SDP) is an extension of linear
programming in which a semidefinite condition on matrix
variables replaces the non-negativity condition [110]. MVU
is an iterative method and the iterative solution of SDP in
MVU is complex and time intensive [109]. However, the
trustworthiness and continuity assessment of MV U is promis-
ing for the dimensionality reduction of time-series data. The
term ‘trustworthiness and continuity’ refers to how effec-
tively the structure of a dataset is maintained after dimension-
ality reduction [27].

Similar to ISOMAP, MVU first constructs a neighborhood
graph on the high dimensional data [111]. MVU starts with
defining a neighborhood graph G in which each datapoint (a;)
is linked to its closest neighbor (a;). Following that, MVU
seeks the optimal kernel matrix by maximizing the sum of
the squared Euclidean distances between all the data points
while keeping the distances constant inside the neighborhood
graph [112]. Selecting the optimal kernel matrix is a convex
optimization issue that SDP can solve. To put it another way,
MVU solves the following convex optimization issue while
seeking for the optimal kernel matrix [113].

Maximize Z ||yi — yj||2
i
subject to [|yi —y;|* = |ai —qj]* . VG, ) e G (22)

here, a denotes the input data samples. On the other hand,
y denotes output data samples. By establishing the kernel
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matrix Ky,; = yi.yj, MVU converts the optimization issue
to an SDP. The optimization problem is a linear program
with a constraint that the kernel matrix Kj,, consists of non-
negative eigenvalues. Over the kernel matrix K,,,, the SDP can
be represented as [109]:

Maximize trace (K)

subject to Ky, — 2Ky, + Kin; = @i — 3j||2 for all (i, j)

(23)

> K =0 (24)
i

Kn =0 (25)

The matrix K, must be positive semidefinite to satisfy the
last constraint K,,, = 0. The kernel matrix used as input for
KPCA is the solution Kj, of the SDP. The low-dimensional
data format Y is obtained via Eigen Decomposition of the
optimum kernel matrix K, where y; € Y satisfying Ky =
Y; -y;. The top d eigenvalues and eigenvectors of K, can be
used to achieve an d-dimensional representation. In summary,
the algorithm consists of three steps: evaluating the m-nearest
neighbors, estimating the kernel matrix, and determining
the top eigenvectors and values to determine the reduced
dimensions [109].

MVU has the advantage of being able to adapt to specific
tasks. For instance, the SDP’s distance-preserving conditions
can be eased to deal with outliers or to produce more con-
frontational dimensionality reduction results [111]. The key
drawback of MVU is the time taken to solve large problems
in semidefinite programming [109]. Despite this shortcom-
ing, MVU has been used to effectively localize sensors and
analyze DNA microarray data.

XI. LOCALITY PRESERVING PROJECTIONS
Locality Preserving Projection (LPP) is a linear, unsupervised
dimensionality reduction algorithm that aims to preserve the
neighborhood structure of data as much as possible. It has
similar locality-preserving properties to LE since it is built
on the same principle as LE. With the help of LPP, the time
series data can be projected into a lower dimensional area.
LPP looks for a low-dimensional projection that keeps the
local structure intact of the high-dimensional data. It first
creates a neighborhood graph for each data point, and then
using the concept of Laplacian (divergence of the gradient
of a function) of the graphs, it trains a transformation matrix
that maps the data to a lower subspace where the original
local structure is maintained [28]. The manifold structure is
explicitly considered by the LPP by generating an adjacency
graph that reflects the intrinsic data structures. A nearest-
neighbor graph is used to produce the manifold structure,
which preserves local structure [114]. However, because of
its linearity, LPP is fast and ideal for real-life applications
and widely employed for the dimensionality reduction of
time-series data [115]. Furthermore, it shares the same data
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representation qualities as non-linear techniques such as LLE
and LE [28].

Though LPP is a linear technique, however, is a linear
approximation of the nonlinear LE [116]. The LPP algo-
rithm searches for a transformation matrix P to project the
high-dimensional input data (A) into a low-dimensional sub-
space (Y) in a way that y; represents a;, where y; = PTg; and
v = PTaj. For reducing the dimensionality from A to Y, the
objective function is minimized by LPP as follows:

¢(Y) =D 0 —¥)°Sy (26)
ij

where S denotes a sparse symmetric matrix and evaluates the
local structure of a;. The objective function ¢(Y) with S;;
suffers a substantial penalty if neighboring points a; and a;
are mapped far away. The following is a way to define S [28]:

1,

where, ¢ is heat kernel parameter, a special case of Gaussian
kernel. For the generalized eigenvector issue, the eigenvectors
and eigenvalues equation is:

if a; and g; are neigbors or vice-versa 27
otherwise

ALATv = MADATvy (28)

where, v is a column vector, D is a diagonal matrix, Dj; =
2. Sji- L = D~ S is the Laplacian matrix.

When the number of dimensions is greater than the number
of data points and the data are linearly independent, compu-
tational analysis of LPP and LE yields the same conclusion
[117]. Nonetheless, LPP is less computationally expensive
and more suitable for real-world applications. However,
it does not perform efficiently if the dataset is comparatively
smaller [118].

XIl. DIFFUSION MAPS

Diffusion Maps (DM) is an unsupervised, non-linear dimen-
sionality reduction technique [119]. DM can also be catego-
rized as a spectral approach. The spectral approach constructs
an Eigen Decomposition of an entire matrix to extract the
covariance across dimensions while keeping the distances
between data points intact [29], [120]. For dimensionality
reduction of time-series data, DM has been broadly applied
[121], [122], [123].

The Markov random walk found on the graph of the
high dimensional data serves as DM’s mathematical base
[29]. A simple analogy of a Markov random walk is that
the random walk on the integer number line which begins
at 0, travels forward to 41 or backward to —1 with equal
probability for each step. An estimate of each data point’s
nearest neighbor is produced by running the random walk for
a number of time steps which is further used to define the
diffusion distance [119]. The diffusion distances that occur
in pairs are conserved in the low-dimensional dataset. The
diffusion distance’s main notion is that it is calculated by
aggregating all pathways through the graph derived from high
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dimensional data. As a result, the diffusion distance seems
to be more adaptable to short-circuiting compared to the
geodesic distance that has been used in ISOMAP [29].

DM starts with creating a neighborhood graph of the high-
dimensional data. For determining the values of the graph’s
edges the Gaussian kernel function is employed, resulting in
a connectivity matrix M with the following elements [124]:

||“i—aj||2)

; (29)

M = exp(—

o

here, a; and a; are two input data samples, and the variance

of the Gaussian is denoted by o. After that, the matrix M is

normalized so that the summation of each row becomes 1.

Therefore, a Markov matrix MM with the following ele-
ments is created [125]:

M;
2 Mij

DM is derived from dynamical systems theory that results in
a Markov matrix MM (D using which the forward transition
probability of a dynamic process can be specified. As aresult,
the matrix MM denotes the likelihood of a transformation
between two data points in a single time step. For calculating
the diffusion distance, the random walk forward probabili-
ties MMg) is employed. The diffusion distance is defined

below [126]:

MM,;.‘) = (30)

2
MM — MM/.(’))
¥ (a)©

Dy, ) = |

i

(3D

In the above equation, more weight is given to the
high-density regions of the graph by ¥ (a)®. It’s defined
as V(a; N0 = , where the degree of the node node a;

is denoted by g¢; Wthh is a given by ¢; = Z Hj;. Here,
data point pairs having high forward transition probab1hty
have a minimal diffusion distance between them, as shown
by Equation (31). DM strives to maintain the diffusion dis-
tances and represents the data Y at the same time in a
low-dimensional structure. Utilizing spectral theory on the
random walk, the top d nontrivial eigenvectors get multiplied
by the corresponding eigenvalues and thus, the following
matrix is created:

MMDy = \y (32)

The first eigenvector in MM®y is constant. Therefore,
eigenvector vy is ignored and the following top d eigenvectors
define the low-dimensional representation Y [29]:

= {Aav2, A3v3, ooy Aggivas} (33)

DM delivers better visualizations and more precise under-
standing for a smaller amount of data [30]. However, memory
consumption becomes intense during training.
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XIll. DISCRETE FOURIER TRANSFORM

Discrete Fourier Transform (DFT) is essential in many scien-
tific applications, including time-series and waveform anal-
ysis [127], [128]. The core idea behind DFT is that any
complex signal may be described by overlapping a small
number of waveforms, each of which is designated by a
single complex value called the Fourier coefficient [31]. The
DFT is a variant of the continuous Fourier transform that
allows functions to be sampled at discrete intervals in space
or time. The ability to minimize dimensionality is the most
basic benefit of representing a time-series in the frequency
domain (the analytic space in which mathematical functions
or signals are communicated in terms of frequency rather than
time is known as the frequency domain). A finite sequence of
values is provided to observe in discrete time in time series
analysis. Using the DFT, a time domain sequence will be
mapped into a frequency domain sequence.

A signal with a length of n can be decomposed into n num-
ber of wave forms and then merged to reconstruct the initial
signal. However, certain Fourier coefficients are quite short in
amplitude and hence add almost nothing to the reconstructed
signal. As a result, dimensionality reduction can be achieved
by discarding these short-amplitude coefficients with little
compromise of information.

A time domain sequence will be mapped into a frequency
domain sequence using the DFT. The DFT of time series
signal a of length n is computed to reduce its dimensionality
to a reduced feature space of size N. A is the frequency
domain form of signala. Leta = [a,], n = 0, ... N—1be
a vector representation of a signal and a defined to be a
sequence A of N complex numbers A;. The DFT can be
calculated by the formula [127], [128]:

N-1
Ar=1/vN D  apexp(=i2nkn/N), [k =0,1,....N — 1]
n=0
(34)

where i = i = /—1, is the imaginary unit. A is a complex
number.

SVD, another dimensionality reduction approach based on
spectral decomposition analyzes the entire data and rotates
the axes to optimize variance along the first few dimensions.
DFT, on the other hand, processes each data point indepen-
dently [129]. As a result, DFT becomes a data-independent
transformation, which is critical if the dataset changes over
time. One of the really crucial features of the DFT is that
it may be used efficiently by using O(NlogN) complexity
instead of the O(N?) complexity [31]. DFT has some lim-
itations also in terms of time series data. White noise is
the worst-case indication for DFT, as it fails to compress
information into the first few coefficients, resulting in a large
number of error rates.

XIV. DISCRETE WAVELET TRANSFORM
Discrete Wavelet Transform (DWT) is a linear dimension
reduction technique that holds many conducive properties

VOLUME 11, 2023



M. Ashraf et al.: Survey on Dimensionality Reduction Techniques for Time-Series Data

IEEE Access

that are useful in the context of analyzing the time-series
data [130]. DWT can represent the time-series data in both
frequency and time domain [131]. The basic concept behind
the algorithm of DWT is to convert the time-series data
into several coefficients, and these coefficients illustrate the
information of how the data varies over specific time scales
[132]. DWT also reduces the noise from the input data along
with decreasing the input data size [133]. DWT has also been
widely used for the dimensionality reduction of time-series
data [134], [135], [136].

DWT uses a finite set of wavelets for the transformation
where the wavelets are discretely sampled. A Wavelet means
a rapidly decaying small wave-like oscillation that has zero
mean. If a wavelet is represented as w, then it can be written
as follows [130]:

o
/ w(t)dt =0 35)
—00

Itis localized in time and is considered as the time scale for
time-series data [130]. This wavelet must have finite energy
which can be represented as [133],

o0
/ lw(®)?dt < 0o (36)
—0o0

These wavelets are the mathematical functions that decom-
pose the input time-series data into several components.
DWT separates these components into different frequencies
at different scales. After the decomposition of the data into
frequencies, it multiplies a signal by a mathematical function
or wavelet which decomposes the signal into multiple lower-
resolution levels. It is known as multi-resolution analysis
as this transformation can be done in multiple resolution
levels for different frequencies [137]. However, a continuous
wavelet transform (CWT') can be defined as below [138]:

CWT(f) = % / 1) . o (I_Tr).dt 37)

Here, CWT(f) is the continuous wavelet transform of the
signal f(¢). f(¢) is a function of time ¢ where t is the timing
parameter providing the location information of the signal.
§ is the scaling parameter and w is the basis function which
can also be called the mother wavelet where * stands for the
complex conjugate.

DWT reduces the dimension of the original time-series
data by keeping only a few of the wavelet coefficients which
contain the most energy. The rest of the wavelets contain-
ing less energy are dropped. The energy of a wavelet can
be obtained by calculating some statistical values from the
wavelet coefficients, such as the sum of the square of the
absolute values of the coefficients [139]. This energy regard-
ing information can also be acquired by plotting the coef-
ficient distribution values [130]. DWT is also known as a
time-scale transformation technique as the decomposed sig-
nal component of DWT still stays in the time domain, and
retains the original information of the time-series data in the
form of energy within the transformed data [130], [140].
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XV. COMPARISON SUMMARY OF THE DIMENSIONALITY
REDUCTION METHODS FOR TIME-SERIES DATA

In Table 2, we present the key concepts of the dimensionality
reduction algorithms discussed in this paper. Here, U stands
for unsupervised, S stands for supervised, L stands for linear,
NL stands for nonlinear, NN stands for the nearest neighbor,
i stands for the number of iterations, w stands for the number
of weights, n denotes the number of features in original high
dimension, N is the number of samples or data points, and p
stands for the ratio of the non-zero elements in a matrix.

For instance, Autoencoder is an unsupervised learning
technique that can handle nonlinear data using nonlinear
activation functions and it may generate lossy output. It has
several hyper-parameters that need to be tuned for optimal
performance, such as code layer size, loss function, number
of layers, and number of nodes per layer and its goal is to
compress and encode data.

PCA is an unsupervised, linear method that has the draw-
backs of losing the meaning of the features after forming the
linear combinations of the features and its goal is to maximize
the variance. On the other hand, Kernel PCA is a nonlinear
unsupervised learning technique that uses kernel tricks to
extract principal components from the data. PCA works best
for linear data, while Kernel PCA can handle nonlinear data
by mapping the data into a higher-dimensional space and
then applying PCA in that space. This non-linear mapping is
determined by the choice of the kernel function, which can be
Gaussian, polynomial, or sigmoid. PCA has only one hyper-
parameter, which is the number of principal components to
retain. This parameter determines the amount of variance
retained in the reduced dimensionality data. In contrast, Ker-
nel PCA has two hyper-parameters: the choice of kernel
function and the kernel bandwidth or scale parameter. The
choice of kernel function determines the type of non-linear
mapping, while the kernel bandwidth controls the smoothness
of the mapping.

LE is an unsupervised learning technique that learns to
embed the input data into a low-dimensional space based
on the underlying geometric structure of the data. LE can
handle nonlinear data by using different distance metrics
and kernel functions to construct the graph. The choice of
distance metric and kernel function determines the nonlinear
relationships between the data points, which can be captured
by the Laplacian eigenmaps. LE has several hyper-parameters
that need to be tuned for optimal performance, such as the
choice of a distance metric, kernel function, number of near-
est neighbors, and regularization parameter. The choice of
these hyper-parameters affects the graph construction and the
low-dimensional embedding.

SVD is a linear technique used for both unsupervised
and supervised learning tasks. SVD is a linear technique
and works best for linear data. It may not be able to cap-
ture nonlinear relationships between the data points. This
can be computationally expensive for large datasets. SVD
has one hyper-parameter, which is the number of singular
values and vectors to retain. This parameter determines the
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TABLE 2. Analysis of dimensionality reduction algorithms discussed in this research work.
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Algorithm Sl..lp.)er- Ln.le- Time . Memory Hyper- Goals Disadvantages
Name vision | arity Complexity Complexity parameters
code layer
size, to compress
Auto- . loss function, generates
encoder v NL O(iNw) ow) no. of layers, and lossy output
0. of nodes encode data
per layer
features are
PCA U L Om2N + N3) O(N?) no. of maximizing the mea;lfl::fless
components variance Lo
forming linear
combinations
no. of . . . .
KPCA U NL O(N?) O(N?) components, linear separation requires hlgh
Kernel of data training time
O(nlog(m). o, of preservation of | may generate
Nlog(N)) 5 ) local disconnected
LE v NL +0(nNm?) O(pN®) com];i;)]r\lfents, geometrical neighborhood
+0O(dN?) properties graph
no. of L .
components to minimize the | computation-
SVD U L | O(n®N + N3) O(N?) number of > | reconstruction ally
iterations error expensive
O(nlog(m). no. of
Nlog(N)) 5 components, preserving local sensitive to
LLE U NL 3 O(pN?) no. of s -
++O O(r(lé\]f\rf);) ) iterations, distances noise
NN
1o, of to maintain
3 9 ’ pairwise topologically
ISOMAP U NL O(N*®) O(N*?) components, .
NN geodesic unstable
distances
0. of maximizing the
) sum .
components, of distances high
MVU U NL O((nk)?) O(nk)? NN, computational
kernel between all complexit
matrix transformed P y
data points
optimal
O((n+ k)ym? | O((n + k)m? NN, preie;r:ﬁa:on sensitive
LPP U L + + weight of the neighborhood to noise
2 2 . ;
(n+ d)n®) (n+ d)n?) edges structure and outliers
of the data
preserving .
e L high
Diffusion U NL o(n?) 0(n?) no. of intrinsic computational
Map components geometry complexit
of the data plexity
mapping the
time domain
sequence to
the frequency loss of time
DFT s L O(nlogn) O(nlogn) no. of domain/ varying
components preserving information
the euclidean
distance
between the data
points
wavelets breaking down
filters ’ the time
. series data into greater
DWT S L O(N) O(N) containing : .
meaningful complexity
cutoff sional
frequencies g
components
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amount of variance retained in the reduced dimensionality
data. A higher number of singular values and vectors result
in a higher dimensional embedding, while a lower number
results in a lower dimensional embedding.

LLE is an unsupervised learning technique that works by
learning a low-dimensional representation of the input data
based on the underlying manifold structure of the data. LLE is
a nonlinear technique that can handle nonlinear relationships
between data points. LLE can be computationally expensive
for large datasets. LLE has several hyper-parameters that
need to be tuned for optimal performance, such as the num-
ber of neighbors, the weight function, and the regularization
parameter. The choice of these hyper-parameters affects the
accuracy of the embedding and the runtime of the algorithm.

ISOMAP is an unsupervised learning technique and it
works by preserving the geodesic distances between the
data points in the low-dimensional space. It does this by
modeling the data as points on a manifold and using the
distances between the points on the manifold to construct
the low-dimensional embedding. ISOMAP is a nonlinear
technique that can handle nonlinear relationships between
data points. It models the data as points on a manifold, which
captures the underlying nonlinear structure of the data. The
distances between the points on the manifold are used to
construct the low-dimensional embedding, which preserves
the nonlinear relationships in the data. ISOMAP has several
hyper-parameters that need to be tuned for optimal perfor-
mance, such as the number of neighbors, the dimension of
the manifold, and the metric used to compute distances. The
choice of these hyper-parameters affects the accuracy of the
embedding and the runtime of the algorithm.

MVU and Diffusion Maps are unsupervised learning tech-
niques and are nonlinear techniques that can capture com-
plex nonlinear relationships between the data points. They
use manifold learning to uncover the underlying structure
of the data and represent it in a lower-dimensional space.
The computational complexity of MVU and Diffusion Maps
can be high, especially for large datasets. These methods
involve constructing a graph or affinity matrix based on the
similarity between the data points and performing eigen-
value decomposition or other optimization techniques to find
the low-dimensional representation of the data. These have
several hyper-parameters that need to be tuned for optimal
performance, such as the number of neighbors used to con-
struct the affinity matrix, the bandwidth used to measure
similarity, and the number of eigenvectors used to represent
the data in the low-dimensional space. The choice of these
hyper-parameters affects the accuracy of the method and the
level of noise reduction achieved.

LPP is an unsupervised learning technique and a linear
technique in which the neighborhood graph structure of data
is preserved. The computational complexity of LPP can be
high, especially for large datasets. LPP involves constructing
a graph or affinity matrix based on the similarity between
the data points and performing eigenvalue decomposition or
other optimization techniques to find the low-dimensional
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representation of the data. LPP has several hyper-parameters
that need to be tuned for optimal performance, such as the
number of neighbors used to construct the affinity matrix,
the regularization parameter used to avoid overfitting, and
the number of eigenvectors used to represent the data in the
low-dimensional space. The choice of these hyper-parameters
affects the accuracy of the method and the level of noise
reduction achieved.

DFT and DWT are unsupervised learning techniques that
transform the data from the time domain to the frequency
domain based on the assumption that the data can be repre-
sented as a sum of sinusoidal functions. DFT and DWT are
linear techniques that assume a linear relationship between
the data points. They transform the data into the frequency
domain, which allows for the analysis of periodic patterns in
the data. However, they may not be able to capture nonlinear
relationships between the data points. DFT and DWT have
several hyper-parameters that need to be tuned for optimal
performance, such as the window size, the sampling fre-
quency, and the type of wavelet used (in the case of DWT).
The choice of these hyper-parameters affects the accuracy
of the transform and the level of noise reduction achieved.
For example, the window size determines the size of the
time window used to analyze the data, while the sampling
frequency determines the resolution of the frequency domain.

XVI. CONCLUSION

To achieve more accurate results in machine learning using
time-series datasets, it is common to include as many features
as possible initially to detect important attributes. However,
the model’s performance can suffer when irrelevant features
are added as the number of features grows. To address this
issue, it is necessary to reduce the number of features while
maintaining the model’s performance. This paper presents
a survey of twelve dimensionality reduction algorithms for
time-series data, comparing their performance in terms of
supervision, linearity, time and memory complexity, hyper-
parameters, and drawbacks.
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