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ABSTRACT Due to the high demands of tiny, compact, lightweight, and low-cost photoplethysmogram
(PPG) monitoring devices, these devices are resource-constrained including limited battery power.
Consequently, it highly demands frequent charge or battery replacement in the case of continuous PPG
sensing and transmission. Further, PPG signals are often severely corrupted under ambulatory and exercise
recording conditions, leading to frequent false alarms. In this paper, we propose a unified quality-aware
compression and pulse-respiration rates estimation framework for reducing energy consumption and false
alarms of wearable and edge PPG monitoring devices by exploring predictive coding techniques for jointly
performing signal quality assessment (SQA), data compression and pulse rate (PR) and respiration rate (RR)
estimation without the use of different domains of signal processing techniques that can be achieved by using
the features extracted from the smoothed prediction error signal. By using the five standard PPG databases,
the performance of the proposed unified framework is evaluated in terms of compression ratio (CR), mean
absolute error (MAE), false alarm reduction rate (FARR), processing time (PT) and energy saving (ES).
The compression, PR, RR estimation, and SQA results are compared with the existing methods and results
of uncompressed PPG signals with sampling rates of 125 Hz and 25 Hz. The proposed unified quality-
aware framework achieves an average CR of 4%, SQA (Se of 92.00%, FARR of 84.87%), PR (MAE: 0.46
±1.20) and RR (MAE: 1.75 (0.65-4.45), PT (sec) of 15.34 ±0.01) and ES of 70.28% which outperforms the
results of uncompressed PPG signal with a sampling rate of 125 Hz. Arduino Due computing platform-
based implementation demonstrates the real-time feasibility of the proposed unified quality-aware PR-
RR estimation and data compression and transmission framework on the limited computational resources.
Thus, it has great potential in improving energy-efficiency and trustworthiness of wearable and edge PPG
monitoring devices.

INDEX TERMS Photoplethysmogram (PPG), PPG data compression, pulse rate measurement, respiration
rate measurement, wearable devices, Internet of Medical Things, energy-constrained PPG devices.
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I. INTRODUCTION
Rapid technological advancements and disruptive inno-
vations across various technologies, including ultra-
miniaturized biosensors, low-power flexible and stretchable
electronics, ultra-low power high-resolution data acquisition,
low-power high-speed processors, and ultra-low power
higher data-rate wireless radio have resulted in the devel-
opment of ultra-lightweight and compact wireless wearables
that can be easily worn on the body or conveniently attached
to a person’s body. These wireless wearables are also
called smart sensing devices or smart electronic devices
which are more convenient to wear, sense, analyze and
interpret in real-time, store and seamlessly transmit the data
to a next-level computing platform or other smart devices
in wireless body area networks (WBANs) or internet of
medical things (IoMT) based fitness and health monitoring
applications [1], [2], [3], [4]. The rapid pace of advancements
in miniaturization and integration enables the integration
of heterogeneous sensors into wearables that are nearly
invisible to an individual. Thus, modern wireless wearable
devices have received tremendous attention in today’s global
wearable fitness and healthcare monitoring device markets
that can find huge potential in the real-time monitoring of
vital signs or critical biomarkers, point-of-care diagnosis,
virtual clinical trials, and drug delivery, psycho-physiological
stress monitoring, determining individual’s health status,
and ubiquitous, continuous, and personal fitness monitoring,
including the physical and posture patterns, and daily energy
expenditure [5], [6], [7], [8], [9], [10].

A. WHY PPG SENSING IS POPULAR?
The Internet of Things (IoT) and Smartphone technologies
based health monitoring devices play a major role in
transforming and revolutionizing personal healthcare systems
by continuous monitoring of the health status of an individual
and timely notifying caregivers [10], [11], [12], [13]. Among
sensing of biosignals such as electrocardiogram (ECG),
phonocardiogram (PCG), photoplethysmogram (PPG) in
health monitoring applications, PPG sensing has become
most popular because (i) it enables measurement of different
kinds of vital signs such as pulse rate (PR), respiration rate
(RR), blood pressure (BP), blood glucose level (BGL), blood
oxygen saturation (SpO2), (ii) it can be used to understand
the emotional states of an individual, and (iii) it can be easily
sensed with a simple and low-cost hardware and also it is
more comfortable in continuous monitoring under different
kinds of daily activities as compared to other biosignal
sensing.

B. KEY LIMITATIONS OF EXISTING PPG
PROCESSING SYSTEMS
Although there are huge technological advancements in
wearable or portable health monitoring devices, there are
many challenges that need to be addressed: (i) Frequent
false alarms due to unavoidable motion artifacts, signal
saturation, and other noises in continuous health monitoring

scenarios [14], [15], [16], [17], [18], [19]; (ii) limited
battery power leads to a key challenge to the continuous
sensing, processing, and transmission of data wirelessly to
the remote server [17], [18], [19], [20]; (iii) frequent sensor’s
disconnection or movements under ambulatory or exercise
conditions [14]; and (iv) malfunctioning of sensor and battery
leads to the signal saturation or clipping [21]. By considering
the significance of the quality of the PPG signal, there is
a need for exploring lightweight signal quality assessment
(SQA) or signal quality indicator (SQI) for discarding the
noisy PPG signals since the distorted PPG may produce
noisy pulse measurements which can lead to inaccurate or
unreliable diagnosis [3], [21].

From the past PPG data compression studies as reported
in the literature, it can be observed that achieving a
high compression ratio is the main objective of existing
methods at the cost of computational resources including
the battery power, high-speed processor, and memory space
[3], [22]. Furthermore, real-time implementation of PPG data
compression was not addressed in past studies by considering
the constraints of wearable PPG sensing devices. Moreover,
energy consumption analysis was not studied which is most
important not only for computing the percentage of energy
saving but also for knowing the energy consumption of the
compression method. Further, most compression methods
can enable higher compression of PPG signals but are not
suitable for extracting the vital parameter(s) directly in the
compressed domain or not an integral part of compressed
algorithms [3], [22]. In such scenarios, additional signal
processing techniques were used to first reconstruct the
original PPG signal for estimating the PR and/or RR
parameter(s) in real-time or on-device vital sign estimation
application that demands more computational power and
resources which are constraints of affordable wearable multi-
parameter health monitoring devices. Thus, for resource-
constrained devices, exploring lightweight data compression
is essential that can enable the estimation of vital signs at
the sensing node or on-device in order to provide intelligence
(or notify) the user and also reduce the latency or processing
time for timely triggering other drug delivery or sensing
devices.

C. RESOURCE-CONSTRAINED WEARABLES AND ITS
ENERGY EFFICIENCY REQUIREMENT
Wearable or portable monitoring devices are constrained with
limited power due to the device’s miniaturization with the
use of a tiny battery. Thus, such a device demands frequent
charging or replacement of batteries, which can be inconve-
nient or uncomfortable for the end users. Energy efficiency
(or low energy consumption) is a critical requirement for
battery-operated wireless wearable devices. For most health
andwellnessmonitoring application scenarios, wearable PPG
monitoring devices are generally designed to perform the
following tasks: sensing PPG signal(s), processing the sensed
data (or on-device or on-board parameter extraction), and
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transmitting the original or processed data to the remote
server [21]. Each functional task can significantly contribute
to the energy consumption at the device and thereby impact
the battery life-time in continuous PPG sensing, processing,
and transmission [21]. In addition to these tasks, storing the
large amount of data generated in continuous monitoring
consumes a considerable amount of energy.

D. SIGNIFICANCE OF JOINT PPG SIGNAL
PROCESSING TASKS
A few research works were presented for reducing energy
consumption or prolonging battery life. A few studies
considered the data compression and/or wireless transmission
control for reducing the energy consumption of wireless
data transmission but the real-time implementation of such
approaches is not addressed by considering computational
resource constraints of wearable devices [17], [18], [19], [20].
By considering resource-constraints, there is a need to
perform a joint signal quality assessment, compression,
and parameter extraction without using multiple domain
signal processing techniques for each of the processing tasks
by exploring lightweight signal processing technique(s).
Further, we noticed that existing PR methods based on
the Fourier magnitude, autocorrelation, and multiplication
factor techniques had poor estimation accuracy under both
abnormal PPG signals with time-varying pulse-to-pulse
intervals and waveform shape morphologies, and noisy PPG
signals [23].

In past studies, to the best of our knowledge, there is
no attempt for the design of a resource-efficient unified
PPG signal processing framework that can enable integrated
or combined signal quality assessment, data compression,
and PR-RR parameter extraction tasks without the use of
such signal processing techniques. The rest of this paper
is organized as follows. Section II presents the major
contributions of this paper. Section III presents the proposed
quality-aware predictive coding-based joint signal quality
assessment, compression, and PR-RR parameter extraction
framework. Section IV presents evaluation results for each
of the PPG signal processing tasks. Section V presents the
real-time implementation of the proposed unified predictive
coding-based quality-aware data compression and PR-RR
estimation framework. Finally, conclusions are presented in
Section VI.

II. MAJOR CONTRIBUTIONS OF THIS PAPER
In this paper, a unified predictive coding-based quality-aware
data compression and pulse- and respiration-rate estimation
framework is proposed for energy-constrained wearable and
edge PPG monitoring devices, as shown in Fig. 1. The main
aim of this paper is to minimize the total energy consumption
by exploring predictive coding techniques for performing
joint signal quality, data compression, and parameter extrac-
tion without the use of different domains of signal processing
techniques and also performing the signal quality assessment
by using the features extracted from the smoothed predictive

error signal. The proposed quality-aware unified framework
can enable quality-aware data compression and transmission
and also quality-aware parameter extraction which can
significantly reduce energy consumption and false alarm rate
by discarding the severely corrupted PPG signals, which
are unavoidable in wearable PPG monitoring application
scenarios. Based on the predictive coding technique, the key
contributions of this paper are summarized below:

• Simple PPG compression method is presented using
the concept of predictive coding wherein the prediction
error signal is encoded with less number of bits (2 to
4 bit), as compared to the original sample resolution.

• Automatic PPG signal quality assessment (PPG-SQA)
method is presented based on the predictive coefficient
and time-domain features extracted from the quantized
prediction error signal and performance is evaluated
using a wide variety of motion artifacts and noises.

• An automatic PR estimation method is presented
based on the number of systolic peaks (NSPs) and
average pulse-to-pulse intervals (PPIs) extracted from
the smoothed prediction error signal. The measurement
results are compared with the fast Fourier transform
(FFT) and autocorrelation function (ACF) based PR
estimation methods and also other existing methods.

• An automatic RR estimation methods are presented
by measuring respiratory-induced variations such
as respiratory-induced amplitude variation (RIAV),
respiratory-induced intensity variation (RIIV),
respiratory-induced frequency variation (RIFV) from
the original PPG signal-based candidate locations of
onset and systolic peaks, which are determined by
processing the smoothed prediction error signal. The
best RR estimation method is highlighted and its
performance is compared with other existing methods.

• Finally, unified quality-aware data compression and
PR-RR estimation framework for reducing energy
consumption and false alarms by discarding severely
corrupted PPG signals from further processing tasks
and this unified framework is implemented on the
Arduino computing platform for demonstrating real-
time feasibility and energy saving.

A. DESCRIPTION OF TEST DATABASES
For performance evaluation, a wide variety of PPG signals
is considered for understanding different kinds of waveform
distortions and the robustness of the proposed methods.
The PPG signals are taken from the standard databases,
including the Multiparameter intelligent monitoring in
intensive care II (MIMIC-II), the MIT-BIH Polysomno-
graphic (MITBIH-SLP), the CapnoBase (336 segments,
http://www.capnobase.org/; from 59 children (median age:
8.7, range: 0.8 - 16.5 years) and 35 adults (median age: 52.4,
range: 26.2 - 75.6 years)), the Complex Systems Laboratory
(CSL, 118 segments) [53], and other recording databases
(621 segments), and Beth Israel Deaconess Medical Centre
(BIDMC, 424 segments; (median age: 64.81, range: 19-90+,
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FIGURE 1. Block diagram of a unified predictive coding based quality-aware data compression and PR-RR estimation framework.

32 females and 21 males)). The MIT-BIH SLP database
(subjects with age ranging from 32 to 56) includes the
recordings of multiple physiologic signals during sleep [54].
The PPG records ‘‘slp01a’’ and ‘‘slp01b’’ are segments of
one subject’s polysomnogram, separated by a gap of about
one hour. The PPG records ‘‘slp02a’’ and ‘‘slp02b’’ are
segments of another subject’s polysomnogram, separated by
a ten-minute gap. The signals were digitized at a sampling
frequency of 250 Hz and 12 bits/sample. From the MIT-BIH
Polysomnographic database (MIT-BIH SLP), 1071 segments
were considered for the performance evaluation. From
the MIMIC database (aged 16 years or above) with
03700001m -03700020m, 186 segments were consid-
ered. From the MIMIC-III(p026377-2111-11-17-16-46m,
p075796-2198-07-25-23-40m, AF events), we considered
the 138 segments. From the MIMIC-III (p007614-2177-
01-08-13-21m, p030542-2135-10-17-10-33m, p065656-
2121-08-07-04-35m), we considered the 130 PVC/PAC
segments. From the MIMIC-III (p004829-2103-08-30-21-
52m, p013072-2194-01-22-16-13m, p050384-2195-01-30-
02-21m, p055204-2132-06-30-09-34m p058932-2120-10-
13-23-15m), we considered the NSR of 150 segments) that
available at https://archive.physionet.org/cgi-bin/atm/ATM.
The CSL database contains six 60 min manually annotated

recordings from six patients that were acquired by a
data acquisition system in the complex systems laboratory
(CSL) [53]. The recordings were sampled at 125 Hz,
band-pass filtered and auto-scaled. It contains manual beat
annotations from two independent experts and automatic
annotations from the CSL Reference algorithm. The wrist
database was collected from 8 participants (3 male, 5 female),
age group between 22-32 years (mean age 26.5 years) during
different physiological exercises such as bike riding and
walking and running on a treadmill with variable speeds and
time-intervals. The signals were digitized with a sampling
rate of 256Hz. The IEEE signal processing cup 2015 database
consists of PPG signals recorded from the wrist using a
pulse oximeter with green LED (609nm) and three-axis
accelerometer signals. These databases were collected from
the subjects 12 males with yellow skin in the age group 18-
35 years. All the signals were digitized with a sampling rate
of 125 Hz. The performance of signal quality assessment
is tested by Noise-free PPG (NFPPG) of 109503 segments,
Motion Artefact PPG considered fromwrist and cup database
of 99036 segments and Motion Artefact PPG considered
from acceleration signals of 101568 segments, Pulse Free
PPG (PF PPG) signals generated from random noise of
101568 segments. The segment duration is 5 seconds
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and the sampling frequency is 125 Hz for the SQA test.
Motion artefact (MA) corrupted PPG signals are created
by acceleration signals taken from the cup database with
different levels (0.5, 0.7, 0.9) by using the following equation.
y[n] is the MA PPG signal generated from the acceleration
signal.

y[n] = x[n] + w ∗ acc[n], (1)

where x[n] is the normalized noise-free PPG signal (Total
3174 NF PPG 60 seconds segments are used) after removing
the mean from the original noise-free PPG signal and acc[n]
is the normalized acceleration signal after removing mean
from the signal. Here, w denotes the amplitude level that is
fixed to 0.5, 0.7 and 0.9 in this study. For each amplitude level,
33856 segments are generated with an acceleration signal for
the performance study. Pulse free PPG signals are created by
random noise with different amplitude levels (0.5, 0.7, 0.9)
by using the following equation.

z[n] = x[n] + w ∗ r[n], (2)

where x[n] is the normalized noise-free PPG signal (A total
of 3174 NF PPG segments are used) after removing the
mean from the original noise-free PPG signal and r[n] is
the normalized random noise after removing the mean from
the random signal. Here, w denotes the amplitude level
that is fixed to 0.5, 0.7 and 0.9. For each amplitude level,
33856 segments are generated with random noises. z[n] is
the pule free PPG signal.

In the following sections, we present the time-domain
feature-based PPG signal quality assessment method, pre-
dictive coding-based PPG compression method, prediction
error-based onset-peak detection method and pulse- and
respiration rate extraction method.

III. PROPOSED QUALITY-AWARE PPG COMPRESSION
AND PARAMETER EXTRACTION METHODS
The main objective of this paper is to explore a lightweight
signal processing technique that can enable simultaneous
combined PPG processing tasks without the use of many
additional signal processing technique(s) that can be per-
formed using one or two signal processing technique(s) in
the same processing domain and/or using features extracted
from the same candidate signal obtained in the same
signal processing domain (like, time-domain, frequency-
domain, transform-domain, decomposition and prediction
model domain). This paper presents the predictive coding-
based simultaneous pulse and respiration rates extraction
and compression which have great potential in reducing the
overall energy consumption of wearable devices.

A. PROPOSED TIME-DOMAIN FEATURE BASED PPG
SIGNAL QUALITY ASSESSMENT METHODS
Various SQA methods were presented for checking quality
or detecting the presence of movement artifacts and noises

(MAN). But real-time evaluation of the method was per-
formed in terms of computational time and energy consump-
tion which is most important to demonstrate energy saving or
energy efficiency [17]. Without these performance metrics in
addition to the better accuracy, it is difficult to recommend
the best SQA methods for resource-constrained monitoring
devices. Furthermore, there is a unified framework that can
address the discrimination of noise-free PPG signals from
noisy signals; timely notifying the sensor’s disconnection;
and timely detecting the signal saturation.

In many SQA methods, sets of fiducial and non-fiducial
features were extracted from the original and filtered sensor
signals, and differenced sensor signals by processing with
different signal processing techniques such as digital filters,
short-term Fourier transform (STFT), wavelet transform
(WT), empirical mode decomposition (EMD), ensemble
EMD (EEMD) and variational mode decomposition (VMD),
independent component analysis (ICA) and adaptive fil-
ters [2], [14], [21]. However, the computational complex-
ity of the methods was not addressed with reference to
resource-constrained on-device processing in past studies.
The design criteria behindmost of them correspond to achiev-
ing high accuracy but the computational complexity and
energy consumption were neglected, which is our primary
goal.

In this paper, a new discriminative feature is explored
based upon the extensive analysis of four time-domain
features such as the number of threshold crossings (NTC),
maximum and minimum amplitudes, on-width and off-
width durations and first-order predictor coefficient (α) for
automatically checking the quality of recorded PPG signals.
The proposed SQA method is based on the above-mentioned
time-domain features and predictor coefficient extracted from
the prediction error signal that can be easily integrated
with predictive coding-based PPG data compression. Unlike
existing methods, the proposed method does not require
beat detection, template creation, an updating process, and
dynamic time warping (DTW) [19], [21], [23], [24], [25],
[26], [27], The proposed SQA method can detect corrupted
PPG segments, signal saturation, and sensor’s disconnection
but existing SQA methods can perform only MAN corrupted
PPG segments [21].

1) LINEAR PREDICTIVE COEFFICIENT
The PPG signal consists of a slowly varying pulsatile
component with a significant intra-beat correlation between
successive samples [28]. Further, PPG signals are quasi-
periodic signals exhibiting inter-beat correlation due to the
repeated nature of heart function that leads to having higher
redundancy or correlation between consecutive samples of a
PPG signal. Thus, the bit rate can be reduced by exploring the
sample redundancy using the linear prediction technique. The
linear predictive coding can enable PPG data compression
by storing or sending the encoded sample difference since
the difference between adjacent samples is smaller than
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FIGURE 2. Estimated first order predictive coefficient (FOPC) from (i ) noise-free PPG signals, (ii ) movement artifact corrupted PPG signals
taken from the wrist and cup databases, (iii ) movement corrupted PPG signals created using the acceleration signals with different levels
and (iv ) noisy PPG signals created using additive white noises with different amplitude levels.

the original samples. In this section, an estimation of best
predictor coefficients is briefly described. In linear prediction
process [29], the predicted signal x̂[n] can be obtained as

x̂[n] =

P∑
k=1

αkx[n− k] (3)

where P denotes the predictive order and αk denotes k th

predictive coefficients. The best predictor coefficients αj
are normally obtained by minimizing a mean-squared error
criterion [29]. The prediction error between the predicted
value and the actual value is computed as

e[n] = x[n] − x̂[n] = x[n] −

P∑
k=1

αkx[n− k]. (4)

The mean-squared prediction error is computed as

E
[
e2[n]

]
= E

(x[n] −

p∑
k=1

αkx[n− k]

)2
 (5)

If we simplify the above expression, we can get

E
[
e2[n]

]
= rxx(0) − 2rTxxα + αTRxxα, (6)

where Rxx = E[xxT ] is the autocorrelation matrix of the
input signal with a length of N , rxx is the autocorrelation
of the signal. From the above Equation (6), the gradient of
the mean square prediction error with respect to the predictor
coefficient vector α is given by

∂

∂α
E
[
e2[n]

]
= −2rTxxα + 2αTRxx, (7)

The least mean square error solution, obtained by setting
Equation (7) to zero, is given by

Rxx = αrxx, (8)

From Equation (8) the predictor coefficient vector is given by

α = R−1
xx rxx, (9)

An efficient method for the solution of Equation (9) is
the Levinson–Durbin recursive algorithm where Rxx is a
Hermitian, positive-definite and Toeplitz matrix [29]. The
zeroth estimation of error is given by

E (0)
= R(0). (10)

The coefficients ki are referred to as the reflection coefficients
which can be computed as

ki =
[R(i) −

∑i−1
j=1 α

(i−1)
j R(i− j)]

E (i−1) , 1 ≤ i ≤ P. (11)

For ith iteration, the predictor coefficient is computed as

α
(i)
i = ki. (12)

α
(i)
j = α

(i−1)
j − kiα

(i−1)
i−j 1 ≤ j ≤ i− 1 (13)

E (i)
= (1 − k2i )E

(i−1) (14)

Equations (11) and (12) can be solved recursively for
i = 1, 2, . . .P. Then the final solution is

αj = αPj for 1 ≤ j ≤ P. (15)

For prediction order, P = 1, the best predictor coefficient,
α
(1)
1 is computed as

E (0)
= R(0) and k1 =

R(1)
E (0) (16)

α
(1)
1 = k1 =

R(1)
E (0) =

R(1)
R(0)

(17)

where α
(1)
1 denotes the first-order predictor coefficient

(FOPC). Fig. 2 shows the estimated FOPC from (i) noise-free
PPG signals, (ii) movement artifact corrupted PPG signals
taken from the wrist and cup databases, (iii) movement
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TABLE 1. Performance of signal quality assessment for different
predictive coefficient values (α) in terms of sensitivity (Se)(%) and false
alarm reduction rate (FARR) (%).

corrupted PPG signals created using the acceleration signals
with different levels and (iv) noisy PPG signals created using
additive white noises with different amplitude levels.

Evaluation results of the SQA method are summarized
in Table 1 for noise-free (NF) PPG signals, noisy PPG
signals taken from the wrist and cup databases, movement
artifact (MA) corrupted PPG created using different kinds
of acceleration signals with different magnitude levels,
and noisy PPG signals corrupted with random noises with
different kinds of magnitude levels. In order to select the
optimal predictor coefficient threshold, the performance
of the SQA method is evaluated in terms of sensitivity
(Se) which measures the correct detection of noise-free
PPG signals, and false alarm reduction rate (FARR) which
measures the correct detection of noisy signals. Sensitivity
(Se) and false alarm reduction rate (FARR) are computed as,

Se = TP/(TP + FN) × 100 %, (18)

FARR = TN/(TN + FP) × 100 % (19)

To compute Se and FARR, the following parameters are
required: true positive (TP) when it is correctly detected the
positive class (noise-free segments), false negative (FN)when
it is not detected the negative class is, false positive (FP)
when it is falsely detected the positive class and true negative
(TN) when it is correctly detected the negative class (noisy
segments). Fig. 3 illustrates the performance of the SQA for
(a) noise-free PPG andmotion artifact PPG signals fromwrist
and cup database (b) noise-free PPG and motion artifact ppg
signal generated from acceleration signals and (c) noise-free
PPG and random noise signals.

From preliminary evaluation results, it can be observed
that sensitivity (Se) and false alarm reduction rates are better
for the first-order predictive coefficient (FOPC) threshold of
0.9893. Higher sensitivity is most important so that noise-
free PPG signals cannot be discarded from the parameter
extraction and compression stages of the proposed unified
framework. Results further show that the method had FARR
of 100% and Se of 99.87% for the coefficient threshold of
0.9554 for the noisy PPG signals corrupted with random
noises. It can be also observed that the quality assessment
results vary with the characteristics of noises and artifacts.
However, the determination of a single coefficient threshold

FIGURE 3. Performance of the first order predictive coefficient (FOPC) in
terms of sensitivity (Se) and false alarm rate reduction (FARR) for
(a) noise-free PPG and motion artifact PPG signals from wrist and cup
database (b) noise-free PPG and motion artifact PPG signal generated
from acceleration signals, and (c) noise-free PPG and random noise
signals.

is most essential irrespective of the type of noises and
artifacts. In this study, all the noisy PPG signals are merged
to find optimal thresholds. This study shows that the Se
of 93.67% and FARR of 58.35% can be achieved for an
optimal coefficient threshold of 0.9893. In the result section,
the performance of the signal quality assessment is further
evaluated by using the other time-domain features which are
described in the following subsections.

2) NUMBER OF THRESHOLD CROSSINGS AND MAXIMUM
AMPLITUDE FEATURES
During ambulatory recordings, pulse-free signals are encoun-
tered due to the sensor’s disconnection from a measurement
site. The pulse-free signals may include different kinds
of low-frequency and high-frequency noises with different
amplitudes within the dynamic range of a device’s operating
voltage. The PPG sensing module with noise cancellation
method may produce very-low amplitude pulse-free signals.
Then, sensor disconnection may be detected by comparing
maximum and minimum amplitudes of sensor signals with
predefined amplitude thresholds by choosing based on the
lowest amplitude range of the noise-free PPG signals that can
be measured in both normal and abnormal PPG recordings as
discussed in the previous section. However, in practice, pulse-
free signals may include motion artifacts and other noises
such as ambient light-induced noise, thermal noise, and
power-line interference (50/60 Hz) [30]. In such scenarios,
short-term amplitude features can be used for discriminating
the PPG patterns from the noise patterns. It can be observed
that the maximum amplitude (systolic peak) is higher than
the minimum amplitude (foot) in the zero-mean sensor
signal. The maximum and minimum amplitude features can
be used to discriminate some of the pulse-free noisy and
corrupted PPG signals. For high-amplitude pulse-free signals,
the number of zero-crossings (NZC) can be explored to
discriminate fast varying noise components by comparing
with the NZC value of noise-free PPG signals with fixed
block length andmaximumnumber of cycleswith aminimum
PPI of 200 ms (i.e., 300 beats per minute (bpm)). For
example, The higher NZC value represents the case of noisy
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FIGURE 4. Estimated number of threshold crossings (NTC) from (a) noise-free PPG signals and movement artifact corrupted PPG signals taken
from the wrist and cup databases, (b) noise-free PPG signals and movement corrupted PPG signals created using the acceleration signals
with different levels and (c) noise-free PPG signals and noisy PPG signals created using additive white noises with different amplitude levels.

signals, while in noise-free PPG segments, the respective
NZC values are generally lower. For the large amplitude
baseline drifted PPG signal, the NZC can be nearly 1 or 2.
The presence of very low-amplitude HF noises can often
cause severe jitters around zero-crossing points of the zero-
mean PPG signal. Therefore, a number of threshold-crossings
(NTC) are computed with a predefined threshold λNTC ,
in order to reduce very small amplitude noises which can be
smoothed out using time-domain filters. The NTC represents
the number of times the signal amplitude crosses a reference
positive threshold line. The NTC is computed as

NTC =

N−1∑
n=0

|sign{x[n] − λNTC } − sign{x[n− 1] − λNTC }|

2
,

(20)

where sign{x} returns +1 when x ≥ 1 and −1 otherwise. The
zero-mean PPG signal contains two threshold-crossings for
upward-systolic and downward-diastolic slopes. In addition
to slope threshold crossings, the prominent dicrotic-diastolic
portion results in two threshold crossings. Thus, each cycle
of the zero-mean PPG signal can contain 2-4 threshold
crossings. For 2 second PPG signal, the maximum number
of pulse cycles maybe 10 for a refractory period of 200 ms
(i.e., 300 bpm). The minimum number of cycles may be 1
(i.e., 30 bpm). For a 5 second signal, the NTC value
may vary from 10 to 100 for pulse intervals of 2000 ms
to 200 ms, respectively. Fig. 4 estimated the number of
threshold crossings (NTC) from (i) noise-free PPG signals,
(ii) movement artifact corrupted PPG signals taken from
the wrist and cup databases, (iii) movement corrupted PPG
signals created using the acceleration signals with different
levels and (iv) noisy PPG signals created using additive
white noises with different amplitude levels. Preliminary
results of this study showed that the number of threshold
crossings (NTC) can be used to detect pulse-free noisy signals

(i.e., encountered when the sensor is disconnected from the
measurement site) and noisy PPG signals. The NTC feature
is used as the first decision rule of the SQA algorithm because
of its simplicity in the computation as compared to the other
time-domain features which are described in the following
subsections. Based on the lower and upper bounds of NTC
as shown in Fig. 4, noisy PPG signals corrupted with very
low-frequency and high-frequency noises can be detected by
selecting a suitable NTC threshold value.

3) ON-WIDTH AND OFF-WIDTH DURATION FEATURES FROM
THRESHOLDED PREDICTION ERROR SIGNAL
In this paper, we present minimum on-width and off-width
durations, maximum on-width and off-width durations, and
their counts that are computed from the gate waveform which
is obtained by applying the amplitude thresholding rule with
a predefined threshold. In this study, amplitude thresholds of
0.1, 0.15, and 0.2 are considered to obtain the best signal
quality assessment results. The detection rules which are used
are summarized below:

• Rule01: Minimum on-width (countpwonmin) and min-
imum off-width (countpwoffmin) duration must be
greater than 100 ms. Count the number of cycles if not
satisfied Rule01.

• Rule02: Maximum on-width (countpwonmax) and
maximum off-width (countpwoffmax) duration must be
less than 2.5 sec. Count the number of cycles if not
satisfied Rule02.

• Rule03: All on-width (countpwon) should lie between
20% of the mean of all on-widths. Count the number of
cycles if not satisfied Rule03

• Rule04: All off-width (countpwoff) should lie between
20% of the mean of all off-widths. Count the number of
cycles if not satisfied Rule04.
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• Rule05: All on+off width (countpwonoff) should lie
between 20% of the mean of all on+off widths. Count
the number of cycles if not satisfied Rule05.

• Rule06: First order predictor coefficient (FOPC) value.
The algorithm for signal quality assessment (SQA)

is presented below (Pseudocode II-A3) based on four
time-domain features such as the number of threshold
crossings (NTC), maximum and minimum amplitudes, on-
width and off-width durations and first-order predictor
coefficient (α).

Pseudocode II-A3: Rules for SQA Method
Step-01: Sensor’s disconnection and PPG
signal with very low-frequency movements and
high-frequency noises.
if( (NTC < 5 || NTC>75)) then
signal=0; "Unacceptable"
else then
Step-02: Sensor’s disconnection with very
low-frequency movements and low-amplitude
noises, and high-frequency noises.
if (maxAmp<1.2*minAmp) then
signal=0; "Unacceptable"
else then
Step-03: Noisy PPGs corrupted with
non-periodic motion artifacts
if(α < 0.980) then
signal=0; "Unacceptable"
else then
Step-04: Noisy PPGs corrupted with
motion artifacts
if(countpwonmax>0 || countpwoffmax>0) then
signal=0; "Unacceptable"
else then
if((countpwonmin> cth || countpwoffmin> cth)
then
signal=0; "Unacceptable"
else then
if(countpwon> cth) then
signal=0; "Unacceptable"
else then
if(countpwoff> cth) then
signal=0; "Unacceptable"
else then
if(countpwonoff> cth) then
signal=0; "Unacceptable"
else then
signal=1; "Acceptable"
endif
endif
endif
endif
endif
endif
endif
endif

In the proposed SQA method, on-width and off-width
durations are computed from the smoothed quantized pre-
diction error signal which is the intermediate result of the
predictive coding-based data compression method which will
be presented in the next subsection.

B. PREDICTIVE CODING BASED PPG COMPRESSION
Fig. 5 depicts a simplified block diagram of predictive
coding-based PPG data compression and decompression
with integrated onset-systolic peak detection. The predictive
coding-based data compression method consists of differen-
tial pulse code modulation (DPCM) architecture for com-
pression, prediction error signal-based onset-systolic peak
determination with smoothing filter and positive and negative
zero crossing detection; and the DPCM decoding architecture
includes the DPCM decoder for the reconstruction of the
PPG signal from the received binary sequence. For the PPG
signal x[n] and the predicted signal x̂[n] with the first-order
predictor coefficient α

(1)
1 , the prediction error signal can be

computed as

e[n] = x[n] − α
(1)
1 ∗ x̂[n], (21)

where e[n] is the prediction error. In the predictive cod-
ing, the dynamic range of quantized error eq[n] is very
small. Thus, quantized prediction error can be encoded
using a less number of bits as compared to the number
of bits used for uncompressed digitized data. For the
digitized PPG signal with a sampling rate of 125 sam-
ple/s and resolution of 10-12 bits, the data rate is
1.25-1.5 kbps. By using linear prediction, the amount of
PPG data can be reduced before data transmission or storing
with minimal reconstruction error and fewer computational
resources.

In this study, we use a predictor order of 1 for automatically
detecting the systolic peaks of the PPG signal by processing
the prediction error signal which is the output of the
data compression stage. The compression performance of
the method is investigated for different lengths of the
quantization codebook. For the PPG signal as shown in
Fig. 6(a), the quantized prediction error signal is shown
in Fig. 6(b). The original PPG signal can be reconstructed
by using the predictor coefficient, quantized error signal,
and adder. The reconstructed or decoded signal is shown
in Fig. 6(c). From the compression and decompression
results, it is observed that the reconstructed signal includes
discontinuities and quantization noise. In order to reduce the
effect of the spurious noises introduced by the quantization
process, the reconstructed signal is processed using the
moving average filter with a length of 4 samples. The output
waveform of this filter is shown in Fig. 6(d). The error
between the original and reconstructed signals is shown
in Fig. 6(e) for visually evaluating both global and local
waveform distortion.

In past studies, different signal processing techniques were
used for compression, signal quality checking or artifact
presence detection, and onset-systolic peak detection. For
example, the compression was performed using the discrete
cosine transform (DCT) with coefficient thresholding and/or
quantization at the sensing node and then onset-peak
detection requires the reconstruction of the PPG signal using
the inverse DCT. In DCT-based data compression, there is
a possibility of determining the pulse rate by processing
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FIGURE 5. Block diagram of predictive coding based PPG data compression and decompression with the integrated onset and systolic peak
determination by processing the quantized prediction error.

FIGURE 6. Results of predictive coding: (a) Original PPG signal,
(b) Quantized prediction error, (c) Decoded signal, (d) Smoothed
reconstructed signal, (e) Error signal.

the DCT coefficients at the cost of computational resources
and processing time. The accurate pulse rate estimation
may be difficult in the transformed domain under different

kinds of PPG morphological patterns. Thus, for transform-
based PPG data compression, decompression is essential for
determining onsets and systolic peaks of the PPG signal that
is always performed at the receiver side or off-line processing
applications. Otherwise, there is a need for an additional
signal processing task for onset-systolic peak detection
which is mostly performed by using the time-domain
derivatives. In continuous parameter extraction scenarios,
signal derivative operation incurs a significant amount of
energy consumption in addition to the energy consumption
of the decompression process with additional requirements of
computational resources. Various onset and/or peak detection
methods were proposed by using different kinds of digital
filters, derivatives, and signal decomposition techniques
[31], [32], [33] but the real-time implementation and energy
consumption analysis was not addressed by considering the
resource-constrained devices. In this paper, we explore the
PR and RR measurement by detecting onset-systolic peak
points by processing the quantized prediction error signal of
the predictive coding as shown in Fig. 5.

C. PREDICTION ERROR BASED ONSET-SYSTOLIC
PEAK DETECTION
Exploring a lightweight and automatic accurate onset-
systolic peak detection is highly demanded accurate mea-
surement of PR and RR parameters from the PPG
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FIGURE 7. Prediction error based onset-systolic peak detection:
(a) Original PPG signal(b) Quantized prediction error, (c) Smoothed
prediction error, (d) Detected negative zero crossing points and positive
zero crossing points, (e) PPG signal with detected systolic peaks and
onsets.

signal [28], [34]. This study attempts to present a lightweight
unified predictive coding framework to jointly perform
quality-aware data compression and onset-systolic peak
determination as shown in Fig. 5. In the predictive coding-
based compression method, the quantized prediction error
signal (in Fig. 7(b)) can be directly processed to detect the
onset and systolic peak points of the PPG signal. In order to
reduce the step-like discontinuity in the quantized prediction
error signal as shown in Fig. 7(b), smoothing is performed
by using the M-point moving average filter which is
defined as:

ŝ[n] =
1
M

M−1∑
m=0

eq[n− m]. (22)

In this study, the moving averaging filter length is fixed
to 5 samples. The output of the smoothing filter is shown
in Fig. 7(c). From the result, it can be observed that the
positive zero crossing (PZC) point corresponds to the onset,
and the negative zero crossing (NZC) point corresponds
to the systolic peak of the PPG signal. By processing
the prediction error which is available at the sensor node,
onsets and systolic peaks can be determined without
performing reconstruction of the original signal from the
quantized prediction error signal. Therefore, the negative
zero crossing (NZC) and positive zero crossing (PZC) points
are determined for the smoothed quantized prediction error
signal that is used as the candidate points to accurately
locate the systolic peaks and onsets. The predictive coding-

based onset-systolic peak detection algorithm is summarized
below (Pseudocode III-C):

Pseudocode III-C: Peak-Onset Detection
Input: x[n]:= PPG signal; n = 1, 2, . . . ..,L
Output: SP= Systolic peak location and ONSET= Onset
location
Step0: Acquire the PPG signal x[n].
Step1: Normalization: y[n] =

x[n]
max(abs(x[n]))

Step2: Obtain the prediction error using
Levinson Durbin algorithm
e(n) = y(n) − αy(n− k), where α = prediction coefficient
Step3: Perform smoothing using moving average filter
y[n] =

1
P

∑P−1
k=0 e[n+ k]

Step4: Detect negative zerocrossing (nzcr1)
and positive zero-crossing (pzcr1)
of the smoothed PE
if y(n+ 1) ∗ y(n) < 0 and y(n+ 1) − y(n) < 0 then
NLoc=n;
endif
if y(n+ 1) ∗ y(n) < 0 and y(n+ 1) − y(n) > 0 then
PLoc=p;
endif
Step5: Apply post processing to detect true
systolic peaks and onsets
Rule 01: nzcr2=NLoc(find(y(nLoc)>0))
Rule 02: pzcr2=PLoc(find(y(PLoc)<0))
Rule 03: exsp=0; RspT=[]; onsetT=pzcr2;
for i=3:length(nzcr2) do
if y(nzcr2(i)) < 0.25*y(nzcr2(i-1)) then
RspT=[RspT;i];
exsp=exsp+1;
nzcr2(i)=nzcr2(i-1);
y(nzcr2(i))=y(nzcr2(i));
endif
endfor
SP = unique(nzcr2,‘first’);
if(exsp>=1)
RonsetTL=RspT-1;
RonsetT=onsetT(RonsetTL);
for k=1:length(RonsetT)
onset=onsetT(onsetT=RonsetT(k));
endfor
endif
endprocedure

The effectiveness of the proposed onset-systolic peak
detectionmethod is shown in Figs. 7 and 8 for the PPG signals
to have time-varying peak amplitudes, waveform shapes, and
pulse-to-pulse intervals. From the detection results of Fig. 7,
onset-systolic peak locations can be determined accurately
by processing the negative zero-crossing point and positive
zero-crossing point of the smoothed prediction error signal.
The post-processing is presented with simple detection rules
to eliminate the noise peaks and diastolic peak points with
a duration threshold measured between the positive zero-
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FIGURE 8. Prediction error based onset-systolic peak detection: (a) Original PPG signal(b) Quantized prediction error, (c) Smoothed prediction
error, (d) Detected negative zero crossing points and positive zero crossing points, (e) PPG signal with detected systolic peaks and onsets.

crosssing point and negative thresholding point. Fig. 8 shows
onset-systolic peak detection results for longer-duration PPG
signal having different peak amplitudes.

D. PREDICTIVE CODING BASED PR ESTIMATION METHOD
In this paper, the prediction error (PE) and amplitude
threshold (ATh) based PR estimation methods are presented
with post-processing rules to reduce the number of false
positives due to the prominent tidal and diastolic peaks. The
PR estimation performances are compared with existing PR
estimation methods such as fast Fourier transform (FFT),
autoregressive (AR), and the autocorrelation function (ACF).
The algorithms of FFT-based, AR-based (Yule-Walker (YW)-
based), ACF-based, and ATh-based PR estimation algo-
rithms are described in Pseudocode III-D that are widely
used in most of the commercial vital sign monitoring
devices [35], [36], [37].

In this study, the amplitude threshold (ATh)-based PR
estimation method is presented by estimating the average
PPIs and the number of systolic peaks which are determined
by using the amplitude thresholding rule on the uncom-
pressed PPG signal. Two amplitude thresholds (th= 0.15 and
th = 0.2) were considered for performance evaluation. The
simple post-processing rule to reject false positives. The
predictive coding-based PR estimation method is presented
based on the onset and systolic peak detection method
reported in this paper. For ATh-based and predictive coding-
based PR estimation methods, the pulse rate is computed in
two ways: (1) PR = NSP × NB, where NB is the number
of blocks/minute, NSP denotes the number of systolic peaks
in the block and (2) PR =

Fs
PPIavg

× 60 (in bpm), wherein
PPIavg is the average of the PPIs within the block duration.
In the spectrum-based methods, the frequency resolution,
1f =

Fs
NFFT , affects the measurement accuracy in terms of
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Pseudocode III-D: PR Estimation Algorithms
procedure [PR]=PRestimation (x, L, Fs)
Input: x[n]:= PPG signal; n = 0, 1, 2, . . . ..,L − 1 and
Output: PR(in bpm)
Step0: Collect the PPG data x[n].
Step1: Perform high-pass filtering using 3rd order Chebyshev Type-1

with a cut-off frequency of 0.5 Hz and passband ripple of 0.1 to
remove baseline wanders,
[b, a] = cheby1(3, 0.1, 0.5×2

Fs
, ‘high’);

y[n]=filtfilt(b, a, x[n]);
Perform Amplitude Normalization: y[n] =

y[n]
max(abs(y[n]))

—Fourier Magnitude Based PR Estimation Method—
Step2: Find FFT, Y[k] = fft(y[n],N), N = 2nextpow2(L)

Step3: Find Fourier magnitude spectrum, |Y [k]| = abs(Y [k])
Step4: Find the maximum spectral value (kmax) between 0.5 to 5 Hz
Step5: Find the PR =

kmax∗Fs
N × 60 (in bpm)

endprocedure
—Autocorrelation (AC) Based PR Estimation Method—

Step2: Find AC, R[l] =

∑L−1−l
n=0 y[n]y[n+l]∑L−1

n=0 y
2[n]

, l = 0, 1, ..L − 1

Step3: Determine consecutive negative threshold
crossing points of R[l] with a threshold of 0.15

if (R[l] > th) && (R[l + 1] < th)
ntcr1=i; and ntcr=[ntcr;ntcr1];
endif

Lmax = ntcr(2) − ntcr(1);
Step4: Find the PR =

Fs
Lmax

× 60 (in bpm)
endprocedure
—Autoregressive (AR) Based PR Estimation Method—
Step2: Find power spectral density using Yule-Walker’s method

[Py,F] = pyulear(y[n], order,N,Fs);
order=100; N = 2nextpow2(L);
Fs=sampling frequency

Step3: Determine the maximum spectral value (kmax ) between 0.5 to 5 Hz
Step4: Find the PR =

kmax∗Fs
N × 60 (in bpm)

endprocedure
—Amplitude Threshold (ATh) Based PR Estimation Method—
Step2: Perform the amplitude thresholding

yp[n] =

{
1 y[n] > th

−1 y[n] < th
Step3: Determine negative zero-crossing (nzcr1) and positive

zero-crossing (pzcr1) points on the yp[n]
if yp[n+ 1] ∗ yp[n] < 0 and yp[n+ 1] − yp[n] > 0

then pzcr=n;
endif

if yp[n+ 1] ∗ yp[n] < 0 and yp[n+ 1] − yp[n] < 0
then nzcr=n;

endif
Step4: Determine the location of systolic peak (SPL)

spl = max(xbo(pzcr(i) : nzcr(i))) = pzcr(i) + spl − 1;
Step5: Perform post-processing to detect true systolic peak (SP)

Rule 01: nzcr2 = PLoc(find(y(PLoc) > 0))
Rule 02: for i=3:length(nzcr2) do

if y(nzcr2(i)) < 0.25 ∗ y(nzcr2(i− 1))
then nzcr2(i)=nzcr2(i-1);

y(nzcr2(i))=y(nzcr2(i));
endif

endfor
SP = unique(nzcr2, ‘first’);

Step6: Find the average pulse-to-pulse interval (PPI)
for i=2:length(SP) do
PP(i-1)=SP(i)-SP(i-1)
endfor

PPIavg=mean(PP)
Step7: Determine the total number systolic peaks (NSP)
Step8: Find the PR (in two ways),

(1) PR = NSP × NB,
where NB denotes the number of blocks per minute
or PR =

NPPI
BD × 60,

where NPPI denotes the number of PPIs;
BD denotes Block Duration

(2)PR =
Fs

PPIavg
× 60 (in bpm)

endprocedure

beat resolution. The FFT-based methods used the number of
data points (NFFT) of 8192 [35] and 1024 [36]. The AR-
PSD based PR estimation method used the order of 4 [37].
For example, for Fs = 125 Hz, the beat resolution (BR) is
3.66 beats for a 10 s PPG data with 2048 FFT points, and
the BR is 0.9155 beats for a 60 s PPG data with 8192 FFT
points. Similarly, for Fs = 25 Hz, the beat resolutions are
5.85 beats and 0.73 beats for 10 s (NFFT = 256) and 60 s
(NFFT = 2048), respectively. Thus, the estimation error can
be reduced with a suitable signal length or the NFFT points
by considering the power consumption and processor speed
of devices. In this study, the NFFT is fixed to the next power
of 2 that is larger than the input length L = D × Fs. In this
study, we investigate the performance of seven PR estimation
methods based on the Fourier magnitude, autocorrelation,
number of systolic peaks, and average PPI.

E. PREDICTIVE CODING BASED RR ESTIMATION METHOD
In the PPG signal, the pulsatile component is superimposed
on the non-pulsatile component which may contain slowly
varying baseline components due to the respiration, sym-
pathetic nervous system activity and thermoregulation [38].
The DC component varies slowly with respiration, vasomotor
activity, and thermoregulation. During respiration, the PPG
signal is modulated by several physiological factors in its
amplitude (stroke volume decreases or increases), baseline
(small decrease or increase in central venous pressure increas-
ing venous return), and frequency (heart rate increase or
decrease) [39]. Therefore, many researchers have attempted
to extract respiratory signals from PPG signals by exploring
amplitude modulation (AM), baseline wandering (BW),
frequency modulation (FM), and digital frequency-selective
filter with a cut-off frequency of respiratory frequency range.
It was observed that the respiratory modulations of PPG
signals differ in strength based on different physiological
mechanisms [40].

The estimation of respiratory rate (RR, breaths per minute)
is mostly performed by analyzing one or more of these
modulations. Based on the frequency ranges of heart rate and
pulse rate, filtering techniques were explored to distinguish
heart and respiratory components from the PPG signal.
The cut-off frequency of the respiratory component filter
was adopted based on the heart rate [41]. It is difficult to
differentiate with a fixed cut-off frequency of filters under
exercise conditions [41]. In the power spectra of the PPG
signal distinct peaks can be observed that are associated with
pulse and respiratory frequency components, respectively,
and also spectral peaks of other slower waves [42]. The
power spectral density was used to compute the respiratory
rate from one or more modulations such as RIIV, RIAV,
and RIFV. The pulse rate was computed by using the zero-
crossing method and the respiratory rate was computed
from the peak interval of the filtered signal [41]. The
method had the maximum error of pulse and respiratory
rates of 10 beats/min and 7 breaths/min, respectively [43].

41720 VOLUME 11, 2023



G. N. K. Reddy et al.: Unified Quality-Aware Compression and Pulse-Respiration Rates Estimation Framework

Hartmann et al. investigated the difference in the accuracy
of PPG-derived respiratory frequency (RF) between mea-
surements from six body sites [finger, wrist under, and
upper, forehead, and earlobe] under conditions of normal
and deep breathing [39]. It was observed that measurement
site and breathing pattern impact the accuracy of PPG-
derived RF. The best-recommended measurement sites are
the forehead and finger for normal and deep breathing
patterns, respectively. Li et al. investigated the correlations
between respiratory-induced variations extracted from PPG
and simultaneous respiratory signals [44].Walter Karlen et al.
extracted respiratory-induced variations (frequency, intensity,
and amplitude) from the PPG using the Incremental-Merge
Segmentation algorithm and then analyzed the frequency
content using fast Fourier transforms [45]. From a clinical
point of view, in respiratory rate measurement, over-detection
of breaths is more alarming than missed detection [46]. The
amplitude of the RIIV signal is related to the respiratory
volume [47].

1) RIIV BASED RESPIRATION RATE ESTIMATION METHOD
The respiratory-induced intensive variation (RIIV) introduces
a baseline (DC) modulation [47], [48], [49] caused by
changes in venous return due to changes in intrathoracic
pressure [47], [50]. The small decrease in central venous
pressure increases venous return during inspiration and
vice-versa. As the venous bed cyclically drains and fills,
the baseline is modulated accordingly. The RIIV signal is
extracted by using the bandpass filter or the detected systolic
peaks of the PPG signal [46]. The heartbeat synchronized and
respiratory components can be differentiated with suitable
filters for simultaneously estimating heart and respiratory
rates [41].

2) RIAV BASED RESPIRATION RATE ESTIMATION METHOD
In the respiratory induced amplitude variation (RIAV),
amplitude modulation (AM) caused by left ventricular stroke
volume variations due to changes in intra-thoracic pres-
sure [51], [52]. The pulse amplitude is decreased/increased
due to a decrease/increase in ventricular stroke volume during
inspiration/expiration. In the AM of the PPG signal, systolic
peak amplitudes vary over the respiratory cycle.

3) RIFV BASED RESPIRATION RATE ESTIMATION METHOD
In the respiratory induced frequency variation (RIFV),
frequency modulation (FM) caused by the respiratory sinus
arrhythmia (RSA) wherein pulse rate increases during
inspiration and decreases during expiration [51], [52]. The
RSA is mainly due to the autonomic regulation of HR during
respiration. In the FM of the PPG signal, pulse periods vary
over the respiratory cycle [44], [45].

Extraction of the respiration-induced variations (RIIV,
RIAV, and RIFV) is presented in Pseudocode III-E. The RR
estimation algorithm is presented in Table Pseudocode III-E2
based on the respiration-induced variations (RIIV, RIAV, and

Pseudocode III-E: Extract Respiratory Induced Variations
From PPG
Input:
[SP]:= Systolic peak loaction
[ASP] := Amplitude of Systolic peak
[F]:= Foot location
[AF] := Amplitude of foot
[Fs] := Sampling frequency of original PPG signal
Output:
[RIAV]:= Respiratory induced amplitude variation
[RIIV]:= Respiratory induced amplitude variation
[RIFVPPI]:= Respiratory induced frequency variation
based on PPI

(pulse-to-pulse interval)
[RIFVFFI]:= Respiratory induced frequency variation
based on FFI

(foot-to-foot interval)
Step0: Find systolic peak time and its amplitude, onset and
its amplitude
Step1: Respiratory induced intensity variation

RIIV=ASP
Step2: Respiratory induced amplitude variation

IA=[];
if (SP(1) > F(1))
for k=1:length(SP)
IA(k) = ASP(k) − AF(k);

end
else
for k = 2 : length(SP) − 1
IA(k − 1) = ASP(k) − AF(k − 1);

end
end
RIAV=IA;

Step3: Respiratory induced frequency variation based on
PPI

PPI=diff(SP);
RIFV PPI=floor(Fs∗60PPI );

Step4: Respiratory induced frequency variation based on
FFI

FFI=diff(F);
RIFV FFI=floor(Fs∗60FFI );
end

endprocedure

RIFV) extracted from the PPG signal by using the onset
and systolic peaks detected based on the prediction error as
described in this paper. The RR estimation method consists
of the following stages: extraction onset and systolic peak
detection using the prediction error signal as described in this
paper; extracting the respiratory induced variations using the
onsets and systolic peaks as presented in Pseudocode III-E;
uniform sampling process as presented in Pseudocode III-E1
and estimating respiration rate using the FFT magnitude
spectrum as presented in Pseudocode III-E2. Preliminary
results of this study are shown in Fig. 9.

VOLUME 11, 2023 41721



G. N. K. Reddy et al.: Unified Quality-Aware Compression and Pulse-Respiration Rates Estimation Framework

FIGURE 9. RR estimation methods based on the respiratory-induced variations such as respiratory-induced amplitude variation (RIAV),
respiratory-induced intensity variation (RIIV), and respiratory-induced frequency variation (RIFV). The waveforms [in (a), (f), and (k)] are
the output of predictive coding-based onset-systolic peak detection. The waveforms [in (b), (g), and (l)] are the RIAV, RIIV, and RIFV,
respectively. The waveforms [in (c), (h), and (m)] are the outputs of a uniform sampling algorithm. The waveforms [in (d), (i), and (n)] are
outputs of windowing. The waveforms [in (e), (j), and (o)] are the FFT magnitude spectrum.

In the estimation results as shown in Fig. 9, the wave-
forms [in (a), (f) and (k)] are the output of predictive
coding based onset-systolic peak detection; the waveforms
[in (b), (g) and (l)] are the extracted respiratory-induced
amplitude variation (RIAV), respiratory-induced intensity
variation (RIIV), respiratory-induced frequency variation
(RIFV), respectively; the waveforms [in (c), (h) and (m)]
are the outputs of uniform sampling algorithm which is
performed before estimating RR from the respiratory induced
variations; the waveforms [in (d), (i) and (n)] are outputs of
windowing which is performed to reduce the spectral leakage
due to the discontinuity at the boundary of the respiratory-
induced variation sequence; and waveforms [in (e), (j) and
(o)] are the FFT magnitude spectrum with detected dominant
spectral peak which is used to estimate the respiration
rate.

IV. RESULTS AND DISCUSSION
In this section, we present the evaluation results of each
stage of the proposed unified quality-aware PR-RR parameter
extraction, compression, and transmission which are tested
using the standard databases and performance metrics.

A. PERFORMANCE METRICS
From the detection results, the following parameters are
computed: true positive (TP) when it is correctly detected
the positive class (noise-free segments), false negative (FN)
when it is not detected the negative class, false positive (FP)
when it is falsely detected the positive class and true negative
(TN) when it is correctly detected the negative class (noisy
segments). By using these quantitative parameters, we used
the following benchmark metrics such as sensitivity (Se), and
false alarm reduction rate (FARR).
In this study, detection accuracy is computed by comparing
with expert beat-beat annotations provided in the standard
database for algorithm validation. A beat-to-beat comparison
between reference annotation and method output is per-
formed to assess the performance of the method. The systolic
peaks and onsets are considered to match if they are within
an acceptance interval of 20 ms. By comparing the manual
annotations with the method-based annotations, the TPs, FPs,
TNs and FNs are computed for each of the PPG signals.

We used the standard performance metrics such as mean
absolute error (MAE), Pearson correlation coefficient (PCC),
Bland and Altman plots, and statistics such as bias, standard
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Pseudocode III-E1: Perform Uniform Sampling of RIV
Sequence

procedure [xus,tus]=linearinterpolation(x,n,Fs,Fsr)
Input:
[x]:= Induced variations RIAV,RIIV,RIFV
[n] := Number of samples
[Fs] := Sampling frequency of original PPG signal
[Fsr] := Required uniform sampling frequency of Induced
variations
Output:
[xus]:= Induced variations RIAV,RIIV,RIFV after uniform
sampling
[tus] := Timing instants after uniform sampling
Step0: Acquire the respiratory-induced variations
RIAV,RIIV,RIFV
Step1: Passed through liner interpolator

if(length(x)==length(n))
t =

n.
Fs ;

tus = t(1) :
1
Fsr : t(end);

xus=interp1(t,x,tus,’linear’);
else
d=abs(length(x)-length(n));
t =

n(1:end−d).
Fs ;

tus = t(1) :
1
Fsr : t(end);

xus=interp1(t,x,tus,’linear’);
end

endprocedure

deviation (SD), limits of agreement (LOA), and Bland-
Altman ratio (BAR) were used to estimate a level of
agreement between the actual and estimated PR values [55].

PCC =

∑P
i=1(xi − x̄)(yi − ȳ)√∑P

i=1(xi − x̄)2
∑P

i=1(yi − ȳ)2
, (23)

Bias =
1
n

P∑
i=1

(yi − xi), (24)

SD =

√√√√ 1
P− 1

P∑
i=1

(yi − xi − Bias)2, (25)

(LOA) = Bias ± 1.96 SD, (26)

BAR =
1.96 SD

1
P

∑P
i=1

yi+xi
2

. (27)

In past studies, absolute error (AE) was used to find the
difference between the reference and derived respiration rate
(RR). The AE metric is computed as:

AEi = |RRref (i) − RRest (i)|, (28)

where RRref (i) denotes the RR of the original respiratory
signal andRRest (i) denotes the RR of the extracted respiratory
signal for ith observation. The mean absolute error (MAE)
was used to assess the performance of the estimation

Pseudocode III-E2: RR Estimation Using RIVs and FFT
Spectrum
procedure [RR]=RRestimationRIVFFT(x, L, Fs)
Input: x[n]:= PPG signal; n = 1, 2, . . . ..,L and
Output: RR(in bpm)
Step0: Acquire the PPG signal x[n]. and subtract mean
form the signal

x=x-mean(x);
Step1: Find Systolic peak, the amplitude of systolic peak,
foot, and amplitude

of foot
Step2: Extract uniform sampled Respiratory induced
variations RIAV,RIIV,

RIFV PPI and RIFV FFI by using Pseudocode III-E
and III-E1
Step3: Passed through Hamming window and subtract
mean

RIVh=RIV.*hann(length(RIAV))’;
RIVh=RAVh-mean(RIVh);

Step4: Compute FFT, Y[k] = fft(RIVh[n], NFFT),
NFFT = 2nextpow2(L)

Step5: Compute magnitude spectrum, |Y [K ]| =

abs(Y [K ])
Step6: Find the local spectral maximum (kmax) between
0.1 Hz to 1 Hz
Step7: Compute the RR =

kmax∗Fs
N × 60 (in bpm)

endprocedure

methods [10]

MAE =
1
P

P∑
i=1

AEi (29)

where P denotes the number of PRs.

B. PERFORMANCE OF PPG SIGNAL QUALITY
ASSESSMENT METHOD
The performance of the proposed SQA method is evaluated
in a wide variety of noise-free PPG signals and noisy
PPG signals corrupted with motion artifacts having different
amplitude levels and also corrupted with additive white
Gaussian noises. Finally, real-time implementation of the
proposed SQA is demonstrated by using the Arduino Due
platform integrated with a pulse sensor, Bluetooth low energy
(BLE), and Smartphone devices.

In the SQA method, finding the count threshold is
important to achieve a higher sensitivity (Se) and false alarm
reduction rate (FARR). Evaluation results are summarized
in Table 2 for noise-free (NF) PPG signals and three noisy
PPG databases such as (i) wrist and cup database, (ii)
motion-artifact (MA) corrupted PPG databases with different
kinds of acceleration signals with different magnitude levels,
and (iii) noisy PPG database having signals corrupted with
random noises with different kinds of magnitude levels. From
the results, it is observed that the amplitude threshold of
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FIGURE 10. Performance of the signal quality assessment method in terms of sensitivity (Se) and false alarm rate reduction (FARR) for
(a) noise-free PPG and motion artifact PPG signals from wrist and cup database (b) noise-free PPG and motion artifact PPG signal
generated from acceleration signals, and (c) noise-free PPG and random noise signals.

TABLE 2. Performance of signal quality assessment.

0.15 results in better sensitivity and false alarm reduction rate
for all the test databases. Fig. 10 shows results for different
count thresholds varying from 0 to 5. Achieving higher
sensitivity is most important in order to avoid discarding
noise-free PPG signals. Based upon this requirement, it can
be observed that this method had a Se of 92.00% and
FARR of 84.57% for an optimal count threshold of 4. From
the evaluation results of different SQA methods which are
presented in this paper, it can be observed that the proposed
method provides promising quality assessment results in
terms of higher sensitivity and false alarm reduction rate as
compared to other SQAmethods. Further, it can be noted that
this method uses width features extracted from the prediction
error signal. Therefore, the proposed method can be easily
integrated with predictive coding-based data compression
and also onset-systolic peak detection methods for discarding
the noisy PPG signals from further encoding and parameter
extraction processes. Evaluation results demonstrate that on-
width and off-width features extracted from the PPG signal
or prediction error signal and combined with the first-
order predictive coefficient can achieve higher sensitivity and

false alarm reduction rate. Moreover, these methods do not
demand more computational resources as compared to other
methods.

C. PERFORMANCE OF PREDICTIVE CODING BASED
COMPRESSION
For investigating the compression performance of predictive
coding, quantization codebook lengths of 16, 8, and 4 are
considered in this study. For codebook lengths of 16, 8,
and 4, the quality of the reconstructed PPG signals is
evaluated in terms of percentage root-mean-square difference
(PRD), signal-to-noise ratio (SNR), maximum absolute
error (MaxAE), normalized MaxAE, wavelet amplitude
weighted PRD (WAWPRD), wavelet energy weighted PRD
(WEWPRD), mutual information (MI) and Kullback-Leibler
Divergence (KLD) [56], [57]. Evaluation results of the
proposed compression method are summarized in Table 3.
Results demonstrate that the predictive coding-based PPG
data compression can achieve compression ratios from 3 to
4 with better reconstruction and minimal error. From the
performance study on the objective distortion measures, the
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TABLE 3. Performance of predictive coding based PPG compression for different codebook lengths (CL) and signal durations (Dur).

pulse rate and respiration rate can be extracted from the
reconstructed PPG signals with a PRD value of less than
4%. Although the compression ratio depends on the number
of bits used for quantizing the prediction error, compression
results of predictive coding for the different signal duration
(5, 10, 15, and 20 seconds) are summarized to demonstrate
the robustness of the predictive coefficient estimation with
time-varying PPG morphologies. It can be observed that
the PRD values are nearly the same for all duration cases.
Results showed that the distortion varies with codebook
length.

Evaluation results showed that the compression perfor-
mance depends on the codebook length. The CR is increased
when the codebook length is smaller at the cost of increased
distortion error. Results further showed that the essential
PPG waveform features such as slope, systolic peak, tidal,
dicrotic notch, and diastolic waves are distorted when the
codebook length is smaller. The slope of the systolic portion
is highly distorted when the codebook length is 4. From the
acceptable distortion metric ranges, it can be noticed that
predictive coding results in a compression ratio from 3 to 4 by
preserving the fiducial points of the PPG signal. This study
suggests that the codebook lengths of 16 and 8 can be more
suitable for the compression of PPG signal without distorting
essential fiducial points and morphological features. Since
the preservation of PPG features is most important, the main
consideration must be the perfect PPG signal reconstruction
to avoid incorrect measurement of maximum slope, crest
time, systolic peak, pulse width, pulse rate, and pulse
area.

For visual inspections, outputs of the predictive coding-
based data compression and decompression algorithm are
shown in Figs. 6 and 11 for different kinds of PPG signals.
From the results, it is observed that the PPG signal can
be reconstructed with minimal error irrespective of various
kinds of pulsatile patterns having varying peak amplitudes
and pulse rates. It can be further noticed that dominant peaks

FIGURE 11. Results of predictive coding: (a) Original PPG signal(b)
Quantized prediction error, (c) Decoded signal, (d) Smoothed
reconstructed signal, (e) Error signal.

and zero-crossing points of the quantized prediction error
correspond to the fiducial points of the PPG signal. This is the
basis for an integrated or unified framework using predictive
coding for jointly performing data compression and onset-
peak detection tasks.

D. PERFORMANCE OF PR ESTIMATION METHODS
For performance evaluation, the validation databases (3174
segments, 60 seconds (each)) are created including normal
and abnormal PPG signals with a prominent tidal, dicrotic
notch and diastolic waves and varying up-stroke and down-
stroke waves, normal sinus rhythm, premature atrial con-
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traction, ventricle contraction, and atrial fibrillation, regular
and irregular rates. We used standard performance metrics
such as mean absolute error (MAE), Pearson correlation
coefficient (PCC), the Bland and Altman plots and statistics
as defined in Section IV-D2, and the computational com-
plexity for evaluating the performance of all PR estimation
methods.

1) PERFORMANCE OF THE PR ESTIMATION METHODS
UNDER DIFFERENT SAMPLING RATES AND SIGNAL
DURATIONS
In this study, we developed existing PR estimation methods
based on the Fourier magnitude, autocorrelation, and autore-
gressive (AR) model, and the other pulse-to-pulse interval
(PPI)-based and number of systolic peak (NSP)-based PR
estimation methods with estimated systolic peaks and PPIs
from the original PPG signal and also smoothed prediction
error (PE) signal. The PR estimationmethods are summarized
below:

• Autocorrelation-based PR estimation method which is
performed directly on the original PPG signal as shown
in Figs. 12 and 13.

• Fourier magnitude-based PR estimation method which
is performed directly on the original PPG signal as
shown in Figs. 12 and 13.

• Autoregressive based PR estimation method which is
performed directly on the original PPG signal.

• Average pulse-to-pulse interval (PPI) based PR estima-
tion method which is performed directly on the original
PPG signal

• Number of systolic peaks (NSP) based PR estimation
method which is performed directly on the original PPG
signal.

• Average pulse-to-pulse interval (PPI) based RR esti-
mation method which is performed on the smoothed
prediction error (PE) signal.

• Number of systolic peaks (NSP) based PR estimation
method which is performed on the smoothed prediction
error (PE) signal.

For the uncompressed PPG signals with sampling rates
(SRs), Fs = 25 Hz and Fs = 125 Hz, the estimation
performances are summarized in Table 4 and Table 5 for
seven PR estimation methods for four measurement durations
(10 s, 20 s, 30 s and 60 s). For performance comparison,
the benchmark metrics such as mean absolute ratio (MAE),
Pearson correlation coefficient (PCC) and Bland-Altman
ratio (BAR) metrics. For short time periods, final PR in
number of beats per minute (bpm) is obtained based on the
average calculation approach for the case of ACF- and FFT-
based PR estimation methods. In the case of ATh-based and
predictive coding-based PR estimation methods, final PR
in bpm is computed from a total number of systolic peaks
(NSP) or an averaged PPI (PPIavg).
Evaluation results of the PR estimation methods are

summarized in Table 4 and Table 5. Estimation results
demonstrate that the ATh-based method had the MAE of

FIGURE 12. Results of PR estimation using the ACF and FFT method: (a)
Original PPG signal, (b) Autocorrelation function, and (c) Fourier
magnitude spectrum.

FIGURE 13. Results of PR estimation using the ACF and FFT method: (a)
Original PPG signal, (b) Autocorrelation function, and (c) Fourier
magnitude spectrum.

0.65, PCC of 0.9962, and BAR of 3.55 with an amplitude
threshold of 0.15 and the PR estimation by using the average
PPI whereas the PE-based method had theMAE of 0.74, PCC
of 0.9968, and BAR of 3.26 with PR estimation by using the
average PPI for the 10 seconds uncompressed PPG signal
with a sampling rate of 125 Hz that outperforms other three
PR estimation methods such as the ACF-based, FFT-based
and AR-based methods. For the 20 seconds, uncompressed
PPG signal with a sampling rate of 125 Hz, the ATh-based
method achieved the MAE of 0.55, PCC of 0.9951, and
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TABLE 4. Performance of PR estimation methods in terms of number of segments within estimation error (EE) range (in bpm).

BAR of 4.02 for the PR estimation by using the number of
systolic peaks (NSPs) whereas the PE-based method had the
MAE of 0.64, PCC of 0.9970, and BAR of 3.18 for the PR
estimation by using the average PPI. From the estimation
results of Table 5, it is noticed that the ATh-based method
achieved the MAE of 0.50, PCC of 0.9959, and BAR of
3.58 with amplitude threshold of 0.15 whereas the PE-based
method had the MAE of 0.59, PCC of 0.9969, and BAR of
3.21with PR estimation by using the number of systolic peaks
(NSP) for the 30 seconds uncompressed PPG signal with a
sampling rate of 125 Hz that outperforms other estimation
methods. For the 60 seconds uncompressed PPG signal with
a sampling rate of 125 Hz, the ATh-based method had the
MAE of 0.43, PCC of 0.9961, and BAR of 3.59 with an
amplitude threshold of 0.15 whereas the PE-based method
had the MAE of 0.46, PCC of 0.9972, and BAR of 3.04 with
PR estimation by using the number of systolic peaks (NSP).

Based on the consideration estimation performance on the
three benchmark metrics, it is noticed that the PE-based PR
estimation method outperforms other PR estimation methods
tested with the same databases with different sampling rates
and signal durations.

Evaluation results further showed that the number of
systolic peaks (NSP) and average pulse-to-pulse interval
(PPI) based PR estimation methods provide accurate PR
measurement with less estimation error measured in terms of
mean absolute error (MAE), Pearson correlation coefficient
(PCC), and Bland-Altman ratio (BAR) metrics for both
sampling rates and also for different signal durations.
Moreover, onsets and systolic peaks can be detected auto-
matically by processing the prediction error (PE) signal
which is the intermediate result of data compression. It is
also observed that PE based onset-peak detection method
does not require high-frequency component removal as
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TABLE 5. Performance of PR estimation methods in terms of number of segments within estimation error (EE) range (in bpm).

followed at the preprocessing stage of most PR esti-
mation methods. Further, the signal quality assessment
based on the predictor coefficient and on-width and off-
width durations provides promising results in assessing the
quality of PPG signals. Therefore, the predictive coding-
based unified framework can reduce overall computational
operations.

2) PR ESTIMATION ERROR RANGE ANALYSIS
In the performance evaluation and comparison, a large
number of test segments with reference PR values, it can
be noticed that the Pearson correlation coefficient may
be close to 1 and/or MAE is very small (or <5 bpm).
In such a case, the PR estimation method is considered to
be good even if the method had a large estimation error
for some of the test segments. Further, the BAR value at
most 10% is rated as ‘‘good,’’ and (10% ≤ BAR ≤ 20%)
is rated as ‘‘moderate,’’ or (BAR ≥ 20%) is rated as
‘‘insufficient’’ [55]. However, from the visual inspection of
the PR estimation error, it can be observed that methods had

a large margin of estimation error (in bpm) for some of the
test PPG signals. Therefore, evaluation of the PR estimation
method in terms of error ranges is essential to highlight the
failure cases of the method with respect to the PR values
ranging from 30 to 300 bpm that is not been addressed in
past studies. In this paper, we present 11 estimation error
groups (0, 1, 2, 3-4, 5-7, 8-10, 11-15, 16-20, 21-25, 26-
30, >30 bpm) for highlighting the number of segments
having a large error margin. Results of this performance
study are summarized in Table 4 and Table 5 for different
durations of signal and sampling rates. From the estimation
error range results for the uncompressed PPG signal with a
sampling rate of 125 Hz, it can be observed that the FFT-
based PR estimation method achieved the MAE of 2.55 bpm
with 76 segments (EE > 10 bpm), 142 segments (EE of 8-
10 bpm) and 292 segments (EE of 5-7 bpm) and the ACF-
based PR estimation method achieved the MAE of 2.05 bpm
with 113 segments (EE > 10 bpm), 32 segments (EE of
8-10 bpm) and 121 segments (EE of 5-7 bpm). The ATh-
based PR estimation method achieved the MAE of 0.43 bpm
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FIGURE 14. Bland-Altman plots for the (a) 10 second and (b) 60 second PPG signal. It shows the differences between the actual and estimated PR
measurements with the bias (red line). The 95% upper (green line) and lower (black line) limit of agreement (LOA) with bias of ±1.96 SD, where SD is the
standard deviation.

with 9 segments (EE > 10 bpm), 6 segments (EE of 8-
10 bpm), and 32 segments (EE of 5-7 bpm) whereas the PE-
based PR estimation method achieved the MAE of 0.46 bpm
with 5 segments (EE > 10 bpm), 5 segments (EE of 8-
10 bpm) and 39 segments (EE of 5-7 bpm) for the PPG signal
with a duration of 60 seconds.

The PR estimation error greater than 10 bpm can lead
to the wrong diagnosis and would be more problematic
in medical settings [58], [59]. From the evaluation results,
it can be observed that the FFT-based, ACF-based, and
YULE-based methods had more segments with an estimation
error of above 10 bpm. Furthermore, these methods had
more than 20% segments with an estimation error of
above 5 bpm for both sampling rates. From the evaluation
results, it is noticed that the PR estimation methods had
poor estimation performance when the PPG signals have
time-varying pulsatile morphologies and PPIs. Evaluation
results show that the Fourier magnitude and AR-based
PR estimation methods had a large estimation error due
to the aliasing of harmonics of pulse rate with frequency
components of prominent tidal and diastolic waves and
slopes. Further, the multiplication factor-based PR estimation
method had a large error margin for irregular rates. This
study further demonstrates that the average PPI and the
number of systolic peaks (NSP) based PR estimationmethods
provide promising results for both normal and abnormal PPG
signals.

3) PR ESTIMATION ANALYSIS USING BLAND-ALTMAN
STATISTICS
In the past parameter estimation methods, the Bland-Altman
plot analysis is performed for estimating a level of agreement
between the actual and estimated PR values [55]. From the
Bland-Altman plot, the following statistics such as bias,
standard deviation (SD), limits of agreement (LOA), and
Bland-Altman ratio (BAR) are computed for performance
evaluation and comparison with other methods. For the signal
durations of 10 and 60 seconds, Bland-Altman plots for four
PR estimation methods are shown in Fig. 14 with LOA =

Bias ± 1.96 SD. For the signal durations of 10, 20, 30,
and 60 seconds, Bland-Altman plots are shown in Fig. 15
for the PE-based PR estimation methods. From the results,
it is noticed that the FFT- based PR estimation method
had a bias of 4.04 bpm with 95% agreement limits of
[−8.46, 16.53] bpm whereas the ACF-based PR estimation
method had a bias of 0.76 with 95% agreement limits of
[7.22, −5.69] bpm. From the results as shown in Fig. 15,
it is noticed that DPCM-based PR estimation method had
a bias of 1.51 with 95% agreement limits of [−1.19,
3.20] bpm whereas from the results as shown in Fig. 14,
it is noticed that the ATh-based method had the bias of
−1.50 with 95% agreement limits of [−4.33, 1.32] bpm.
Based on the overall estimation results of the bias, LOA,
and BAR values, it is noted that the PE-based method had
a higher degree of agreement between actual and estimated
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FIGURE 15. Bland-Altman plots of differences in actual and estimated PR measurements with the bias (red line) and 95%
upper (green line) and lower (black line) limit of agreement (LOA) with Bias ± 1.96*SD, where SD is the standard deviation
for PPI method (a)-(d) and NSP method (e-h) of duration 10, 20, 30, 60 seconds.

pulse rate values and thus outperforms other PR estimation
methods.

4) COMPUTATIONAL COMPLEXITY OF PR
ESTIMATION METHOD
In this paper, computational complexity analysis is performed
in terms of the number of multiplications, additions, com-
parisons, and logical operations that are essential to demon-
strate the real-time feasibility of the resource-constrained
computing platform. For the PPG signals with sampling
rates of 125 Hz and 25 Hz, computational loads (in terms
of operations) and processing time (PT) are summarized in
Table 6. In order to get the PR in beats per minute, for
short PPG segments with durations of 10 and 30 seconds,
the PR estimation method is executed 06 times and 02 times,
respectively. From the results of the computational load,
it is observed that the total number of operations of the
PE- and ATh-based PR estimation methods is much lower
than that of the FFT- and ACF-based methods for both
sampling rates. Furthermore, for all signal durations with
the sampling rates of 125 Hz and 25 Hz, the PE-based and
ATh-based PR estimation methods outperform other methods
in terms of estimation accuracy (resulting lesser number of

segments with estimation error >5 bpm) and computational
complexity. The ACF- and FFT-based PR estimationmethods
demand computational resources including memory space
and energy consumption.

5) COMPARISON WITH OTHER PR ESTIMATION
METHODS
In this study, we compare the performance of the proposed
PR estimation method with the seven methods in terms
of different performance metrics. Existing methods used
different signal durations for estimating PR from the PPG
signal and also different performance metrics for perfor-
mance evaluation. In order to compare with all the methods,
we evaluated the proposed method with signal durations of
10, 20, 30, and 60 seconds in terms of performance metrics
such as mean absolute error (MAE), Pearson correlation
coefficient (PCC), Bland-Altman ratio (BAR), root-mean-
square error (RMSE) and average absolute error (AE). The
evaluation results of this study are summarized in Table 7.
Results demonstrate that the PE-based PR estimation method
had amean absolute error (MAE) of 0.46, Pearson correlation
coefficient (PCC) of 0.9972, Bland-Altman ratio (BAR) of
3.04, and root-mean-square error (RMSE) of 1.28 for the PPG
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TABLE 6. Computation complexity: Number of operations [multiplication (NM ), addition (NA), comparison (NC ) and logical (NL)] and N denotes the
number of samples.

TABLE 7. Performance comparison of PR estimation methods.

signal with a duration of 60 seconds. From the estimation
results, it can be observed that the PE-based PR estimation
method outperforms other PR estimation methods in terms of
different kinds of performance metrics as reported in Table 7
with the use of simple prediction error-based onset and
systolic peak detection method. The RMSE of the PE-based
method is comparable with the RMSE of the EMD-based
method [37].Most existingmethods used frequency-selective
filters at the preprocessing stage to suppress the dominant

low-frequency components and then used power spectral
density (PSD) for determining pulse rate frequency from the
processed signal. Some of the PR estimation methods used
signal decomposition techniques such as empirical mode
decomposition (EMD) and wavelet transform for selecting
suitable PPG signal components and suppressing unwanted
components. These methods demand more computational
resources which are constrained with most wearable devices.
Furthermore, it is observed that most methods use short
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FIGURE 16. Results of quality-aware PR estimation (Record:slp01bm). (a) Original PPG signal, (b) subjective quality checking
result (0 denotes bad quality and 1 denotes acceptable quality), quality rating using the first order predictor coefficient (FOPC)
with on-width and off-width features, (d) combined results of subjective and objective checking and (e) Estimated PR with
reference PR values.

FIGURE 17. Results of quality-aware PR estimation (Record:slp41m).(a) Original PPG signal, (b) subjective quality checking result
(0 denotes bad quality and 1 denotes acceptable quality), quality rating using the first order predictor coefficient (FOPC) with
on-width and off-width features, (d) combined results of subjective and objective checking and (e) Estimated PR with reference
PR values.
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duration to estimate PR in beats per minute (bpm) which may
not be accurate in practice when the PPG signals have varying
pulse rates [23].

6) QUALITY-AWARE PR ESTIMATION RESULTS
One of the main objectives of this paper is to present
quality-aware parameter estimation by exploring lightweight
signal quality assessment methods. In this study, predictor
coefficient and on-width and off-width duration features
based on signal quality checking are incorporated before
extracting the PR from the PPG signal. Subjective quality
evaluation (SQE) assessment can evaluate the denoised or
decompressed signal. In the SQE assessment test, biomedical
experts visually inspect the preservation of important local
waves and their fiducial points in the processed signal
compared to the original signal and give a quality score
on a 5-point scale (Excellent, Very Good, Good, Bad, and
Very Bad), 3-point scale (Very Good, Good, and Bad),
or 2-point scale (Acceptable or Unacceptable). Although
the SQE assessment test can be used as the final score to
judge the quality of the processed signal, it was observed
that SQE tests are highly time-consuming and expensive,
require experts’ subject knowledge and cognitive skills, and
cannot be incorporated with quality-control compression
or denoising methods. Hence, objective quality assessment
has become the main goal of many researchers to quantify
waveform distortion to match expert’s subjective evalua-
tion score [56], [57]. Evaluation results of the proposed
quality-aware parameter estimation method are shown in
Figs. 16 and 17 for the recordings with noise-free PPG
portions and noisy PPG portions. In the figures, the waveform
in (a) denotes the original PPG signal with artifacts. the
waveform in (b) denotes the result of quality checking
via visual inspection (0 denotes unacceptable quality and
1 denotes acceptable quality), the waveform in (c) denotes the
signal quality rating obtained by using the first order predictor
coefficient (FOPC), the waveform in (d) denotes the final
result of SQA based on the proposed number of threshold
crossing (NTC), amplitude, FOPC, and on-width and off-
width features as described in the Section III-A and subjective
quality checking result, and waveform in (e) denotes the
estimated PR and reference PR values by using the proposed
quality-aware PR estimation method as described in the
Section III-D. Results demonstrate the potentiality of the
proposed quality-aware PR estimation in discarding the noisy
PPG signals and reducing the false alarms due to the noisy
measurements. Further, the quality-aware parameter estima-
tion can reduce the overall energy consumption by discarding
noisy PPG signal portions from the parameter extraction,
data compression, and transmission stages of the on-device
or edge health monitoring devices. Furthermore, quality
checking can ensure the reliability of the vital sign estimation
system under different recording conditions and also in the
presence of various kinds of noises and artifacts, which are
unavoidable under ambulatory and exercise PPG recording
scenarios.

E. PERFORMANCE EVALUATION OF RR ESTIMATION
METHODS
In this study, standard PPG signals that are taken
from the CapnoBase datasets (http://www.capnobase.org/)
and BIDMC database (https://archive.physionet.org/cgi-
bin/atm/ATM) used for evaluating the performance of the
respiratory-induced amplitude variation (RIAV), respiratory-
induced intensity variation (RIIV), respiratory-induced
frequency variation (RIFV) based RR estimation methods
that are widely used in the past studies. The RR estimation
performance is evaluated in terms of benchmark metrics
such as the number of segments within the estimation error
(EE) range (breaths per minute, (brpm)), mean absolute
error (MAE) for each RR ranges, and MAE in terms of the
median (25th-75th percentile). In this work, four respiration
methods such as the RIAV, RIIV, and two RIFV based on the
pulse-to-pulse (PPI) interval and foot-to-foot interval (FFI)
are evaluated for the PPG signals with durations of 30 and
60 seconds. The estimation error ranges of 0, 1, 2, 3-4, 5-6,
7-10, and >10 (in number of breaths per minute, (brpm)).
Further, the mean absolute error (MAE) is computed for five
groups of respiration rates (<8, 8-12, 12-16, 16-20, and 20-30
breaths per minute). The ground-truth annotations are used
for estimating the error between the actual and estimated
value. Evaluation of this study is summarized in Table 8
for the PPG signals taken from the BIDMC database and
in Table 9 for the PPG signals taken from the Capnobase
database.

1) PERFORMANCE OF RR ESTIMATION ON DIFFERENT
DATABASES
From evaluation results, it is observed that the respiration
estimation method provides better results for PPG signals
with a duration of 60 seconds as compared to the PPG
signals with a duration of 30 seconds for both datasets.
Results further show that the respiratory-induced intensity
variation (RIIV) based RR estimation method had the mean
absolute error (MAE) of 3.64 for 60 second PPG signal
and MAE of 3.95 for 30 second PPG signal taken from the
BIDMC database whereas RIIV based estimationmethod had
the MAE of 3.08 for 60 second PPG signal and MAE of
3.51 for 30 second PPG signal taken from the Capnobase
database. It is further observed that the RIIV-based estimation
method outperforms the other three methods in terms of both
average MAE and group-wise MAE and also the number of
segments with an estimation error (EE) range. Fig. 18 shows
the correlation between the reference RR and estimated RR
for the PPG signals with durations of 30 and 60 seconds.

2) RR ESTIMATION COMPARISON WITH EXISTING METHODS
In this study, the performance of the prediction error (PE)
based RR estimation method is compared with existing
methods which are tested with BIDMC and Capnobase
databases. The evaluation results of this study are summa-
rized in Table 10. The PE-RIIV based RR estimation method
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TABLE 8. Performance of RR estimation methods on BIDMC database.

TABLE 9. Performance of RR estimation methods on Capnobase datasets.

TABLE 10. Performance comparison of RR estimation methods.

outperforms other existing methods for the BIDMC database
for the PPG signals with durations of 30 and 60 seconds.
It is further observed that the PE-RIIV based RR estimation

method outperforms the RR estimation method reported
in [62] based on the peak detection, short-time Fourier
transform (STFT) and Hanning window, and estimation
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FIGURE 18. Scatter plot comparing the reference RR with the estimated RR from the PPG collected from the CapnoBase and BIDMC
dataset using the proposed method for (a) 30 second (b) 60 second.

method reported in [46] based on the RIIV, bandpass filter,
visual inspection and breath detection algorithms for the
PPG signals taken from the Capnobase database. Although
the estimation methods reported in Refs. [45] and [68]
perform well as compared to other methods, the real-time
implementation is not addressed which is most important
for studying the real-time feasibility of the algorithms on
the resource-constrained devices. Further, these methods
used computationally expensive algorithms which may
demand more computational resources for both storing and
processing.

V. REAL-TIME IMPLEMENTATION AND ENERGY
CONSUMPTION AND PROCESSING
TIME ANALYSIS
A unified quality-aware PPG data compression and pulse-
and respiration-rate estimation framework is proposed for
energy-constrained wearable and edge PPG monitoring
devices. The main objectives of this study are: to minimize
the total energy consumption by exploring lightweight
time-domain signal processing techniques which can be
suitable for performing joint data compression, signal quality
assessment, and PR-RR parameter extraction without the
use of different domains of signal processing techniques;

and to enable quality-aware wireless data transmission
and also quality-aware parameter extraction which can
significantly reduce energy consumption and false alarm
rate, respectively by discarding the severely corrupted
PPG signals.

1) REAL-TIME IMPLEMENTATION OF QUALITY-AWARE
PROPOSED FRAMEWORK
In this study, real-time implementation of a unified quality-
aware compression and pulse-respiration rates estimation
framework is performed by using theArduinoDue computing
platform with specifications of Atmel SAM3X8E ARM
Cortex-M3 processor with 512-kB flash memory, 96-kB
SRAM, and 84-MHz clock speed, the Bluetooth low energy
(BLE) and Smartphone as shown in Fig. 19. The Arduino
Due is interfaced with pulse sensing and BLE modules. The
BLE is used for wirelessly transmitting acceptable quality
PPG signals to smartphones, which can be used as the ‘‘base
station’’ in wearable body area networks.

2) PERFORMANCE METRICS AND ENERGY
SAVING ANALYSIS
The performance of the proposed unified framework is
evaluated in terms of computational time and energy
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consumption by using noise-free and noisy normal and
abnormal PPG signals. The significance of the unified
framework is assessed in terms of false alarm reduction
rate (FARR), sensitivity (Se), compression ratio (CR) with
percent root mean square difference (PRD), PR and RR
measurement accuracy, memory size, and percentage of
energy saving. In order to have a meaningful comparison, the
energy consumption analysis of existing PR-RR estimation
methods is performed by using the PPG signals which
are digitized with sampling rates of 125 Hz and 25 Hz
because these two sampling rates are widely used in past
studies. For the PPG signals with a duration of 60 s and
30 s, Table 11 summarizes energy consumption for each
stage of unified predictive coding based on quality-aware
data compression and PR-RR estimation framework and
uncompressed methods. The processing stages are: pre-
processing, signal quality assessment (SQA), compression,
PR estimation, RR estimation, and data transmission. All
these stages are implemented in real-time using the Arduino
Due computing platform. In this study, uncompressed PPG
signals sampled at the rates of 125 Hz and 25 Hz are used
for extracting pulse rate and respiration rate directly from
the PPG signal with quality checking and then transmitted
directly to the Smartphone without compression of the PPG
signal. From the performance evaluation results, it can be
observed that the total computational time for the processing
of the PPG signals with a sampling rate of 25 Hz is
lesser than the computational times of the PPG signal with
a sampling rate of 125 Hz and predictive coding-based
unified framework. However, the total computational time
for the predictive coding-based unified framework is lesser
than the computational time of the PPG signal with a
sampling rate of 125 Hz and also comparable with that
of the processing time of the PPG signal with a sampling
rate of 25 Hz.

Fig. 20 demonstrates the real-time implementation of
unified predictive coding based quality-aware data com-
pression and PR-RR estimation framework with estimated
parameters such as signal quality assessment, compression
ratio (CR), pulse rate (PR), and respiration rate (RR). For
on-device vital sign monitoring, the proposed quality-aware
framework is faster in measuring pulse rate and respiration
rate in the compressed domain as compared to the original
PPG signal with a sampling rate of 125 Hz. However, the
effectiveness of the framework must be evaluated in terms
of energy consumption because the processing times for all
three frameworks are within the duration of the processed
PPG signal. From the energy consumption results as reported
in Table 11, it can be observed that the predictive coding-
based quality-aware framework had an energy saving of
70.28% as compared to the uncompressed framework with
a sampling rate of 125 Hz meanwhile it needs extra energy as
compared to the uncompressed framework with a sampling
rate of 25 Hz. Although the energy saving to maximize life-
time of the battery is an important, accurate, and reliable
measurement of pulse rate and respiration rate is essential

FIGURE 19. Real-time data transmission after data compressed data and
quality checking from Arduino Due computing platform to Smartphone
using Bluetooth module and Pulse sensor have a green LED from
Kingbright (AM2520ZGC09) with a peak wavelength of 515 nm, and Photo
sensor from Avago (APDS-9008) with a peak sensitivity at 565 nm.

FIGURE 20. Real-time implementation of unified predictive coding based
quality-aware data compression and PR-RR estimation framework with
estimated parameters such as signal quality assessment, compression
ratio (CR), pulse rate (PR), and respiration rate (RR).

for accurate diagnosis of different kinds of PPG-derived
diseases. Therefore, the final comparison of three frameworks
(proposed predictive coding (PC) based framework, 125
Hz sampling rate based framework, and 25 Hz sampling
rate based framework) is reported in Table 11 in terms of
sensitivity (Se), false alarm reduction rate (FARR), PR and
RR estimation accuracies in addition to the processing
time, energy consumption and memory space. The unified
predictive coding-based quality-aware framework had better
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TABLE 11. Performance comparison of proposed unified frameworks for the duration of 60 and 30 seconds, in terms of false alarm reduction rate (FARR),
sensitivity (Se), compression ratio (CR) with percent root mean square difference (PRD), PR and RR measurement accuracy, memory size and percentage
of energy saving.

signal quality assessment accuracy and PR and RR estimation
accuracies as compared to the other two frameworks with
the uncompressed PPG signals (125 Hz and 25 Hz sampling
rate). Moreover, a high-resolution PPG signals with a higher
sampling rate (for example, 125 Hz) is most important for
accurately determining the fiducial points (onset, maximum
slope point, tidal peak, dicrotic notch, diastolic peak) of the
PPG signal and then estimating other PPG parameters such
as pulse width, pulse area, crest-time, decay-time, inflection
point area, atrial stiffness and so on for automatic diagnosis
of cardiovascular diseases. In the PPG waveform delineation
process, due to the error of one sample (a sampling interval,
Ts =

1
Fs
), the minimum fiducial time instant estimation error

for the uncompressed PPG signal is 8 ms for a sampling
rate of 125 Hz and is 50 ms for a sampling rate of 25 Hz.
In this study, we noticed that the PPI estimation error is
higher for the case of PPG signal with a sampling rate
of 25 Hz as compared to that of the uncompressed PPG
with a sampling rate of 125 Hz and also the proposed
prediction error based PPI estimation method that can be
seen in the PR estimation results as summarized in Table 4
and Table 5. Thus, an uncompressed PPG signal with a
sampling rate of 25 Hz would have a larger estimation error
in the measurement of the above-mentioned PPG parameters
as compared to the PPG signal with a sampling rate
of 125 Hz.

VI. CONCLUSION
Due to the device’s miniaturization with tiny battery size
and the presence of unavoidable movement artifacts and
other noise sources, improvement of energy efficiency and
false alarm reduction rate (FARR) has become essential
for maximizing battery life-time and reducing false alarms
leading to the long-term vital sign sensing and improving the
accuracy and reliability of wearable or portable PPG-based

health status monitoring and drug delivery devices. By con-
sidering the resource constraints, this paper presented the
unified quality-aware data compression and pulse-respiration
rates estimation framework by exploring lightweight signal
processing techniques such as the predictive coding and
time-domain waveform features for performing the following
PPG processing tasks such as signal quality assessment,
data compression, onset-peak detection, pulse rate, and
respiration rate estimation by processing the intermediate
waveforms of the predictive coding. The proposed framework
is tested by using a wide variety of PPG signals taken from
five standard databases and its real-time implementation is
performed by using the Arduino Due computing platform
with specifications of ARM Cortex-M3 processor with
512-kB flash memory, 96-kB SRAM, and 84-MHz clock
speed interfaced with Smartphone using the Bluetooth
low energy (BLE) module. Performance of each of the
processing tasks of the unified framework was evaluated in
terms of sensitivity (Se) and FARR for the SQA method,
compression ratio (CR) and PRD for the data compression,
mean absolute error (MAE) for the PR and RR estimation
and energy consumption and processing time for the overall
performance of the unified framework. As compared with the
performance of uncompressed PPG signal-based framework
with a sampling rate of 125 Hz, the proposed unified
framework outperforms in terms of Se and FARR of the
SQA, accuracies of PR and RR estimation, processing time,
and energy consumption. The proposed predictive coding-
based quality-aware PPG processing framework had an
energy saving of 70.28% as compared to the uncompressed
framework with a sampling rate of 125 Hz. Evaluation results
demonstrated that the proposed unified quality-aware PR-RR
estimation, data compression, and transmission framework
has great potential to improve energy efficiency (maximizing
battery life) of the energy-constrained device, and improving
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the trustworthiness of health monitoring devices by reducing
false alarms by using the signal quality checking methodol-
ogy. Arduino Due computing platform-based implementation
demonstrates the real-time feasibility of the proposed unified
quality-aware PPG processing framework on the limited
computational resources.
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