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ABSTRACT When wireless communication signals impinge on a moving human they are affected by
micro-Doppler. A passive receiver of the resulting signals can calculate the spectrogram that produces
different signatures depending on the human activity. This constitutes a significant privacy breach when
the human is unaware of it. This paper presents a methodology for preventing this when we want to do
so by injecting into the transmitted signal frequency variations that obfuscate the micro-Doppler signature.
We assume a system that uses orthogonal frequency division multiplexing (OFDM) and a passive receiver
that estimates the spectrogram based on the instantaneous channel state information (CSI). We analyze
the impact of our approach on the received signal and we propose two strategies that do not affect the
demodulation of the digital communication signal at the intended receiver. To evaluate the performance
of our approach we use an IEEE 802.11-based OFDM system and realistic human signal reflection
models.

INDEX TERMS 802.11, human activity classification, micro-Doppler, OFDM, passive WiFi RADAR.

I. INTRODUCTION
Systems that use wireless WiFi signals for passive tracking,
localization, and activity detection have been on the rise for
several years [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
The core idea of these systems is the extraction of the
micro-Doppler effects from signals that have impinged on
a human. There are two classes of passive techniques that
can extract micro-Doppler in WiFi systems, namely Channel
State Information (CSI) based systems, and Passive WiFi
Radar (PWR) based systems. What we argue in this paper
is that these systems, although extremely useful in a plethora
of applications, may allow attacks on human privacy from
random wireless receivers of opportunity that can detect
human activities when we do not want them to do so.
To this aim we study CSI-based systems (since they are more
dangerous as we will see) and propose an approach that
disables the correct extraction of micro-Doppler effects at a
receiver when the transmitter desires to do so.
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Most PWR systems require a transmitter under the control
of the system, i.e. one that it is cooperative and shares a
dedicated channel for providing a reference signal to the
passive receiver [11] (Fig. 1 left). Other PWR systems
like the works in [12] and [13] leverage a reflected signal
from a stationary target as a reference waveform but the
human activity classification performance is suboptimal
when compared to the case that a dedicated reference channel
is present. In the previous PWR systems micro-Doppler
is estimated by correlating the received signal with the
reference signal, and then identifying when this correlation
peaks for different candidate Doppler values. More recent
works on PWR systems do not require a reflected signal
as a reference, but simply strip away from the transmitted
signal any data-dependent phase/frequency shifts leaving
only Doppler-induced frequency variations [14]. This leads
to improved Doppler estimates [14]. Overall we notice that
PWR systems are more robust when there is cooperation with
the transmitter of the signal. This is something that can be
clearly avoided if we want to protect the privacy of users
moving around a WiFi access point (AP), making thus PWR
systems more safe.
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FIGURE 1. Left: The human moves with a speed that generates a change
in the path length equal to vt . Right: With the proposed method the
spoofed path length (as it appears in the signal) is equal to (v + vsp)t and
is mimicking the effect of a physical movement of the transmitter to the
red location.

Contrary to PWR systems, CSI-based systems [11], [15]
do not need a reference channel and as a result are potentially
more dangerous. In this case the receiver uses CSI estimates
for calculating the signal spectrogram allowing thus the
identification of unique micro-Doppler signatures. This type
of systems might face more difficulties in accurate micro-
Doppler estimation, but pose a serious privacy threat since
an arbitrary unauthorized user can deploy them without
requiring explicit authorization from the AP that is associated
with. The basic idea, described in works such as [15]
and [16], is based on the fact that human movement generates
variations in the length of the multiple reflected paths from
the signal source to the receiver, and consequently the power
of the received signal over certain frequency bands (i.e.
the channel frequency response (CFR) H (f , t)). As seen in
Fig. 1(left) the length of the ℓ-th path changes from Rℓ to
Rℓ + vt) upon human movement.
It is important to note that this class of techniques is

not viewed as threatening to the user but as a low cost
approach that enables several applications. Hence, there is
little focus on combating these passive systems. Few existing
systems in the literature focus on obfuscating parameters of
a digital communication signal and are not related to micro-
Doppler. As an example friendly Cryptojam [17] obfuscates
various PHY layer parameters like the modulation type but
it does not affect the waveform and consequently does not
obfuscate Doppler or micro-Doppler in reflected signals
from humans. Obfuscating the cyclostationary property of
digital communication signals has been investigated in [18],
something that does not affect channel-induced Doppler.
Artificial frequency shifts in a transmitted signal have
been proposed in the past as a method to prevent correct
demodulation by an adversary [19], and also as a way to spoof
the range and velocity of the emitter relative to a receiver [20].
But again these last twomethods were not intended to prevent
estimation of micro-Doppler signatures. The most closely
related work to this paper may be PhyCloak [21] that distorts
Doppler information at a passive receiver through a third relay

node that emits simultaneously with the transmitter leading
thus to obfuscation. However, this system requires always
the presence of a third relay node that is synchronized to
the transmitter, while more importantly is not concerned with
reflected signals from humans that are affected by micro-
Doppler.

As we already stated, in this paper we take a different
stance and we argue that these systems can be a threat
to privacy. In cases where we do not desire their opera-
tion, we should try to prevent them from being used by
malicious wireless users. Consequently, we focus on CSI-
based schemes where a receiver of opportunity, namely an
unauthorized receiver (URx), can calculate the CSI and its
frequency-dependent short time scale variations that allow
micro-Doppler estimates through a spectrogram.We consider
a WiFi transmitter that uses orthogonal frequency division
multiplexing (OFDM) and emits a digital communication
signal to a desired receiver but it does not want this signal to
be used for micro-Doppler estimation by others. Under this
setup we propose to protect humans from disclosure of their
micro-Doppler signature by inserting an artificial frequency
variation effect in the transmitted signal so as to alter the
real micro-Doppler effects. At the same time the artificial
signal should not affect signal demodulation.We accomplish
that by injecting either a low frequency modulated (FM)
signal in the transmitted waveform that smears the micro-
Doppler signature, or a signal that spoofs the path length
changes that take place in a micro scale as illustrated in
Fig. 1(right) and discussed in [15]. We study the received
signal and the CSI estimation process at the receiver, and
then we investigate the effect of the two aforementioned
signal structures on the spectrogram through simulations
based on real human activity models. The effect of the
first method in the spectrogram is the generation of similar
signatures regardless of the user movement speed. For this
first spectrogram smearing technique we also propose a
metric for allowing the evaluation of the effectiveness of our
scheme in terms of generating similar waveforms for different
user activities.

II. SIGNAL MODEL
For the purpose of this paper we assume that the transmitter
(Tx) is static, i.e. it is a base station that is part of the
legitimate network with which it communicates (we do not
study it). The signal model is that of 802.11a/g/n/ac OFDM
where a 20MHz channel is used [22]. A moving transmitter
can also be supported but the resulting expressions become
more convolved without adding any new insights to the
core idea of this paper. The 802.11 PHY frame preamble
details can be found here [22]. The basic aspects from the
802.11 frame structure that we need to know for this paper
is that the preamble of each frame consists of 7 short and
repeating known QAM symbols, as it is typically done in the
preambles of wireless frames. These known symbol values
allow for CSI estimation at a receiver with a process that we
will discuss later.
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The one-way delay of theWiFi OFDMsignal that impinges
on the human target is time-varying and equal to

τℓ(t) =
Rℓ(t)
c

=
Rℓ

c
−
vℓt
c

, (1)

where c is the speed of light, and Rℓ and Rℓ(t) correspond to
the length of the ℓ-th path before the movement and at time
t respectively (see Fig. 1). vℓ is a speed that results in the so
called path length change [15] of vℓt in time t . Since different
body parts travel different distances and have different speed
as the human moves, this results in a unique micro-Doppler
signature when the effect of all the paths is aggregated.

We will consider the impact of micro-Doppler when
the transmitted signal x(t) is the result of multi-carrier
modulation andmore specifically OFDM.WithN subcarriers
that are spaced relative to the carrier fc at locations fk = k1f
Hz that can contain data, pilot symbols, or a combination
of both (depending on the standard), the desired baseband
OFDM symbol in continuous time is:

x(t) =
1

√
N

N−1∑
k=0

X [k]ej2πk1ft , 0 ≤ t ≤ TN (2)

X [k] is the complex QAM symbol modulated onto subcarrier
k , and TN = N/1f is the OFDM symbol duration.

The channel transfer function or channel frequency
response (CFR) of a wideband time-varying channel over all
the paths is

H (f , t) =

∑
ℓ

hℓ(t)e−j2π f τℓ(t), (3)

where hℓ(t) is the complex channel gain of the ℓ-th path
excluding Doppler. The channel impulse response at time t
is time-varying (p.p. 21 [23]):

h(τ, t) =

∑
ℓ

hℓ(t)δ(τ − τℓ(t)) (4)

To derive the desired expression for the received signal we
have to use (2), (3) and (4). At the passive URx the received
baseband continuous time signal after transmission in a time-
varying frequency selective channel is the convolution of the
channel impulse response with the transmitted OFDM signal.
We also include the additive white Gaussian noise (AWGN)
w(t) and obtain:

y(t) =

∫
∞

−∞

h(τ, t)x(t − τ )dτ + w(t)

=

∑
ℓ

hℓ(t)x(t − τℓ(t)) + w(t)

=
1

√
N

N−1∑
k=0

∑
ℓ

hℓ(t)X [k]ej2πk1f (t−τℓ(t)) + w(t)

=
1

√
N

N−1∑
k=0

X [k]ej2πk1ft
∑

ℓ

hℓ(t)e−j2πk1f τℓ(t)

+ w(t) (5)

=
1

√
N

N−1∑
k=0

X [k]ej2πk1ftH (k1f , t) + w(t) (6)

By replacing (3) to (5) we obtain (6) which is another form
of the output signal that we will use. When the CFR is not
time-varying by applying DFT to (5), (6) we get the well
known result of OFDM where the channel becomes from a
frequency selective fading channel to a flat fading channel,
i.e. Y (k1f ) = X [k]H (k1f ). Of course in practice time
variations of the CFR cause inter-carrier interference (ICI).

To get another useful expression we can also substitute
τℓ(t) from (1) to (5). Then the term e−j2πk1f

Rℓ
c , that is

constant phase for the ℓ-th path (i.e. it is not indexed by t) can
be merged with hℓ(t) to be jointly denoted as h′

ℓ(t). We then
have:

y(t) =
1

√
N

N−1∑
k=0

X [k]ej2πk1ft
∑

ℓ

h′

ℓ(t)e
−j2πk1f vℓtc + w(t)

(7)

Note that we do not model a carrier frequency offset
(CFO) since we have seen that it affects marginally the
resulting spectrograms. We also ignore the sampling clock
offset (SCO) at the passive URx since we are not interested
in its ability to correctly demodulate OFDM symbols (by
sampling when the matched filter output peaks).1

III. MICRO-DOPPLER SMEARING & SPOOFING
We can design an artificial signal to have any desired form as
long as it does not compromise decoding of x(t). We denote
this signal as xsp(t) in the time domain and Xsp(f , t) is the
Fourier Transform (FT). The two ideas that we investigate
are:Method 1, subcarrier independent micro-Doppler obfus-
cation with spectrogram smearing. Method 2, subcarrier-
dependent spoofing for mimicking path length changes. We
must note that under both scenarios the injected signal does
not introduce observable frequency shifts in the scale of
an OFDM frame, thus it does not prevent CSI estimation
from the nominal receiver that desires to demodulate the
transmitted frame. IEEE 802.11 frequency estimation and
compensation algorithms are robust to Doppler variations of
a few hundred kHz, which is far beyond what we are doing
with the artificial signal in this work [25]. The OFDM bit
error rate (BER) performance under this range of artificial
frequency variations was studied in [20] and no performance
degradation was observed.

A. METHOD 1: SMEARING
With the first method we introduce an oscillating sinewave
with a frequency of a few 10’s of Hz in the transmitted signal
x(t) to smear the micro-Doppler effects of human movement
that are in this range [26]. Note that we do not have to re-
create a specific spectrogram but we only have to destroy the

1To see how this can be solved for OFDM we refer the reader to related
works on the topic, e.g. see [24].
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signature that reveals micro-Doppler dependence to different
user movement speeds.

To generate the final signal at the transmitter we re-
modulate the information signal which consists of the QAM
symbols X [k] before IDFT, with a frequency domain signal
Xsp(f , t). In the time domain this obfuscating signal is
defined to be an frequency-modulated (FM) waveform with
maximum instantaneous frequency shift δf , and frequency
fm, making thus the instantaneous frequency equal fi(t) =

fc + δf cos(2π fmt) [27]. This makes the actual time-domain
FM smearing signal to be:

xsp(t) = ej
δf
fm

sin(2π fmt) (8)

Hence, this waveform produces a signal that in the frequency
domain speads between the maximum instantaneous frequen-
cies −δf and +δf , at a rate of fm Hz. The result is that it
smears the frequency domain micro-Doppler signature in that
frequency range. An important detail from the literature is
that the frequency at which the various human body parts
move is very small and in the range of a few Hz [26], [28].
Consequently, the variation of the frequency fm should be
higher that this value which means that just a few tens of Hz
for fm will smear very well the received signal spectrogram.

B. METHOD 2: SPOOFING PATH LENGTH CHANGES
The second approach is based on thinking of what would
the signal look like if the transmitter had actually moved.
Hence, this technique can be more appropriately referred to
as spoofing and not simply obfuscation. Note that we can only
spoof the phase change in a way that mimicks the signal that
would be produced if a physical movement of the transmitter
took place (to the ‘‘new’’ red location in Fig. 1(right)). The
received signal has to be such that the path length change seen
in Fig. 1 will not be vℓt but v′ℓt in the same time period of t
seconds, that is we want the URx to receive the following
signal:

y(t) =

N−1∑
k=0

X [k]
√
N
ej2πk1ft

∑
ℓ

h′

ℓ(t)e
−j2πk1f

v′
ℓ
c t (9)

This is a form of the signal that we would like to be received
at the URx and the question is how to create it. To obtain
the above we set the spoofing signal equal to x(k)sp (t) =

ej2πk1f
vsp
c t , making thus (7):

y(t) =

N−1∑
k=0

X [k]x(k)sp (t)
√
N

ej2πk1ft
∑

ℓ

h′

ℓ(t)e
−j2πk1f vℓc t

=

N−1∑
k=0

X [k]ej2πk1f
vsp
c t

√
N

ej2πk1ft
∑

ℓ

h′

ℓ(t)e
−j2πk1f vℓc t

=

N−1∑
k=0

X [k]
√
N
ej2πk1ft

∑
ℓ

h′

ℓ(t)e
−j2πk1f

vℓ−vsp
c t (10)

By comparing (9) and (10) we see that the path length change
that will be perceived for the ℓ-th path is v′ℓ = vℓ − vsp.

In our implementation instead of sending to each subcarrier
complex symbol X [k] we send X [k]x(k)sp (t), that is a subcarrier
and time dependent term. In the next section we discuss how
these two methods affect the CFR power estimate that will be
used for spectrogram estimation by the URx.

IV. IMPACT OF CFR POWER
The CFR power for subcarrier k is estimated after we first
match filter the frequency domain received signal of that
subcarrier, namely Y (k1f ), with the known preamble X [k].
Since the spoofing signal has a FT Xsp(f , t) this leads to the
CFR being equal to:∣∣∣X∗[k]Y (k1f )

|X [k]|2

∣∣∣2 = |Xsp(k1f , t)H (k1f , t)|2 (11)

From the above it is clear that we can select a smearing or
spoofingwaveform so that it alters completely the CFR power
estimate above as a function of frequency or time.

Method 1: With this method the result is straightfor-
ward since the signal is independent of subcarriers. This
method simply smears the resulting signal over the specified
bandwidth of the FM signal obfuscating thus micro-Doppler
effects. This bandwidth is approximated to be 2( δf

fm
+ 1)

according to Carson’s rule.
Method 2: Now we analyze the CFR power, namely

|Xsp(k1f , t)H (f , t)|2, to understand what takes place.
An expression for the CFR power |H (f , t)|2 has been studied
in [15], but as we have seen in (9) the path length is now
affected by the artificial speed vsp. Hence, we re-calculate the
CFR power as in [15] that now becomes for the set of all end-
to-end paths P:

|Xsp(k1f , t)H (k1f , t)|2

=

∑
ℓ∈P

D1(f , t) cos(
2πv′ℓt

c
+

2πRℓ

c
)

+

∑
ℓ,m∈P,ℓ̸=m

D2(f , t) cos(
2π (vℓ − vm)t

c
+

2π (Rℓ − Rm)
c

)

+

∑
ℓ∈P

D3(f , t) (12)

The terms D1,D2,D3 are time and frequency dependent and
are independent of the path length changes expressed through
the speed vℓ. From this expression we see that the CFR power
is a function of the actual path length changes vℓ − vm, that
are not affected by this type of spoofing, but there are also
sinusoidal terms that are affected (in the first summation).
The net result is that the correct overall CFR power function is
still invalidated by this approach. As we will soon see it has a
completely different impact on the Doppler spectrogram than
method 1.

V. RESULTS
The objective of our simulations is to evaluate the ability
of the two methods to smear the Doppler signature of the
human movement. We considered an 802.11-based OFDM
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FIGURE 2. Spectrograms of the received signal (before OFDM DFT) for
different pedestrian speeds without any form of smearing.

FIGURE 3. Spectrograms of the received signal (before OFDM DFT) for
different pedestrian speeds and smearing under method 1.

system that uses a 20MHz channel, and 64 subcarriers
spaced at 1f =312.5 kHz apart. 52 are data subcarriers
while 4 subcarriers are used for pilot signals. We generate
signatures for pedestrians that move at different speeds based
on publicly available models in [26] and [28]. These channel
models generate movement of different human body parts
and alter the cross-section of the human depending on the
movement pattern.

A. METHOD 1
To illustrate better the effects of this method we noticed
that is better to calculate the spectrogram on the received
signal itself, i.e. before passing the OFDM signal to the DFT
for demodulation. In Fig. 2(a), 2(b) we present spectrogram
results for humans moving at different speeds without any
form of micro-Doppler smearing. We can easily see the
micro-Doppler for the different speeds and the peaks that
occur at different frequencies. In Fig. 3(a) and Fig. 3(b) we
present results for a pedestrian moving again at 0.8m/s and
1.5m/s respectively, under the smearing method 1. It is clear
that the Doppler smearingmethod spreads the resulting signal
over an area of δf≈±200Hz in both cases making thus the
spectrograms lack any distinguishing features. fm which was
set to 10Hz is already high enough to cover the moving user
that presents peaks in the spectrograms of Fig. 2(a), 2(b) with
at most 0.5 s (2Hz). Higher speed user movements will result
in more rapid changes over time that can still be covered with
an fm of a few 10’s of Hz.

B. WAVEFORM SIMILARITY
As we have discussed and seen in the last subsection,
spoofing with method 1 generates spectrograms that are

FIGURE 4. Correlation coefficient for two waveforms under different user
speeds and method 1.

similar. To provide a systematic way of comparing the results
of our spoofing method we use the signal cross-correlation
as an evaluation metric. In particular we measure the cross-
correlation between two received waveforms y1(t), y2(t) at
the URx that contain the spoofed signal and correspond to
two different user speeds v1, v2 respectively:

ρv1,v2 (τ ) =

∫
+∞

−∞
y1(t)y2(t − τ )dt∫

+∞

−∞
y1(t)y2(t)dt

(13)

In the above τ is the lag. Using this metric someone can
evaluate the ‘‘quality’’ of smearing for specific emitted
waveforms and user behavior. Under this metric we obtained
correlation results for various pairs of spoofed waveforms in
which the user speeds in these pairs are presented in the x
axis of Fig. 4. As an example consider data point v1=0.4 m/s
and v2=0.8 m/s that corresponds to the correlation of two
received signals that were subjected to spoofing and the
user in one case moved with v1=0.4 m/s and the other
case with v2=0.8 m/s. This result shows that the received
signals are almost identical with ρ ≈ 0.94. All the results
that are presented in this figure show that with the proposed
method under different user speeds the correlation coefficient
is very high. This is also true for an fm of 10 Hz which has
minor differences relative to the case of fm equal to 15Hz.
We also present the results without spoofing that clearly show
lowering correlation when the users move at different speeds
and produce considerably different signatures (as it is already
evident from Fig. 3). This is expected since we have already
seen in the spectrogram that higher user speed generates
higher maximum frequencies in the signal.

C. METHOD 2
For the results under method 2 we demodulate each OFDM
symbol with DFT, and then we produce a fine estimate of the
time-varying CFR power for each one of the used subcarriers.
CFR power is estimated for each one of the subcarriers based
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FIGURE 5. Spectrograms of the CFR power in (11) for different pedestrian speeds without spoofing and with micro-Doppler spoofing under method 2.

on the OFDM symbols in the 802.11 preamble allowing

the calculation of
∣∣∣X∗[k]Y (k1f )

|X [k]|2

∣∣∣2 since the X [k] are known.
From this time-varying CFR power estimate we calculate the
spectrogram with a resolution of a single OFDM symbol.

The related results for the spectrogram of the CFR power
without spoofing can be seen in Fig. 5(a), Fig. 5(b), and with
spoofing in Fig. 5(c).We can now see that for the same human
speed we can generate a different spectrogram at the URx
which is more similar to a spectrogram of a human moving
at a higher speed. Now there is not a consistent smearing all
over the frequency range but a shift in frequency and time of
the human signature that depends on the path length change
v′ℓt . Different values for vsp will result in different placement
of the signature in the spectrogram.

VI. DISCUSSION
The methods we introduce in this paper offer a way to
obfuscate the micro-Doppler signature of a signal that is
observed at a passive adversarial receiver. We showed that
our method is indeed successful in doing so. One could
ask why does the adversary not use different versions of
the signal that are more feature-rich so as to extract the
human activity? For classic monostatic RADAR this has been
successfully demonstrated in works such as [29] and [30],
where besides the Doppler signature, the range differences
are used for human activity classification with mmWave
RADAR. But for a passive receiver, which is our focus
in this paper, ranging is not available like classic pulsed
RADAR (by measuring the ToF) [31]. That is why seminal
works on passive human activity classification [3], [15] use
spectrograms of the received signal or the spectrogram of
the CSI estimate that are features of the signal that can
be estimated passively. We could envision for example that
both the Doppler and AoA of the signal can be estimated
if the passive receiver has deployed a phased array multi-
antenna system as we demonstrated in [14]. In this case
the passive receiver might be able to track the AoA but the
Doppler spectrogramwould still be smearedwith themethods
proposed in this paper. Only the bearing of the human could
be estimated. For limiting the ability of such a more advanced

receiver to estimate the AoA one could deploy spectrum
nulling methods which is a well-known technique in adaptive
signal processing for RADAR systems [31].

VII. CONCLUSION
In this paper we presented a new approach protecting
humans from disclosing the micro-Doppler signature of
their movements in passive wireless RADAR systems.
We proposed the insertion of artificial frequency variations
in the transmitted signal for smearing the passively estimated
spectrogram of the received signal. We investigated two
approaches that serve equally well the desired goal. The
proposed idea can be used with minimal cost and overhead
for protecting the privacy of wireless users from malicious
unauthorized passive wireless receivers without any impact
on digital communication performance.
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