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ABSTRACT The motivation of this research is to introduce the first research on automated Chronic
Obstructive Pulmonary Disease (COPD) diagnosis using deep learning and the first annotated dataset in this
field. The primary objective and contribution of this research is the development and design of an artificial
intelligence system capable of diagnosing COPD utilizing only the heart signal (electrocardiogram, ECG)
of the patient. In contrast to the traditional way of diagnosing COPD, which requires spirometer tests and
a laborious workup in a hospital setting, the proposed system uses the classification capabilities of deep
transfer learning and the patient’s heart signal, which provides COPD signs in itself and can be received
from any modern smart device. Since the disease progresses slowly and conceals itself until the final stage,
hospital visits for diagnosis are uncommon. Hence, the medical goal of this research is to detect COPD using
a simple heart signal before it becomes incurable. Deep transfer learning frameworks, which were previously
trained on a general image data set, are transferred to carry out an automatic diagnosis of COPD by classifying
patients’ electrocardiogram signal equivalents, which are produced by signal-to-image transform techniques.
Xception, VGG-19, InceptionResNetV2, DenseNet-121, and ‘“‘trained-from-scratch” convolutional neural
network architectures have been investigated for the detection of COPD, and it is demonstrated that they are
able to obtain high performance rates in classifying nearly 33.000 instances using diverse training strategies.
The highest classification rate was obtained by the Xception model at 99%. This research shows that the
newly introduced COPD detection approach is effective, easily applicable, and eliminates the burden of
considerable effort in a hospital. It could also be put into practice and serve as a diagnostic aid for chest
disease experts by providing a deeper and faster interpretation of ECG signals. Using the knowledge gained
while identifying COPD from ECG signals may aid in the early diagnosis of future diseases for which little
data is currently available.

INDEX TERMS Biomedical signal analysis, chronic obstructive pulmonary disease, deep transfer learning,
ECG signal classification, stockwell transform, wavelet transform.

I. INTRODUCTION
Chronic Obstructive Pulmonary Disease is characterized by
an airflow limitation that is not fully reversible. It is one of the
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leading causes of morbidity and mortality in both industrial-
ized and developing countries because it significantly affects
both the lungs and the heart [1], [2]. Since COPD is mostly
caused by smoking cigarettes often and for a long time, symp-
toms usually show up when the disease has already gotten
worse. Thus, early COPD detection is clinically important.
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The primary goal of this research is to diagnose COPD
utilizing deep transfer learning methods and a simple heart
signal in a practical and safe way, before the disease becomes
incurable. Another contribution of this research is to classify
time series heart data without requiring domain knowledge
or a feature selection algorithm, as opposed to conventional
machine learning methods and feature extraction schemes.
A transfer learning technique is presented that employs the
learned characteristics of pre-trained networks to categorize
the scalograms produced from ECG time series signals of
COPD and healthy subjects. Methods for automatic detection
of COPD using ECG signals with a from-scratch model and
pre-trained convolutional neural networks (CNNs) such as
Xception, VGG-19, InceptionResNetV2, and DenseNet-121
are being worked on.

Firstly, the collected ECG signals of patients are converted
from the time series domain to frequency-domain equiva-
lent scalogram images using Wavelet and Stockwell trans-
form. Afterward, to classify the scalograms, the power of
pre-trained deep networks is utilized by transferring and fine-
tuning. This is the first published work on COPD detection
using ECG data utilizing deep transfer learning. And this will
also help the COPD diagnosis to be completed quickly since
ECG signals are fairly simple to record in a typical healthcare
facility or practically any household.

According to the Global Initiative for Chronic Obstructive
Lung Disease (GOLD) criteria, COPD is defined as; forced
expiratory volume in 1 second (FEV1) divided by forced vital
capacity (FVC) being smaller than 0.70 [1]. Today, a classical
COPD diagnosis is made by using some clinical applications
like spirometer tests, static lung volumes, exercise testing,
ECG, echocardiography, computed tomography (CT), and
magnetic resonance imaging (MRI). The majority of these
procedures can be performed with considerable effort in
a hospital or well-equipped medical facility. To effectively
interpret the spirometer, CT, and MRI, well-trained experts
with the necessary skills and expertise are required. This
time-consuming and effort expensive condition may discour-
age future COPD patients from seeking hospital care while
the disease is progressing. As a result, it is clear that early,
practical, and safe diagnosis of COPD disease is extremely
beneficial to human health. This goal serves as the impetus
for our research.

The structure of the article is as follows: In Section II,
the nature of the ECG signal, its link with COPD, and the
methodologies of deep learning are discussed. The third sec-
tion describes the system design, data collection, data produc-
tion, wavelet and Stockwell transform methods, deep transfer
learning strategies, limitations and experimental setup uti-
lized in this research. Comparative findings from the various
experimental configurations are reported in Section IV. The
fifth section covers the benefits and potential future appli-
cations of the research. The conclusion describes the best
performing models and how the knowledge and experience
obtained in this work may be applied to other illness detection
or classification problems besides COPD.
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FIGURE 1. Placement of the ECG electrodes in Lead I-II-1Il.

Il. BACKGROUND AND RELATED WORK

Not much research has been conducted on the use of ECG for
COPD detection. Thus, we conducted a research to demon-
strate the usefulness of heart signal data in COPD diagno-
sis [3]. After gathering ECG signal data from the individuals
with and without COPD, twenty four distinct ECG character-
istics were derived in the time domain. Since the ECG is a
biological signal and does not have a normal distribution, the
Mann-Whitney U test was employed to examine whether the
ECG characteristics of the patient and control groups were
substantially different. If the value received from the test
result is not statistically significant, the result is considered
significant, indicating that there is a difference between the
groups. The research concluded that the ECG signal can be
used as a discriminator for COPD disease. Consequently,
we presented a new COPD diagnostic approach employing
a rule-based machine learning method utilizing an ECG sig-
nal [4]. According to the classification results of the decision
tree method, the disease condition may be diagnosed with
93.89 percent accuracy. Following this result, we aimed to
improve the classification result using deep learning rather
than traditional machine learning techniques, and we began
research to diagnose the disease in question using deep
learning.

To begin at the beginning, an electrocardiogram is a graphi-
cal representation of the electric waves generated by the heart
during cardiac action. It provides information on the pace,
rhythm, and shape of the heart. Using electrodes placed on
the skin, an ECG graphs the electrical activity of the heart as
a function of time. Fig. 1 depicts the placement of the elec-
trodes in Lead I-II-III on a patient’s body. These electrodes
detect the tiny electrical changes caused by depolarization
and repolarization of cardiac muscle throughout each cardiac
cycle (heartbeat).

Fig. 2 illustrates the three principal components of an
ECG. P wave represents the depolarization of the atria, QRS
complex represents the depolarization of the ventricles, and
the T wave represents the repolarization of the ventricles.

All of the waves in an ECG signal and the intervals between
them have a predictable time duration, a range of accept-
able amplitudes (voltages), and a typical morphology. Any
deviation from the normal trace is potentially pathological
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FIGURE 2. Segmentation of an ECG signal.

and therefore of clinical significance. ECG analysis offers a
variety of beneficial uses, including activity recognition, bio-
metric identification, patient screening, and diagnosis. Due
to its non-invasive nature and low cost, the ECG is the most
popular and essential diagnostic tool for the assessment of
almost all diseases in clinical routine. Until very recently,
most of the reported approaches in the literature for classify-
ing the ECG signals solely relied on extracting hand-crafted
features from the ECG [5], [6], [7], [8], [9]. This is performed
by utilizing either traditional feature extraction algorithms or
human expert knowledge. The extracted features are then fed
either to generative or discriminative models to predict or
classify the ECG signals. Support vector machines (SVMs)
are widely utilized with hand-crafted features that have gen-
erated acceptable results among these approaches [10]. In this
research, the extracted feature quality has the greatest influ-
ence on the reliability and performance of the classification
approach.

Consequently, it is always sought to extract the disease’s
most representative, critical, dominant, and relevant char-
acteristics. In addition, the ECG signal characteristics are
highly subject-dependent, and the extraction of useful fea-
tures often needs an in-depth understanding of the domain.
Conventional feature extraction was regarded as an intrinsic
component of ECG pattern classification. Recent research has
demonstrated, however, that deep neural networks may do
feature extraction straight from the data. Other techniques,
such as the wavelet transform, discrete Fourier transform, and
cosine transform, have also been utilized in the literature to
extract characteristics from ECG signals in both the time and
frequency domains [11].

One of the recent applications of deep neural networks is
the classification problem in time series data. Time series
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classification problems that specifically deal with a large
amount of data are used in various applications in health care
systems, bioinformatics, activity recognition, etc. Diverse
techniques, including deep belief networks, conditional and
gated restricted Boltzmann machines, autoencoders, recur-
rent neural networks, HMMSs, and CNNs, have been uti-
lized and developed in the literature to address various time
series data classification problems similar to ECG classifica-
tion [12], [13]. The framework for deep learning enables the
network to discover the optimal characteristics for a specific
task. There have been several documented applications of
deep transfer learning in health informatics [14], [15], [16],
[171, [18], [19], [20], [21], [22], [23]. Specifically, deep
learning experiments with ECG signals include the diagnosis
of arrhythmia [24], [25], congestive heart failure [26], atrial
fibrillation [27] and other cardiac disorders. In these inves-
tigations, deep learning outperformed conventional methods
and offered additional benefits, including the elimination of
the necessity for feature extraction, feature selection, and
de-noising.

A. CORRELATION BETWEEN COPD AND ECG SIGNAL
There are a number of studies whose objectives are to inves-
tigate the relationship and association between respiratory
function and ECG characteristics in patients with chronic
COPD and to identify the ECG results that may indicate the
presence of COPD [6], [7], [28]. The major findings of these
studies are:

o QRS amplitude in Lead-I was significantly correlated
with airflow limitation determined by FEV1/VC.

o QRS amplitude in Lead-I emerged as an independent
variable related to COPD according to the multivariate
analysis.

o When suspecting ECG changes in COPD, a modest
increase in heart rate, a vertical P-axis, a small P-wave
in v1, small QRS amplitudes, a QRS-axis that is vertical
or slightly deviant (usually to the left) and clockwise
rotation of the precordial (horizontal) QRS transition
zone are observed.

COPD disease indirectly affects the heart conditions, and
corresponding heart abnormalities can be detected by trained
physicians. Some of these heart abnormalities include:

« Reduced lung conductivity as a result of hyperinflation

« Increase of anteroposterior chest diameter (increase of
distance between heart and chest electrodes)

o Replacement of diaphragm downwards

o Chest electrodes’ staying above because of replaced
diaphragm

« Hypertrophy and dilation of the right ventricles depen-
dent on pulmonary hypertension

« Vertical heart as a result of diaphragm and heart replace-
ment downwards.

It is plausible to assume that each of these pathophysio-
logical mechanisms could affect the heart and the electrical
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conduction of the thorax. Consequently, physical anomalies
influence the nature of the ECG signal as follows:

« P wave verticalization’s growing beyond +60°

o At the point where the P wave axis hits 90 degrees,
a straight P wave develops in the Lead-I sign

« Verticalization of the P wave is correlated with obstruc-
tive lung function. Near the inferior vena cava, a peri-
cardial ligament links the right atrium to the diaphragm.
While the diaphragm descends and gradually flattens,
the right atrium descends and the P wave transforms
vertically. The verticalization of the P wave on the
electrocardiogram (ECG) is one of the most significant
indications observed during COPD surveillance.

o Low peak-to-peak amplitude. The decrease in conduc-
tivity of the lungs as a result of hyperinflation and the
increased distance between the chest electrodes and the
heart causes this situation.

o As aresult of the replacement of the diaphragm down-
wards and thus the verticalization of the heart, the QRS
axe’s verticalization and shifting to the right.

o Stenosis of QRS complex, due to left ventricular
non-usage atrophy and low voltage

o Loss of R progression in the anterior

o Heart verticalization due to the diaphragm being
replaced downwards

o The chest electrodes’ staying relatively above because
of the diaphragm being replaced downwards

« Atrial arrhythmias (seen especially in the decompensa-
tion period of COPD)

o QS wave (between V1-V3) at right precordials

« T wave’s becoming more evident, especially if P wave
is high.

Several investigations involving COPD patients have
revealed characteristic alterations in their ECG signals. Stud-
ies have revealed that the P axis is useful for detecting COPD,
and the verticalization of the P wave has been proven to
correlate with COPD. In addition, a larger P wave in Lead-III
than in Lead-I has been reported as a screening marker for
emphysema [29]. Recent reports [30], [31], [32], [33] indicate
that a vertical P axis greater than 60 is a helpful marker
for COPD. Lead-I frequently displays a low QRS voltage
in COPD patients [31]. “Lead-I sign” refers to a Lead-I
QRS amplitude smaller than 0.15mV [34], [35]. The frontal
plane of the QRS axis is almost perpendicular in Lead-I of
COPD npatients, and this results in a low QRS amplitude
in Lead-I. The low voltage of QRS in Lead-I is caused by
the insulating effect of hyperinflated lungs and by the lower
position of the heart with respect to the electrode placement.
These investigations suggest that the anomalies described
in the ECG signal of a COPD patient are useful diagnostic
criteria for COPD.

B. DEEP LEARNING

Deep learning belongs to the class of machine learning meth-
ods. It is a specialized form of representation-based learning
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in which a network learns and constructs intrinsic features
from each successive hidden layer of neurons. The term
“deep” is derived from the numerous hidden layers in the
Artificial Neural Network (ANN) structure. The structure of
the neural network is depicted in Fig. 3.
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Every neuron or node (nerve cell) is connected to each neu-
ron in the next layer through a connection link. A nerve cell
is made up of axon (output), dendrites (input), a node (soma),
nucleus (activation function), and synapses (weights). The
activation function in the artificial neuron acts as the nucleus
in a biological neuron whereas the input signals and its
respective weights model the dendrites and synapses, respec-
tively. Fig. 4 illustrates the artificial neuron structure.
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FIGURE 4. Artificial neuron structure.

Since the ANN structure is receptive to translation and shift
deviation, the CNN has been developed as an extension of
the ANN. CNN’s architecture ensures translation and shift
invariance. Fig. 5 illustrates a generic CNN network struc-
ture. It consists of convolution, pooling, and fully connected
layers and is a feed-forward network. It is a deep neural net-
work whose convolutional layers alternate with subsampling
layers.

CNN is best described in terms of its two steps: the alter-
nating convolutional and subsampling stages and the classifi-
cation stage. The convolution layer convolutes the input with
a set of filters, like producing feature maps. These feature
maps are further reduced by subsampling. The classification
stage is then given the kernels or supervised features of the
top convolution filters and subsampling.
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With labeled source data, filters are fine-tuned to produce
supervised features. CNNs are capable of ignoring minor
positional variations, i.e., they seek patterns not only in a
specific image position but also in moving patterns. As in
many other domains, deep learning techniques employed in
recent years continue to show excellent performance in the
field of medical image processing [24]. Deep learning models
have been used successfully in many areas, such as detection,
segmentation, and classification of medical data. Analysis
of images and signals is obtained with medical imaging
techniques such as magnetic resonance imaging (MRI), com-
puted tomography (CT) and X-rays with the help of deep
learning models. As a result of these analyses, detection and
diagnosis of diseases such as diabetes mellitus, brain tumors,
skin cancer, and breast cancer are provided with convenience
[36], [37].

Researchers encounter one of their greatest challenges
when assessing and dealing with medical data in the restricted
quantity of available datasets. Typically, the amount of medi-
cal data obtained from COPD patients is quite limited. At this
point, deep transfer learning is the optimum solution [38].

The greatest benefit of transfer learning is that it enables
training with fewer datasets at a lower cost. The knowledge
gained by the pre-trained model on a large dataset is trans-
ferred to the model to be trained. A pre-trained model is a
network that has been trained on a large benchmark dataset
to solve a comparable problem to the one researchers wish
to solve. Due to the computational expense of training such
models, it is a standard strategy to import and employ models
from published literature, as in the case of this research.

Transfer learning tries to create a framework for leveraging
previously learned information to tackle new problems that
are similar to those previously encountered, more quickly
and efficiently. Additionally, the pre-trained network can be
retrained using the task-specific data by fine-tuning one or
more of its layers. The distributions of the source and target
problems may differ or be the same, as may the labels of
the source and target problems. Both the source and target
problems in this research have different distributions and
labels.

lll. MATERIALS AND METHODOLOGY

This section describes the proposed system architecture,
dataset, signal-to-image transformation methods, deep trans-
fer learning structure, and experimental setup utilized in this
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research. For the purpose of finding a solution to the COPD
detection problem, it is divided into five phases.

« Phase of data collection: ECG raw data from two groups
of individuals were collected in the hospital. In total,
96 hours of uninterrupted data collection occurred over
the course of several days.

« Data conversion phase: Using frequency analysis tech-
niques, raw ECG signals are converted into frequency
domain equivalent scalogram images that can be used
as input for deep learning algorithms. Scalograms are
designed to be compatible with the input size of CNNs
so that they can be incorporated into CNN architectures.

o Phase of data preparation: Generating and preparing
image data for use in distinct CNN structures (training,
validation and test data)

o Transfer Learning phase: Adapting and analyzing the
pre-trained networks and trained-from-scratch model for
COPD detection problem.

o Evaluation phase: Evaluating the proposed system’s
results and performance.

A. SYSTEM ARCHITECTURE

In this research, a system is developed that uses easily acces-
sible heart signals and the power of deep transfer learning
to diagnose COPD. Without requiring an additional medical
exam, the proposed system will determine whether the sig-
nal’s owner has COPD and the severity of their condition.
As described in Section 11, it is a well-studied and established
fact that the ECG signal and COPD are correlated [2]. As a
result of its interactions with all body organs, the ECG signal
contains disease-related information.

In order for deep learning techniques to detect disease
signs in the ECG signal, the heart signals of the patients
are divided into 16-second and 32-second segments and con-
verted to image format (224 x 224 x 3 RGB images) using
signal frequency analysis techniques, the Wavelet Transform
and the Stockwell Transform. Deep neural networks are fed
this image dataset as input. Frequency analysis is utilized
to improve the discrimination of the ECG signal’s important
signs. Fig. 6 and Fig.7 illustrate an overview of the proposed
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system design, which incorporates Wavelet and Stockwell
Transforms.

B. DATASET

In the Sleeping Laboratory of Sakarya Hendek State Hospital,
our chest diseases expert physician obtained ECG recordings
of all of the subjects. Electrocardiograph SOMNOSCREEN
Plus PSG was utilized to record ECG signals at 256 Hz
sampling rate. The device was regularly calibrated prior to
each recording. In accordance with GOLD (Global Initiative
for Chronic Obstructive Pulmonary Disease) standards [37],
our chest diseases expert physician examined 12 subjects
using a respiratory function test system and diagnosed each as
“COPD” or ‘“Healthy”’ after obtaining their medical records.
Utilizing a Vitalograph Alpha spirometer, the respiratory
function test was conducted.

The ECG signals obtained from two groups of individ-
uals are utilized: six recordings from COPD patients and
six recordings from healthy individuals. The duration of
each subject’s record is approximately eight hours without
interruption. Six male subjects have been diagnosed with
“COPD,” while two female and four male subjects have been
diagnosed with “Healthy” in the control group. During the
consultations, all participants gave their informed consent for
the use of their data. ECG signal data collected from the sub-
jects is in 1-dimensional format: amplitude (millivolts, mV)
vs. time (seconds, s) (seconds, s). In Fig. 8 and 9, 4 second
long representatives of two ECG categories are plotted.

After gathering the raw ECG data, Wavelet and Stockwell
transform based time-frequency representations of the ECG
signals, scalograms are created to be able to feed the deep
neural networks with two-dimensional images. Scalograms
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FIGURE 8. ECG signal of a person with COPD, 4 seconds.

are the absolute value of ECG signal’s Continuous Wavelet
Transform (CWT) and Stockwell Transform (ST) coeffi-
cients. Some ECG signal segments (16 seconds, 256 Hz)
and their transformed equivalents (scalograms) for “COPD”’
and “Healthy” subjects are depicted in Fig. 10 and Fig. 11,
respectively.

The periods chosen for the scalograms should contain suf-
ficient R-peaks for locating the pattern’s characteristics and
be ones in which the features can be observed. In this context,
16 seconds and 32 seconds were selected as periods with
medical significance, and it was determined that these periods
would be suitable for experimental purposes. Consequently,
two versions of the datasets are created. The ECG data of
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TABLE 1. Quantities of data labeled as “COPD” and “Healthy".

Dataset name  Epoch period COPD Healthy Total
labeled labeled quantity
recordings  recordings

DataSet-A 16 seconds 10906 10976 21882
DataSet-B 32 seconds 5453 5488 10941

each subject is split into segments of 16 seconds (Dataset-A)
and 32 seconds (Dataset-B) and categorized as “COPD” or
“Healthy.” The data quantities and labels for DataSet-A and
DataSet-B are displayed in Table 1.

C. SIGNAL-TO-IMAGE TRANSFORM METHODS

In this research, two well-established signal frequency anal-
ysis techniques are used to convert the ECG data of the
subjects into an image format so that they can be utilized in
the deep learning architecture. Since it has been hypothesized
and investigated that the ECG signal itself carries the signs of
COPD, it is essential to process and extract the signals for
accurate classification.

Time-frequency analysis is typically employed to process
local characteristics in non-stationary signal processing. Pop-
ular methods for feature extraction include the Short-Time
Fourier Transform, Gabor Transform, Wigner-Ville distri-
bution, Hilbert-Huang Transform, Wavelet Transform, and
Stockwell Transform [39]. Despite their individual bene-
fits, the majority of time-frequency representation techniques
result in an unsatisfactory time-frequency distribution of non-
stationary signals due to low resolution, cross-term interfer-
ence, and other problems. In recent years, a number of signal
processing techniques, such as the Wavelet Transform and
Stockwell transform, have been proposed to address these
problems.

Wavelet Transform has been utilized extensively for fea-
ture extraction. The Stockwell Transform is a technique for
time-frequency spectral localization that combines Wavelet
Transform and Short-Time Fourier Transform characteristics.

VOLUME 11, 2023

In light of this context, the Wavelet Transform and Stockwell
Transform are the preferred signal-to-image transformation
methods for the proposed system. This research examines
techniques for detecting COPD using images (scalograms)
derived from the Wavelet Transform and the Stockwell Trans-
form coefficients of ECG signals. To ensure compatibility
with the employed CNN architectures, scalograms are gener-
ated as RGB images scaled to 224 x 224 pixels. Generative
Adversarial Networks (GAN) or any other data augmentation
methods were not used in this research because, as seen in
Fig. 10 and Fig. 11, the distinctions between the two classes
are not particularly clear, and we did not wish to lose or
obscure the distinguishing characteristics of the data through
augmentation.

1) WAVELET TRANSFORM

The Wavelet Transform (WT) technique is used to process
ECG signals whose constituent frequencies vary over time.
To efficiently classify ECG signals, a tool with high precision
in both the frequency and time domains is required, allowing
us to determine at what frequencies the signal oscillates
and when these oscillations occur. The WT meets both of
these conditions. WT is resistant to the noise in the signal.
In addition, it is a tool that provides a representation of a
signal by letting the translation and scale parameters of the
wavelets vary continuously. The frequency domain proper-
ties of wavelets are used to design a filter bank in which
each wavelet at increasingly larger scales (more dilated)
passes a narrow, lower band of frequencies from the input
signal.

Time domain procedure of the Wavelet Transform is to use
wavelets of different scales, translate them over an interval
along an input signal, and correlate the wavelet with the
input at each of these scales and translations. Low-frequency
components (longer period) are detected by larger scale
wavelets, whereas higher-frequency components are detected
by smaller scale wavelets [11]. This procedure generates
a frequency-appropriate time resolution for each frequency.
For slow oscillations, long epochs are utilized, while shorter
epochs are used for faster oscillations. Due to the contin-
uous nature of the ECG signal, this research employs the
Continuous Wavelet Transform (CWT), a variant of WT for
continuous signals.

When analyzing multiple signals in frequency vs. time,
the filters are pre-computed once, and the filter bank is
then passed as input to CWT for improved computational
efficiency. Three parameters are used in that filter bank:
signal frequency, signal length (sample size), and the wavelet
bandpass filters per octave (voices per octave). The sig-
nal frequency is 256 Hz, with 4096 samples (256 Hz x
16 s) and 8192 samples (256 Hz x 32 s) for the signal
length, and 12 voices per octave. In order to solve the prob-
lem of knowledge loss in the temporal domain, WT uses
a time-localized oscillatory function as the mother wavelet.
The Morlet wavelet is used as the mother wavelet. The
wavelets are visualized in time and frequency with the help of
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FIGURE 10. A COPD person’s ECG signal, Stockwell and Wavelet scalograms. In the wavelet transform scalograms, three
distinct groups of area can be observed. In the upper portion of the Stockwell transform scalogram, a yellow region indicates a
frequency change intensity that is moderate. When compared to the next figure of a healthy person, these are the
distinguishing signs of a COPD person’s heart signal transformations.
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FIGURE 11. A healthy person’s ECG signal, Stockwell and Wavelet scalograms. Observable in the wavelet transform scalograms is
the addition of a new area as the fourth one. A blue region in the upper part of the Stockwell Transform scalogram indicates a
low frequency change in intensity.

the filter bank. Fig. 12 depicts a scalogram of an ECG signal WT enables us to explore the frequency domain fea-
segment (16 seconds, 256 Hz) generated by the WT method, tures of the ECG signal as an image by formatting the
as well as 16 randomly selected samples from DataSet-A. output as a scalogram image and then taking advantage of
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deep image classification techniques. Similar to the time-
frequency domain, the CWT provides a description of a
signal in the time-scale domain, allowing the representation
of temporal features at multiple resolutions. This is achieved
by decomposing the signal into dilated (scale) and translated
(time) versions of a prototype wavelet. High scales translate
into long, slow wavelets equivalent to narrow, low-frequency
filters, while lower scales produce shorter, faster wavelets
equivalent to wider, higher-frequency filters. CWT achieves
an ideal balance of time and frequency resolution: slow trends
are represented with a high frequency resolution and a low
time resolution, while fast components are well defined in
time but less in frequency. Such inherent multi-resolution
characteristics make CWT highly successful at detecting and
representing singularities, so it has been widely utilized in
ECG analysis [40].

For accurate ECG classification, the combination of wave-
form shape and timing interval features is critical. This is
expected, as there are arrhythmic beats whose proper classifi-
cation depends more on timing properties than on waveform
shape. The WT has been demonstrated as a tool for effectively
isolating relevant properties of the waveform morphology
from the noise, baseline drift, and amplitude variance of the
original ECG signal [40], [41]. It is seen that groups using
the down-sampled WT of the ECG signal as their feature set
rather than the original waveform have demonstrated high
classification accuracy. Using wavelet decomposition for
classification also reduces calculation time significantly [42].

2) STOCKWELL TRANSFORM

The Stockwell Transform (ST) is derived from the Con-
tinuous Wavelet Transform. By combining the advantages
of STFT and WT, Stockwell et al. proposed it [43], which
has attracted significant interest in a number of scientific
and engineering fields, such as bioinformatics, biomedical
imaging, optics, and signal processing. It stands out because
it offers frequency dependent resolution while still having
a clear connection to the Fourier spectrum. It employs a
window whose width decreases with frequency and pro-
vides resolution that is frequency-dependent. This trans-
formation includes both amplitude and phase spectrum
information [44].
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It is a technique that involves both STFT and WT but
falls into a different category. Stockwell Transform provides
notable results in property extraction in the presence of noise.
This makes Stockwell transform suitable for accurate detec-
tion and classification of signal differences. It has an explicit
physical interpretation and usefulness for medical applica-
tions. The time-frequency spectrum of the modulated signal
is focused. This time-frequency analysis technique provides
a three-dimensional graph of a signal in terms of its energy,
or magnitude, over time and frequency [45]. The Stockwell
transform stands out because it offers frequency dependent
resolution while still having a clear connection to the Fourier
spectrum. Additionally, it can be thought of as a phase-
corrected WT, giving time-frequency analysis more precise
information about the local properties of a signal. However,
its signal analysis ability is restricted in the time-frequency
plane [39] and this is observable in our experimental results.
Experiments were conducted with the following parameters:
a signal length of 16 or 32 seconds, a maximum frequency
of 60 Hz, and a sampling frequency of 256 Hz. Fig. 13 shows
a scalogram of an ECG signal (16 seconds, 256 Hz) generated
by the ST technique and 16 randomly selected samples from
DataSet-A.

Scalogram
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FIGURE 13. Scalograms of ECG signals (Stockwell transform).

D. TRANSFER LEARNING STRATEGY

COPD data is inherently difficult to collect from many peo-
ple due to the nature of the problem. Therefore, we have
limited participants for acquiring ECG signal data catego-
rized as COPD positive or healthy. Deep transfer learning,
which is known to be an appropriate approach for small
sets of samples [17], [27], [46], [47], is therefore consid-
ered to be employed in this research. Transfer learning is an
approach that utilizes the weights of the convolutional layers,
which are defined by the source task, without re-training
the network [5], [46]. The fine-tuning involves utilizing a
network initialized with pre-trained weights and partially
re-training it on the target task. In the context of deep learn-
ing, fine-tuning a deep network is a common strategy to
learn both task-specific deep features and the methodology
to extract global features present in every image, such as
general shapes. Usually, the fine-tuning strategy allows more
trainable weights at the top of the network because those
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convolutional layers extract more abstract and high-level
information compared to the first layers, where local features
are learned. In the experiments, the effects of three main
strategies are investigated: training from scratch, transfer
learning, and transfer learning by fine tuning.

Using these strategies, it is shown how well the advanced
CNN architectures for image classification work. A train-
from-scratch strategy (named “COPD Detector” from this
point on) is adopted by taking after well-known CNN
architectures. The major techniques that CNNs employ for
image classification are, training the CNN from scratch
or re-purposing the pre-trained models, known as Transfer
Learning [47] and Fine-Tuning [41]. While re-purposing the
pre-trained models, the original classifier layers are replaced
with new ones that fit the classification problem solved in this
research. Five distinct CNN models are worked on accord-
ing to each of the three transfer learning strategies below.
A schematic representation of these strategies is shown in
Fig. 14.

e Train the entire model: The architectures of the
pre-trained models are used, and they are trained using
DataSet-A. This is the training-from-scratch model,
so the larger dataset on hand is used, and considerable
computational power and time are expended for this
strategy.

o Train some layers and leave the others frozen: A frozen
layer means that it does not change during the training.
As mentioned before, lower layers refer to general and
problem-independent features, while higher layers refer
to specific and problem-dependent features. Here, that
dichotomy is played by choosing how much to adjust the
weights of the network. Since there is a relatively small
amount of data in DataSet-B, more layers are kept frozen
to avoid overfitting. In contrast, when the relatively
larger DataSet-A is used, it is tried to improve the model
by training more layers to the new task since overfitting
is not an expected problem there. Both DataSet-A and
DataSet-B are used in this strategy.

o Freeze the convolutional base: This case is an extreme
example of the train/freeze trade-off. The fundamental

Train the entire model Freeze the convolutional  Train some layers and
base leave the others frozen
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FIGURE 14. Transfer learning and fine-tuning strategies.
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idea is to maintain the convolutional base in its orig-
inal state and then feed the classifier its outputs. Pre-
trained models are employed as fixed feature extraction
mechanisms, which is effective when the dataset is small
or when the pre-trained model solves a classification
problem that is highly similar to the target classifi-
cation problem, both of which are applicable to this
research. Both DataSet-A and DataSet-B are used in this
strategy.

E. EXPERIMENTAL SETUP

This research is conducted using a variety of convolutional
neural networks (CNNs), each of which utilizes a distinct
learning strategy. All the experiments were performed via
the Google Colaboratory Compute Engine (TPU) infrastruc-
ture in the Python programming language, using Keras and
TensorFlow as backends. Xception, VGG-19, InceptionRes-
NetV2, DenseNet-121 and COPD Detector are employed
for the ECG signal classification task. These deep CNNs
used in this research were originally designed to classify
images into 1000 categories. Here, it is preferred to lever-
age the performance of these four well-known CNNs that
have been trained on large data sets for conceptually similar
tasks. Three extra layers are added on top of these CNNs
to reduce the number of classes from 1000 to 2, as there
are only two classes involved in the COPD identification
problem (COPD and Healthy). Dense (512), Dense (32), and
Dense (2) are the three layers that have been added. The
Table 2 provides a listing of the CNNs used and their primary
specifications.

TABLE 2. The CNNs used in this research, and their basic specs.

CNN Name Parameters Depth Input Size
InceptionResNetV2 55,873,736 572 (299, 299, 3)
Xception 22,910,480 126 (299, 299, 3)
VGG-19 143,667,240 26 (224,224, 3)
DenseNet-121 8,062,504 428 (224,224, 3)
COPD Detector 2,797,665 14 (224,224, 3)

Hyperparameters: All the CNNs utilized in this research
share certain hyperparameters in common. After a series
of trials, it is attempted to balance the hyper-parameters to
achieve the best precision and accuracy. The CNNs were
compiled using the “Adam” method of optimization. The
learning rate is a hyper-parameter that controls how much
the network’s weights are modified. When using a pre-trained
model, it is preferable to utilize a low learning rate because
higher learning rates increase the danger of losing previous
information. In the experiments, the learning rate is kept
at 0.001. Choosing the proper number of epochs is also
essential. Reducing the number of epochs results in under-
fitting, whereas increasing the number of epochs leads to
over-fitting. In the experiments, the training lasted between
5 and 40 epochs with a batch size of 32.
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F. LIMITATIONS

It is necessary to acknowledge three limitations of this
research. The first is that not all of the patients with
COPD underwent diagnostic imaging such as chest computed
tomography and echocardiography. Our physician (an expert
in chest disease) diagnosed patients based on respiratory
function tests and clinical history. These medical workups
were also used to exclude patients who had heart diseases
and lung diseases other than COPD. Second, since other
conditions such as pericardial effusion could possibly affect
QRS amplitude, to avoid confounding variables, patients
with other conditions that could cause low QRS voltage are
excluded. Consequently, the remaining 12 subjects’ data are
utilized for the research. The third limitation is that ECG
data from six COPD patients and six healthy people is used,
totaling 12 subjects. The recording period for each subject
is 8 hours without interruption. Hence, a transfer learning
strategy is used to compensate for the limited number of
subjects. Further studies with large numbers of subjects with
COPD are also being planned for experimentation in future
work.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the outcomes of various training strategies and
experimental setups are provided. One important point should
be made before delving into the experimental results. The best
way to evaluate the effectiveness of the training is to have the
network classify data it has never encountered. To maintain
subject-independent validation results for each transfer learn-
ing model, cross-validation is used in this research.

Cross-validation involves dividing data into training and
validation sets, and then repeating this process multiple times
with different splits of the data. This helps to provide a more
robust estimate of how well a model generalizes to new
data. 12-fold cross-validation was utilized in the training and
testing procedures. During this step, the dataset is divided
into 12 folds, with each fold including data for every subject.
While 11 folds are used for training and validating the model,
the last fold is concealed and is only used to evaluate the test
set accuracy of the model. The procedure is repeated such that
each fold serves as the test set. This approach increases the
computational cost but improves the result’s significance. The
results for accuracy in the tables are the averages of the values
for accuracy at each fold. For each transfer learning strategy,
performance metrics including sensitivity, specificity, preci-
sion, F1 Score, validation accuracy, and test set accuracy are
also reported to provide a clear and objective measurement of
each strategy’s effectiveness.

To completely evaluate the effectiveness of the models, it is
required to choose an appropriate evaluation index based on
the below metrics. Regarding the classification task of the
CNNes, the following metrics are recorded:

« correctly classified COPD signals: True Positives, TP
« incorrectly classified COPD signals: False Positives, FP
« correctly classified Healthy signals: True Negatives, TN
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TABLE 3. Performance of the train-the-entire-model strategy (10 epochs)
with stockwell transform.

CNN Sensitivity Specificity Precision F1 Validation Test Set
Score Accuracy  Accuracy
Xception 95.80% 97.60%  97.50%  96.60% 96.70% 96.70%
VGG-19 98.40%  79.80%  82.90%  90.00% 90.10% 89.10%
ResNetV2 9720% 97.60%  97.50%  97.30% 97.10% 97.40%
DenseNet-121 ~ 94.40%  88.80%  89.30%  91.80% 93.00% 91.60%

TABLE 4. Performance of the train-the-entire-model strategy (10 epochs)
with wavelet transform.

CNN Sensitivity Specificity Precision F1 Validation Test Set
Score Accuracy  Accuracy
Xception 99.60%  98.60%  98.30%  98.90% 99.10% 99.90%
VGG-19 100% 0% 50.00%  66.66% 50.00% 50.00%
ResNetV2 99.80% 86.90%  85.60%  92.10% 92.50% 85.50%

DenseNet-121 ~ 94.80%  99.50%  99.40%  97.20% 97.60% 90.20%

« incorrectly classified Healthy signals: False Negatives,
FN.

Sensitivity, specificity, precision, F1 score, validation accu-
racy, and test set accuracy values of the experiments are
computed to evaluate the models. The sensitivity, also called
recall, refers to how well a model detects stress among the
true stress events. The specificity shows the ability of the
experiment to correctly generate a negative result for people
who don’t have COPD. The precision represents the ratio of
the number of true positives to the number of cases in which
a model predicted stress. The F1 score represents the mean of
sensitivity and precision.

The primary metrics are test set accuracy and validation
accuracy. When comparing models with very similar accu-
racy metrics, sensitivity, specificity, precision, and F1 score
must all be taken into account because the comparison must
be examined as a whole.

A. TRAIN-THE-ENTIRE-MODEL STRATEGY

All layers of the four distinct networks are trained with signal-
to-image transformed ECG data (scalograms), adapting only
their input and output parameters. Training all of the layers
requires a significant amount of GPU resources and time.
Performance metrics of this strategy are given for the input
data transformed by ST in Table 3, and for the input data
transformed by WT in Table 4. Observations indicate that the
strategy is effective at classifying COPD and healthy signals.
Unexpectedly, the VGG-19 model categorized all test set data
as healthy when fed WT data as input. This unacceptable
scenario has been investigated, and it will also be covered
under the subsection titled Train Some Layers and Leave the
Others Frozen. To give a hint, there are five convolutional
blocks in VGG-19, and when more than three of them are
trained, classification becomes problematic. Consequently,
the Xception model trained with WT data and the Inception-
ResNetV2 model trained with ST data appear to outperform
other models.
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TABLE 5. Performance of the freezing the convolutional base strategy
(10 epochs) with stockwell transform.

TABLE 7. Performance of the train some layers and leave the others
frozen strategy (10 epochs) with wavelet transform.

CNN Sensitivity Specificity Precision F1 Validation Test Set VGG-19 Sensitivity Specificity Precision F1 Validation Test Set

Score Accuracy  Accuracy Score Accuracy  Accuracy
Xception 94.40%  90.60%  90.90%  92.60% 93.20% 92.50% Fine-Tuning 1~ 9530%  98.40% 97.80%  96.60% 97.00% 97.80%
VGG-19 85.60%  99.00%  98.80%  91.70% 92.50% 92.30% Fine-Tuning2  96.20%  96.90%  96.00%  96.10% 96.60% 98.70%
ResNetV2 86.40%  85.00%  85.20%  85.80% 85.70% 85.70% Fine-Tuning3  98.60%  99.20%  98.90%  98.80% 98.90% 99.10%
DenseNet-121  89.20%  90.40%  90.20%  89.70% 90.85% 89.80% Fine-Tuning 4 100% 0%  50.00%  66.66% 50.00% 50.00%

TABLE 6. Performance of the freezing the convolutional base strategy
(10 epochs) with wavelet transform.

CNN Sensitivity Specificity Precision F1 Validation Test Set
Score Accuracy  Accuracy
Xception 98.60%  74.60%  75.10%  85.20% 85.10% 91.30%
VGG-19 9520%  99.30%  99.10%  97.10% 97.50% 97.40%
ResNetV2 85.90% 77.10%  74.50%  79.80% 81.00% 79.20%
DenseNet-121 ~ 74.50%  99.60%  99.30%  85.10% 88.60% 88.40%

B. FINE-TUNING STRATEGY

Fine-tuning of a convolutional network is a process that must
be continuously enhanced and maintained. As a starting point
in this research, two fine-tuning sub-strategies are examined
in the direction of the proposed strategy. ‘‘Freezing the con-
volutional base’” and “Training only a subset of layers while
leaving the rest frozen™ sub-strategies will be explained and
investigated in this part.

1) FREEZING THE CONVOLUTIONAL BASE

As its name suggests, the convolutional bases of the
pre-trained networks are frozen and just the top classifica-
tion layers of each network are trained with signal-to-image
transformed ECG data. The term frozen here refers to the
layers/convolution blocks remaining exactly as they were
in their original state. The computational cost (GPU usage
and processing time) is lower in comparison to the Train-
the-Entire-Model Strategy because not all of the layers are
trained from scratch. Based on Table 5 and 6, the results of
this strategy are likely to succeed, but inferior to those of
the first strategy. Although the performance degradation in
InceptionResNetV?2 is noticeable when both ST and WT are
used, the best performer in this substrategy is VGG-19 which
uses WT data as its input and has 97.40% test set accuracy
and 97.50% validation accuracy.

2) TRAINING SOME LAYERS AND LEAVE THE

OTHERS FROZEN

In that sub-strategy, some layers are getting trained, including
the top and experimentally selected ones below the top, the
others are left frozen. The VGG-19 structure, which has the
highest score of the previous sub-strategy, is worked on in this
sub-strategy with the WT data as its input.

Several adjustments for fine-tuning are tested in this par-
ticular section to get the best results. For example, it is
investigated how it affects the classification results if the
convolution blocks of the VGG-19 structure are made train-
able in a certain order. In Table 7, the number defining each

40640

experimental case refers to the number of convolution blocks
made trainable during the experiment. As an example, CNN
stated as “‘Fine-Tuning 3”* corresponds to three convolution
blocks made trainable starting from the top of the CNN, but
all the other layers were left frozen. Performance metrics
for this sub-strategy are given in Table 7. As shown in the
table, as the number of convolution blocks increases, accu-
racy and other performance metrics also improve. When only
one convolution block is trainable, validation and test set
accuracies are 97.00% and 97.80%, respectively; when three
blocks are trainable, they are 98.90% and 99.10%. However,
there is a saturation point. Since the VGG-19 network has
a total of five convolutional blocks, it is anticipated that the
network’s performance will be comparable to the VGG-19
train-the-entire-model strategy when four blocks are made
trainable. When we attempted it, we achieved the expected
outcomes. The results of Fine-Tuning 4 were unsatisfactory
as VGG-19 train-the-entire-model strategy. Consequently,
Fine-Tuning 3 model has the best performance metrics in this
strategy.

C. CUSTOMIZED NETWORK, TRAINING-FROM-SCRATCH
STRATEGY

In addition to well-known and pre-trained CNN structures,
one of the objectives of this research is to create a CNN struc-
ture with high performance in order to solve the COPD detec-
tion problem. Using as an example the VGG-19 structure that
was relatively more effective in the previous experiments,
a customized CNN structure was created and named “COPD
Detector” in this sub-strategy. The general convolution layer
structure of this custom network was inspired by VGG-19,
and since Fine Tuning-3 produced the best results, we decided
to use a structure with three convolution blocks. Network
structure of COPD Detector is shown in Table 8.

COPD Detector is trained from scratch for multiple epochs,
utilizing scalograms generated using both the ST and WT.
Table 9 and 10 display the performance metrics for this
sub-strategy for ST and WT, respectively. The COPD Detec-
tor is observed to compete with the other strategies in terms of
every metric, achieving remarkable accuracy for a variety of
epoch values. However, when the experiments are examined
separately, it can be seen that using WT data is more efficient
than using ST data in terms of classification performances.
In terms of test set and validation set accuracy values, the 15,
25, and 35 epoch runs using WT data as input generate the
highest-quality classification results.
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TABLE 8. The network structure of the COPD detector.

Conv2D (32, (3, 3)) input shape= (224,224,3)
Activation Relu
MaxPooling2D Pool Size= (2, 2)
Conv2D (32, (3,3))
Activation Relu
MaxPooling2D Pool Size= (2, 2)
Conv2D (64, (3, 3))
Activation Relu
MaxPooling2D Pool Size= (2, 2)
Flatten

Dense 64

Activation Relu

Dropout 0.5

Dense 1

Activation Sigmoid

TABLE 9. Performance of the COPD detector for different epoch values
with Stockwell transform.

COPD Sensitivity Specificity Precision F1 Validation Test Set
Detector Score Accuracy  Accuracy
5 epochs 90.00% 94.10%  94.10%  92.00% 92.00% 90.50%
10 epochs  90.30% 92.00%  92.20%  91.20% 91.10% 90.50%
15 epochs  86.60% 93.70%  93.50%  89.90% 90.00% 89.60%
20 epochs  92.10% 90.30%  94.00%  92.10% 91.90% 91.00%
25epochs  92.30% 91.50%  91.90%  92.10% 91.90% 90.50%
30 epochs  93.60% 92.40%  92.80%  93.20% 93.00% 90.90%
35epochs  93.10% 87.60% 88.70%  90.90% 90.40% 90.40%

TABLE 10. Performance of the COPD detector for different epoch values
with wavelet transform.

COPD Sensitivity Specificity Precision F1 Validation Test Set
Detector Score Accuracy  Accuracy
5 epochs 97.70% 21.80%  49.30%  65.50% 55.00% 89.90%
10 epochs  94.70% 97.20%  96.30%  95.50% 96.10% 96.10%
15 epochs  97.90% 94.50%  93.30%  95.50% 96.00% 98.50%
20 epochs  87.00% 9530%  93.50%  90.10% 91.60% 92.70%
25epochs  96.40% 96.60%  95.70%  96.00% 96.50% 97.30%
30 epochs  93.80% 97.30%  96.40%  95.10% 95.80% 97.50%
35epochs  96.50% 97.60%  96.90%  96.70% 97.10% 97.30%

D. COMPARATIVE ANALYSIS OF THE RESULTS
The results suggest that entirely trained Xception model,
fine-tuned VGG-19 models, and COPD Detector model that
trained for 15 epochs, achieve the best performance metrics
over the rest of the CNNs. Since the dataset used in these
experiments is balanced, meaning that each class is repre-
sented by an equal amount of data, and the majority of CNNs
appear to perform well in terms of accuracy, sensitivity,
specificity, precision, and F1 score as a whole, evaluation
can be considered to have led to accurate conclusions. Using
the combination of accuracy, sensitivity, and specificity as
the criterion for selecting the top three models, the fully
trained Xception model, the fine-tuned VGG-19 model, and
the COPD Detector (trained from scratch for 15 epochs) stand
out. In order to further assess these leading models, confusion
matrices and accuracy values are shown in Table 11 and
Fig. 15, respectively.

The best performance is obtained with a test set accuracy
0f 99.9%, a sensitivity value of 99.6%, and a specificity value
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TABLE 11. Accuracy values of the best three CNNs.

CNN Strategy Validation  Test Set
Accuracy Accuracy
Xception Train the Entire Model 99.10% 99.90%
VGG-19 Fine-Tuning 3 98.90% 99.10%
COPD Detector  Trained-from-Scratch (15 epochs) 97.10% 97.30%

of 98% for the Xception model, which is trained entirely with
WT data as input. The Xception model provides superiority
over the other 2 models in both the training and testing
stages. The experimental evaluation also showed that the
deep transfer learning structures provided over a 5 percentage
point improvement over our previous study, a rule-based
decision tree model with 93.89 percent accuracy. Thirty-four
separate experiments investigating various approaches were
conducted for this research, with 12 of them yielding better
results than the prior decision tree model. It must be noted
that, in the majority of experimental investigations for each
model, it appears that using WT data as input yields better
results than using ST data.

V. DISCUSSION

At present, deep learning is being used throughout the entire
medical image processing workflow, with impressive results
in a variety of medical image analysis applications. In order to
improve the early diagnosis and treatment of COPD, the use
of deep learning technology to detect COPD using ECG sig-
nals to aid medical physicians is of considerable significance.

The current research contributes to the possibility of a
low-cost, rapid, and automated COPD diagnosis that can be
used clinically in the near future, as COPD is being diag-
nosed using an ECG signal instead of more time-consuming
procedures such as transporting the patient to the hospital
for a respiratory function test, CT scan, or MRI. This is
also convenient and crucial for keeping patients away from
infection hotspots, especially during pandemic or epidemic
periods.

It must be noted that we wanted to ensure that the results
we observed were trustworthy and not the result of a specific
architectural modification or technique. Therefore, we inten-
tionally used four well-known and commonly used CNN
model architectures with minimal modifications. With COPD
Detector, five distinct CNN models are being investigated
in total, and it is intended to research different deep net-
work models, the selection of different hyper-parameters,
loss functions, and optimizer functions to enhance the per-
formance of COPD diagnosis. Future work may focus on
developing more models structurally optimized for this task.
Medical and computer scientists should also collaborate
closely and employ their complementary expertise to confirm
the utility of deep learning approaches.

The research also focuses on discovering possible Chronic
Obstructive Pulmonary Disease related image biomarkers
from scalograms derived from ECG signals. Although the
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FIGURE 15. Confusion matrices of the best three CNNs.

ability of deep learning methods for image biomarker extrac-
tion is questionable due to the problem of interpretability,
research suggests that it may be possible to discover new reli-
able bio-markers from ECG signal scalograms due to the fact
that high classification results were achieved. Since the fine-
tuned state-of-art CNNs rely on the evaluation of millions of
parameters to extract the significant features, some of those
may actually be image biomarkers, leading to a reliable result.
This horizon is to be investigated in future research, possibly
exploring other approaches such as Radiomics [48].

A more in-depth analysis requires much more patient data,
particularly that of people suffering from COPD. One of the
research’s strengths is the use of Al to diagnose a fatal illness
for which there is little human evidence. As previously noted,
this research has some limitations that we want to resolve
in the future. The subject pool is tiny, with 12 individu-
als. Although data augmentation could somewhat mitigate
model overfitting and improve model performance, we will
achieve better outcomes if we have access to additional
data. To develop a larger dataset, we will continue to gather
ECG data from COPD patients. Moreover, it is necessary
to develop models capable of distinguishing COPD cases
from other similar pulmonary or viral disease cases, such as
pneumonia or emphysema.

To further facilitate early illness diagnosis, it will be ben-
eficial to include the COPD detection system into mobile
and embedded devices. A more promising approach for
future studies would concentrate on identifying patients at
the beginning phase of COPD, when they show almost no
Ssymptoms.

VI. CONCLUSION

The motivation of this research is that it introduces the first
work on automated COPD diagnosis using deep learning
and also utilizes the first annotated dataset in this field.
As the disease progresses slowly and conceals itself until
the final stage, hospital visits for diagnosis are uncommon.
The medical goal of this research is to detect COPD using a
simple heart signal before it becomes incurable. To address
the COPD detection problem, we collected the ECG signals
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of 12 subjects, segmented them into 16 and 32-second long
frames, transformed them to picture format using the signal
transform methods, and then fed those images into CNNss. It is
seen that Xception, fine-tuned VGG-19 and COPD Detector
models give remarkable results while detecting COPD from
ECG signals.

In addition to previous research in the literature, this paper
makes two contributions. The first is, low-cost, rapid, safe
and automatic detection of the COPD disease achieved using
deep transfer learning. Since early prediction of COPD is
vital to preventing the progression of the disease, the pro-
posed method may give potential patients an opportunity to
detect the disease at an early stage. The successful models
can be put into practice and serve as a diagnostic aid for
experts in chest diseases by providing objective and faster
interpretation. It may be useful for medical decision-assisting
tools to provide an extra option in challenging cases and can
also be applied to achieve a first assessment of the likelihood
of disease in patients with or without symptoms. Second,
the findings suggest that future research should investigate
the potential bio-marker behavior of the extracted features.
The Xception model itself resulted in a performance that was
nearly superior to other approaches that extracted features
from non-medical images. This highlights the uniqueness of
the extracted features and identifies them as potential bio-
markers.

In future research, the knowledge and expertise obtained
from this research could also be used for other illness detec-
tion or classification problems besides COPD. Our research
is based on the premise that early diagnosis of COPD can
reduce mortality rates throughout the world.
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