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ABSTRACT Smart manufacturing is one of the key elements to realizing Industry 4.0, which helps to
improve the production quality and efficiency of collaborative manufacturing companies. With the rapid
development of information technology such as the Internet of Things, the application of digital twin
technology in smart manufacturing is becoming more and more widespread. In the manufacturing process,
companies still face problems such as slow data flow and a serious waste of idle equipment resources.
The purpose of this paper is to carry out a digital twin-based smart manufacturing system that combines
the concept of value co-creation to achieve the smart manufacturing goal of using fewer manufacturing
resources to create greater system value. The system builds a multi-objective optimization model to enhance
the value of the shared supply chain and then helps collaborative manufacturing enterprises to optimize
their production capacity and use population intelligence algorithms to solve the problem. The results
of the combined case study show that the system is effective in achieving good operation of dynamic
equipment resources while improving the overall profit of the system by 13.26%. This study proposes a smart
manufacturing system based on the digital twin and considering the value of the supply chain will effectively
help collaborative manufacturing enterprises to respond to the market environment quickly, reduce the loss
of manufacturing resources while also significantly reducing the operating costs of enterprises, and help to
realize the value of the shared supply chain.

INDEX TERMS Collaborative manufacturing, digital twin, manufacturing resources, smart manufacturing.

I. INTRODUCTION
With the development of new-generation information tech-
nology, customer needs have become increasingly diverse
and dynamic. The application of the Internet and big data has
changed the way enterprises discover and utilize resources
and demands, expanding the scope of resource utilization and
breaking through the time and space constraints of matching
resources and demands across borders and regions. In order
to gain advantages in the fierce competitive environment
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and achieve sustainable development, each manufacturing
company needs to focus on customer value and explore
new manufacturing models and manufacturing concepts to
match them [1].With the further development of digital infor-
mation technology, manufacturing is becoming increasingly
smart at all levels, from physical equipment to plant man-
agement to production networks, thus acquiring the ability
to learn, configure, and perform cognitive intelligence [2].
Along with the increasing diversity of product needs, the
manufacturing paradigm has shifted to mass personaliza-
tion, which will require more flexible and convenient new
manufacturing methods to meet user needs, in which digital
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FIGURE 1. Smart manufacturing principle diagram.

twin (DT)-based smart manufacturing (SM) technology plays
a huge role to meet the complex and diverse personalized
needs. Smart manufacturing, as a new manufacturing con-
cept, has a vast application prospect and application value, but
also faces numerous challenges. Using digital twins together
with smart algorithms, organizations can achieve data-driven
monitoring and optimization of operations [3]. At the same
time, Industry 4.0 is changing the way companies manu-
facture. The generation of massive amounts of end-to-end
information is helping manufacturing companies make better
production plans. Manufacturing companies are integrating
new technologies, including the Internet of Things, cloud
computing, artificial intelligence, and machine learning, into
their production facilities, and throughout their operations.
The digital twin can produce rational manufacturing plan-
ning and more accurate production control by connecting
the virtual and real physical worlds within the manufac-
turing industry in both directions. In addition, collaborative
manufacturing is increasingly adopted by companies, which
respond to the increasingly competitive market by leveraging
their superior resources [4]. For the industrial manufacturing
process, it will be of great industrial application value to
study the construction of a networked collaborative manu-
facturing platform system oriented to the integrated indus-
trial ecosystem by integrating network features, integration
mechanisms, collaborative model and ecological form [5].
In the future of smart manufacturing, a variety of distributed
and discrete manufacturing facilities as collaborative cloud
services will enable manufacturing companies to be flexible
enough [6]. In order to solve the problems of low utilization
of manufacturing resources and the difficulty for enterprises

to complete manufacturing tasks efficiently, manufacturing
resource sharing [7]. There is a process of sharing equipment
resources in the collaborative production process between
some enterprises, in which a large amount of information
data is transmitted, which will be closely linked to the selec-
tion of equipment resources available for scheduling and
the generation of production solutions between enterprises.
How to extract the most reasonable data in a complex data
system and combine them to predict the operation of future
equipment will be of great practical significance. The digital
twin technology in the smartmanufacturing systemwill better
solve this problem. By realizing the data information mapped
in the physical environment, it helps to realize themonitoring,
improvement, maintenance and prediction of the equipment
to assist the decision-making process in the actual produc-
tion process. The principle of smart manufacturing is shown
in Fig. 1.

Regarding the application of smart manufacturing com-
bined with practical production and future development
prospects, some scholars have made corresponding studies:
in the construction and application of smart manufacturing
system, Suvarna et al. pointed out that more andmore security
threats are disrupting the normal operation of smart manufac-
turing; therefore, a sustainable smart manufacturing security
management mechanism is designed for advanced persistent
threats, which will provide in-depth and continuous protec-
tion for smart embedded systems in smart manufacturing, and
simulation results show that the proposed mechanism has a
strong defense capability [8]. Zhang et al.argued that smart
manufacturing systems aim to reconfigure different systems
to achieve system intelligence based on advanced intelligence
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in their system lifecycle, with each smart system tailored
to manufacturing resource constraints and optimization-level
performance metrics [9]. Zhang proposed that in the context
of smart manufacturing, the relationship between framework
elements and specific application scenarios should be fur-
ther extended and studied from a realistic perspective; based
on the existing resources, elements, foundation, environ-
ment, standards, and norms, specific implementation plans
should be planned from the top-level planning of smart
manufacturing industry time [10]. Smart manufacturing has
an impact on the way companies make decisions and con-
cepts in the manufacturing process. Gao et al. proposed
an intelligent health diagnosis and maintenance decision
method for equipment in smart manufacturing by combin-
ing information-physical production system technology and
nonlinear kernel mapping algorithms to help maintenance
personnel accurately diagnose equipment operation andmake
timely maintenance. The method is used to help maintenance
personnel to accurately diagnose equipment operation and
make timely maintenance plans [11]. Parhi et al. proposed
smart manufacturing performance metrics for assessing oper-
ational transformation through the digitization of systems;
however, they found no reports on the quantification of
SME management systems within existing studies and based
on this issue, they proposed a conceptual framework for
decision-making in smart manufacturing environments based
on smart manufacturing performance metrics [12]. The appli-
cation of digital twin technology in the smart manufacturing
process will further help enterprises to realize production
planning and make corresponding adjustments to dynamic
market demands quickly and efficiently. Barenji et al. pro-
posed a digital twin-driven approach that combines agent-
based decision-making to optimize motion planning in a
robotic honeycomb in real-time and to optimize the physical
and virtual layers of the manufacturing facility; based on
this, the architecture of the digital twin-driven facility was
designed and its operation mechanism and implementation
were explained in detail [13]. Liu et al. built a prototype
of a digital twin design platform for manufacturing systems
based on the quadruple design architecture of digital twin
technology, and combined with example studies to show
that the digital twin system design approach is feasible and
effective [14].

With the combination of digital twin technology, collab-
orative manufacturing enterprises will be able to improve
their productivity and control their own production capacity.
In the face of changing market conditions and manufacturing
environment, inter-enterprise co-production will enhance the
resilience of enterprises themselves. In the construction of
the model, this paper focuses on the enhancement of both
social value and manufacturing value. This manufacturing
model of collaborative production capacity, which is ori-
ented by market demand and takes into account the alloca-
tion of equipment resources and supply chain value, will be
more flexible to respond to the occurrence of unexpected
events and continuous dynamic changes in market demand.

Under the above practice and research background, this paper
makes the following contribution:

• This paper proposes a new predictive diagnosis method
based on Elman-IVIF-TOPSIS to establish the appropri-
ate dynamic equipment resources, so that the matching
effect between equipment resources and manufacturing
enterprises is better and more fit the actual production
needs.

• We establish a value co-creation system based on quanti-
tative analysis in conjunction with a green supply chain
system and build a multi-objective robust optimization
model based on collaborative manufacturing optimiza-
tion to reduce the negative impact of a bi-directional
uncertain environment.

• We combine sensors, Internet of Things, embedded
software and other data collection or statistical equip-
ment to achieve real-time statistics of end-of-production
and end-of-demand data, from which we can filter
and combine useful information for uncertain envi-
ronments and obtain laws from them to better meet
customer needs and achieve more accurate production
planning.

This paper is structured as follows: Section II is the litera-
ture review. Section III is the problem description. Section IV
presents the structure of the predictive diagnostic model,
which includes: DT-assisted capacity predictive diagnostic
model based on Elman-IVIF-TOPSIS, DT-assisted research
and analysis of the impact demand on profitability. Section V
proposes the construction of value co-creation evaluation
system based on quantitative analysis, dual uncertainty envi-
ronment analysis, construction of multi-objective model and
introduces the smart manufacturing system based on col-
laborative production capacity optimization. Section VI is
an example simulation analysis to verify the feasibility and
effectiveness of the proposed method with a multi-objective
population intelligence algorithm. Section VII concludes the
whole paper.

II. LITERATURE REVIEW
A. THE DIGITAL TWIN IN SMART MANUFACTURING
In the actual production process, companies can use digital
twin technology to quickly locate equipment failures and
identify the corresponding causes of inefficiencies, which
will help manufacturing companies to keep track of equip-
ment operation and make adjustments in advance. Leng et al.
indicated that the growing demand for product personaliza-
tion will require manufacturing systems to be highly flexible
to adapt to changes and proposed a new approach for rapid
reconfiguration of automated manufacturing systems driven
by digital twins; combined with examples, the feasibility
and effectiveness of the approach was verified to improve
system performance [15]. Yang et al. combined digital twin
technology with spacecraft and proposed the concept of a
spacecraft digital twin and the conceptual structure of a
four-dimensional model adapted to spatial distribution [16].
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Liu et al. indicated that the rapid development of next-
generation information technology has driven the emergence
of information-physical production systems and proposed
a system framework to provide guidance for the rapid
configuration and operation of digital twin-based information-
physical production systems [17]. Implementing online paral-
lel control in the network model during system operation and
providing timely feedback of adjustment instructions to the
physical system will be facilitated by digital twin technology.
Leng et al. pointed out that one of the bottlenecks in the shift
of the manufacturing paradigm to a high-volume personaliza-
tion model is to realize the interaction between the physical
and digital worlds of the manufacturing system and proposed
a grooming twin-driven manufacturing information-physical
system for the parallel control of the smart shop floor in a
large-scale personalization model and then to form a dynamic
autonomous system of various manufacturing resources to
jointly create personalized products [18]. Liu et al. pro-
posed that digital twin technology can transfer robot learning
strategies from simulation to the real world and based on
deep reinforcement learning for assembly-oriented indus-
trial grasping scenarios, a digital twin technology-supported
approach was proposed to achieve an effective transfer
of deep reinforcement learning algorithms to physical
robots [19].

B. COLLABORATIVE SMART MANUFACTURING
In an environment of facing huge market competition, col-
laborative manufacturing is being adopted by more and more
companies, and companies are responding to the increasingly
competitive market by making full use of superior resources
among themselves. Under smartmanufacturing, collaborative
production capabilities between enterprises will be important
in dealing with major disasters; and digital twin technology
will enhance the resilience of enterprises and more efficiently
attenuate the impact of uncertain environments. Leng et al.
proposed a two-layer autonomous process control framework
based on cloud edge orchestration and built a blockchain
smart contract-driven multi-agent system to enhance the
resilience of the system in order to improve the productivity
of large-scale personalized rapid printed circuit board manu-
facturing [20]. Vrabič et al. pointed out that digital twin tech-
nology offers the potential to enhance the understanding of
current and future manufacturing processes and proposed an
approach to handle uncertainty and disturbances to enhance
system resilience, validating the feasibility of the approach
with examples [21]. Salvi et al. proposed a cyber resilience
model for critical cyber infrastructures based on digital twin
implementations and explored the risks associated with the
integration of computational, communication, and physical
aspects associated with it; the approach was derived in the
context of real-world cases that would minimize response
time and reduce the impact of cyber attacks on organizations
and society at large [22].

C. SUPPLY CHAIN MANAGEMENT IN SMART
MANUFACTURING
In smart manufacturing, the supply chain scheduling problem
will become more complicated according to multiple prod-
uct demands and multiple production modes. The sharing
of information resources and production resources among
enterprises becomes one of the driving factors to enhance the
economic efficiency of enterprises. The connection between
smart manufacturing and the supply chain has also attracted
extensive attention from scholars. Pu et al. pointed out that
supply chain management has a crucial role in smart man-
ufacturing enterprises, which refers to the coordination and
integration of upstream suppliers and downstream customers,
aiming to optimize the performance of thewhole supply chain
management of smart manufacturing enterprises; thus, it tries
to use agent technology to supply chain management process
to optimization to enhance its dynamic allocation planning
capability [23]. Lyu et al. pointed out that existing warehouse
operations activities within the supply chain system require
greater cost support, and therefore proposed a novel zero-
warehouse smart manufacturing system to provide informa-
tion visibility and achieve operational improvements [24].
Jian et al. proposed a multi-objective model considering col-
laborative manufacturing capability and service benefit max-
imization by segmenting customers from two dimensions of
customer share and market consumption and identifying the
weight of customer groups. The simulation results show that
managers can choose the best manufacturing base according
to this model, so as to reduce costs, shorten delivery time and
improve manufacturing capacity and service efficiency [25].
Ding et al. proposed an information physical production
monitoring service system for collaborative production mon-
itoring of personalized product orders to enhance customer
participation awareness to better help manufacturers produce
customer-centric personalized products [26].

Based on the research results of scholars in the past, we find
that scholars have proposed many development directions
in the research of smart manufacturing and are constantly
improving them, but there is little research on the com-
bination of smart manufacturing and inter-enterprise col-
laborative optimization of production capacity. In terms of
inter-enterprise collaborative production capability, the cur-
rent research on network collaborative manufacturing mainly
focuses on the establishment of the platform and the design
of the network structure, and the scheduling problem of col-
laborative manufacturing mainly focuses on the scheduling
of workshop and assembly line. There is less research on
the relationship between collaborative manufacturing sub-
jects, the improvement of inter-subject collaboration capa-
bility, dynamic equipment resource scheduling decision and
the utilization of complex information data in this process.
In addition, most of the literature on supply chain value
factors in distributed shared capacity scenarios only con-
siders the logistics time and cost of work-in-process, but
storage and inventory capacity, green environment, etc. are
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not included. Based on the deficiencies of existing research
in some aspects, we combine the depth of smart manufactur-
ing and collaborative manufacturing process to constitute a
more complex smart manufacturing system; to facilitate the
retrieval, utilization, and screening of information data and to
provide more convenient and specific suggestions for future
production planning, we introduce digital twin technology
to assist. At the same time, we propose an Elman-IVIF-
TOPSIS-based equipment prediction and diagnosis method
based on digital twin technology to help co-manufacturing
enterprises make better equipment scheduling planning and
achieve better equipment matching results.

III. PROBLEM DESCRIPTION
A variety of new manufacturing concepts have emerged to
address the increasingly diverse market needs. In this process,
companies have achieved a certain degree of in-depth coop-
eration in product design and manufacturing. Companies are
more closely tied together to face the complex and changing
market needs. Under the smart manufacturing model, the
timely collection of data and information will be reasonably
beneficial for manufacturing enterprises to find out the corre-
sponding production laws to better meet the market demand
and the enterprises’ own production needs. The principle of
digital twin is shown in Fig. 2.

FIGURE 2. Digital twin corresponding schematic.

However, in the current environment, enterprises are con-
stantly facing multiple uncertainties, which makes it difficult
to determine the demand for products and their production
capacity. The problems of matching idle equipment resources
based on the shared manufacturing platform and the degree
of matching are still not perfectly solved. Some of the idle
equipment in the enterprise are stored in the warehouse for
a long time for the purpose of responding to market demand,
resulting in the waste of equipment resources. After receiving
the equipment, the demand side of the equipment still has
problems such as less effective equipment utilization and

lower equipment efficiency in the actual production process.
In the process of sharing equipment resources among multi-
ple enterprises, it also means that there are more uncertainties
in this process, such as equipment depreciation, equipment
radiation, equipment cutting risks and other problems that are
more and more serious along with the process of equipment
scheduling. In the design of the program, the company did
not take the perspective that the market demand is always
changing, thus resulting in a great waste of capacity and poor
matching of idle equipment. There is a double uncertainty
relationship in the system: first, the market demand in the
uncertain environment is dynamic, and wholesalers have dif-
ficulty in making ordering decisions. Secondly, the efficiency
of matching idle equipment between companies is also uncer-
tain. The decision of the best production solution and idle
equipment matching solution within the double uncertainty
system has become a new hot issue. The root cause of these
problems is the difficulty of obtaining accurate information
resources to cope with the uncertainties of the changing
market end demand and equipment capacity. Therefore, the
importance of building a smart manufacturing system with
real-time statistical data information is becoming more and
more prominent, combining sensors and collaborative opti-
mization models to make accurate and convenient solution
design and dynamic adjustments. The principle of equipment
resource matching mentioned in this paper is shown in Fig. 3.

FIGURE 3. Equipment resource matching schematic.

Aiming at the above-mentioned problems, this paper stud-
ies from two aspects: the maximization of supply and demand
matching efficiency and the construction of value co-creation
evaluation system in an uncertain environment. It involves
changes in demand in uncertain environments, shared equip-
ment resources, and the construction of an intermediary
shared platform. The node types in this article are: enterprise
manufacturer, wholesaler, customer (demand point). Suppose
there are P demand points in the region. In order to better
meet the large-scale personalized needs of customers, several
companies plan to form a business alliance in the region.
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FIGURE 4. System structure analysis model.

After investigation, a total of B idle equipment resources
are found to be available for scheduling, and there are T
manufacturing companies that can serve as co-manufacturing
partners, K wholesalers, and J warehouses. For the pur-
pose of illustration, the following definitions are made: the
nodes in the network are denoted by T , I , J ,K ,P, among
them: {1, 2, . . . ,T } ∈ T is the set of Mt nodes of the
manufacturing enterprise, {1, 2, . . . , I } ∈ I is the set of
Ci nodes of the production center within the manufacturing
enterprise, {1, 2, . . . , J} ∈ J is the set of Wj nodes of the
warehouse, {1, 2, . . . ,K } ∈ K is the set of Rk nodes of the
wholesaler, {1, 2, . . . ,P} ∈ P is the set of Dp nodes of
the demand point. The system structure analysis model is
shown in Fig. 4.
Themanufacturing process can be divided into two sources

of product manufacturing in the manufacturing systemwithin
the manufacturing company Mt within the production center
Ci manufacturing products delivered to the wholesaler Rk .
A part comes from the extraction of raw materials after pro-
duction based on the internal production line, the quantity is
Qikr and the corresponding unit product reprocessingmaterial
and labor prices are RCM ik and RCPik , respectively. Another

part of the product from the warehouse storage products
after reprocessing can be sold again, the number of Qikm,
the corresponding unit product reprocessing materials and
labor prices are: MCM ik and MCPik . Tikr , Tikm denote the
processing time required for a unit of wholesale product
processed by production center Ci within manufacturing firm
Mt to wholesaler Rk product after reprocessing and the pro-
cessing time required for a unit of wholesale product pro-
cessed by production line, respectively. The actual demand
of wholesaler k corresponding to each demand point is Qpk ,
p ∈ [1,P]. Product transportation process due to different
transport paths and transport conditions, so different degrees
of product wear and tear occur, so there is a wholesaler
Rk corresponding to the actual arrival of products in the
production center Ci within the manufacturing enterpriseMt ,
Qikn = Qik ∗ (1 − eikd ), d ∈ D among them: d denotes the
mode of transport,D denotes the set of transport modes. After
the equipment transfer process occurs, the manufacturing
system capacity is increased and certain material and labor
costs are incurred, while the manufacturing system profit is
increased. In the system, first the product order is submitted
to the manufacturing system after the wholesaler Rk forecasts
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FIGURE 5. Industrial data flow.

the customer demand and specifies the maximum delivery
date Tkmax , and the manufacturing system receives the order
Qi =

∑K
k=1

∑I
i=1Qki, among them: Qki(k = 1, . . . ,K , i =

1, . . . , I ) is denoted as the volume of ordered goods presented
by wholesaler Rk to production center Ci within manufac-
turing firm Mt . The manufacturer Mt produces and chooses
the most economical transport route to satisfy the maximum
delivery time. Wholesaler Rk sells the wholesale product to
each corresponding demand point after receiving it. If there
is a surplus of products, the wholesaler can return the surplus
products to the warehouse of the manufacturing system at a
low price SVRkj or sell them through other channels at a low
price SVOk through reverse logistics. The unit price of equip-
ment transportation, unit price of equipment installation, and
total transportation and installation time for the correspond-
ing exogenous equipment b transferred from production
center Ci within manufacturing enterprise Mt to production
center Ci′ within manufacturing enterprise Mt ′ are ETCbii′ ,
EICbii′ , and EITbii′ , respectively. Qik denotes the amount of
product shipped from production center Ci within manu-
facturing firm Mt to wholesaler Rk . Qkn denotes the cur-
rent stage product surplus of wholesaler Rk . Within the
manufacturing system Qj denotes the storage quantity of
warehouse Wj and Qj ∈ [0,Qjmax], Qjmax denotes the
maximum product storage quantity of warehouse Wj, Qjn
denotes the existing product storage quantity of warehouse
Wj, Qjn ∈ [0,Qjmax]. Qje denotes the product storage
quantity of warehouse Wj after the end of the eth cycle,
Qje ∈ [0,Qjmax]. SCPj denotes the unit price per product
storage of the corresponding warehouse Wj. Tjmax denotes
the maximum return time of warehouse Wj. For whole-
saler Rk received the total amount of products Qikn pro-
cessing can be divided into three ways: (1) Wholesaler
Rk sells the product to customer source Dp with RPkp.
(2) Wholesaler Rk returns the unsold product to warehouse
Wj with SVRkj, and the quantity is recorded asQkj. (3) If there
is still remaining product, wholesaler Rk sells it at a low price
with SVOk , and the quantity is recorded as Qk .

IV. DT-ASSISTED PREDICTIVE DIAGNOSTIC MODEL
In the context of smart manufacturing, the operating data
of the equipment will be recorded by sensors and counted
the database in real-time to facilitate the analysis of the pro-
duction capacity and operation of each equipment resource.

Firstly, the corresponding equipment parameter data sets
with time series characteristics in the database are retrieved
and the parameter values for the next cycle are predicted by
the Elman neural network model. Secondly, combined with
the questionnaire survey, the corresponding index system is
established according to the statistical data of different equip-
ment resources’ characteristics, such as equipment depre-
ciation, chemical radiation, noise hazard, radiation hazard,
etc.; thus, helping enterprises to decide the better equipment
resources. The platform helps companies establish priorities
for dynamic equipment transfers and uploads that data within
the smart manufacturing system. The industrial data flow is
shown in Fig. 5.
The digital transformation offered by Industry 4.0 allows

manufacturers to enable production with the help of digital
twins. Manufacturers can use digital twins to help boost
business productivity, improve workflows and design new
products. Common application scenarios of smart manufac-
turing systems based on digital twin technology are shown
in Fig. 6.

FIGURE 6. Smart manufacturing system based on digital twin technology.

A. DT-ASSISTED CAPACITY PREDICTIVE DIAGNOSTIC
MODEL BASED ON ELMAN-IVIF-TOPSIS
There are many uncertainties in the operation of the equip-
ment, such as the lack of efficiency due to the lack of skill
of the operator, the risk of cutting and radiation during the
operation of the equipment, and the degree of wear and
tear of the equipment. Therefore, it is necessary to adopt
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a reasonable evaluation method to achieve the initial screen-
ing of the equipment to ensure the good operation of the
equipment in the process. Elman neural network has advan-
tages over back propagation (BP) neural network in terms
of convergence speed for device diagnosis problems. We use
Elman neural network to predict the parameters of equipment
operation to assist decision makers. By using this parameter
content, the decision maker can clearly understand the his-
torical operation status of the equipment and have a basic
judgment on the future operation performance of the equip-
ment based on the prediction results, which will ensure the
good operation performance of the equipment even after
dispatching and reduce the occurrence of equipment failure.

1) ELMAN NEURAL NETWORK PREDICTIVE MODEL
Elman neural network and BP neural network structure are
similar, with input layer, output layer and hidden layer,
in addition to the above structure also contains a structural
layer with memory and feedback function. Elman neural
network structure is shown in Fig. 7.

FIGURE 7. Schematic diagram of Elman neural network structure.

The functional expression of the Elman neural network is:

y(k) = g(ω3x(k)) (1)

x(k) = f (ω1xc(k) + ω2u(k − 1)) (2)

xc(k) = x(k − 1) (3)

where xc is the output vector of the undertaking layer; y is
the output vector; x is the output vector of the hidden layer,
u is the input vector; ω1, ω2 and ω

3
are the weights from

the undertaking layer to the hidden layer, the input layer to
the hidden layer, and the hidden layer to the output layer,
respectively; g(x) is the excitation function of the neuron in
the output layer, and f (x) is the excitation function of the
neuron in the hidden layer.

The standard Elman neural network trains its parameters
by gradient descent method, and its error function E(k) is:

E(k) =

N∑
k=1

[y(k) − d(k)]2 (4)

where d(k) is the desired output vector.

The learning process of Elman neural network is divided
into two sub-processes: forward propagation and backward
propagation. When the actual and expected training error of
the network output layer is not equal to 0, the backward
propagation propagates the error to each layer and adjusts the
weights to reduce the error, and the formula for the amount
of weight change can be obtained from the partial derivative
of E(k), as follows:

1ω3
ij = −η3

∂E
∂yi(k)

∂yi(k)

∂ω3
ij

= η3[di(k) − yi(k)]g′xj(k) (5)

1ω2
jt = −η2

∂E
∂yi(k)

∂yi(k)
∂xj(k)

∂xj(k)

∂ω2
jt

= η2[di(k) − yi(k)]g′ω3
j f

′ui(k) (6)

1ω1
jj = −η1

∂E
∂yi(k)

∂yi(k)
∂xj(k)

∂xj(k)

∂ω1
jj

= η1[di(k) − yi(k)]g′ω3
j f

′xcj(k) (7)

where 1ω1
jj, 1ω2

jt , 1ω3
ij are the weight corrections of ω1, ω2,

ω3, respectively, where i = 1, 2, . . . ,N , j = 1, 2, . . . , n, t =

1, 2, . . . ,M ; N , n,m are the number of nodes in output layer,
implicit layer, and input layer, respectively; η1, η2, η3 are the
learning rates of ω1, ω2, ω3, respectively.

2) INTERVAL-VALUED INTUITIONISTIC FUZZY (IVIF) SETS
Definition 1: Let Q be a non-empty set. A = {⟨x, µA(x),

νA(x)⟩, x ∈ Q} is IFS. µ̃A(x) and ν̃A(x) are the membership
and non-membership degree of x, µA : x → [0, 1] , νA : x →

[0, 1]; 0 ≤ µ̃A (x) + ν̃A (x) ≤ 1.
Definition 2: An IVIF set in Ã over X is an object given as

in (8):

Ã = {⟨x, µ̃A (x) , ν̃A (x)⟩ , ∀x ∈ X} (8)

where: µ̃A (x) → Q ⊆ [0, 1] , ν̃A (x) → Q ⊆ [0, 1]. µ̃A (x)
and ν̃A (x) denote themembership and non-membership func-
tions of x in the set A, respectively. The lower and upper end
values are represented by

[
µ̃−

ij , µ̃
+

ij

]
,
[
ν̃−

ij , ν̃
+

ij

]
[27] in (9):

Ã =

{〈
x,
[
µ̃−

ij , µ̃
+

ij

]
,
[
ν̃−

ij , ν̃
+

ij

]〉
, x ∈ X

}
(9)

where 0 ≤ µ̃−

ij + µ̃+

ij ≤ 1, 0 ≤ ν̃−

ij , 0 ≤µ̃−

ij

Definition 3: Let α̃1 =

[
µ−

α̃1
, µ+

α̃1

]
;

[
ν−

α̃1
, ν+

α̃1

]
and α̃2 =[

µ−

α̃2
, µ+

α̃2

]
;

[
ν−

α̃2
, ν+

α̃2

]
be two IVIFNs and λ > 0, then we

get (10-13) [28], [29]:

α̃1 ⊕ α̃2 =

[
µ−

α̃1
+ µ−

α̃2
− µ−

α̃1
µ−

α̃2
,

µ+

α̃1
+ µ+

α̃2
− µ+

α̃1
µ+

α̃2

]
,
[
ν−

α̃1
ν−

α̃2
, ν+

α̃1
ν+

α̃2

]
(10)

α̃1 ⊗ α̃2 =

[
µ−

α̃1
µ−

α̃2
, µ+

α̃1
µ+

α̃2

]
,[

ν−

α̃1
+ ν−

α̃2
− ν−

α̃1
ν−

α̃2
, ν+

α̃1
+ ν+

α̃2
− ν+

α̃1
ν+

α̃2

]
(11)
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λ α̃ =

[
1 −

(
1 − µ−

α̃

)λ
, 1 −

(
1 − µ+

α̃

)λ ]
,
[(

ν−

α̃

)λ
,
(
ν+

α̃

)λ ]
(12)

α̃1

α̃2
=

[
min

(
µ−

α̃1
, µ−

α̃2

)
,min

(
µ+

α̃1
, µ+

α̃2

)]
,[

max
(
ν−

α̃1
, ν−

α̃2

)
,max

(
ν+

α̃1
, ν+

α̃2

)]
(13)

Definition 4: Let α̃1 =
[
µ−

1 , µ+

1

]
;
[
ν−

1 , ν+

1

]
and α̃2 =[

µ−

2 , µ+

2

]
;
[
ν−

2 , ν+

2

]
be two IVIFNs. The Euclidian distance

(ED) and Hamming distance (HD) calculate the distance in
(14-15) [30]:

ED = 1/2
[∑((

µ−

1 − µ−

2

)2
+
(
µ+

1 − µ+

2

)2
+
(
ν−

1 − ν−

2

)2
+
(
ν+

1 − ν+

2

)2)] 1
2

(14)

HD = 1/4
∑(∣∣µ−

1 − µ−

2

∣∣+ ∣∣µ+

1 − µ+

2

∣∣
+
∣∣ν−

1 − ν−

2

∣∣+ ∣∣ν+

1 − ν+

2

∣∣) (15)

In the next section it will be described how IVIF-TOPSIS
can be effectively combined with a risk system diagnostic
model applicable to equipment in an epidemic environment.

3) CRITERIA, ALTERNATIVES AND LINGUISTIC TERMS
Based on literature [31], [32], [33], [34] related to equipment
risk and combined with the questionnaire survey analysis,
statistics; we obtained five indicators. These indicators are:
equipment depreciation (C1), cutting risk (C2), chemical
radiation (C3), noise hazard (C4), radiation hazard (C5).
Analysis using a decision group of five experts on seven idle
equipments (A1-A7) from different enterprises.

Decision makers use the seven-level language term defined
in IVIFS to evaluate equipment based on indicators. These
languages are widely used in decision analysis and informa-
tion systems. IVIFS helps to apply and handle many decision
problems in uncertain environments. Table 1 describes the
language terms and their corresponding IVIFS.

TABLE 1. Linguistic terms and IVIFS.

These linguistic terms will be used to construct a decision
matrix about TOPSIS, and five decision makers will give
different linguistic terms according to the characteristics of
equipment. The specific operation will be introduced in the
next section.

4) ELMAN-IVIF-TOPSIS BASED PREDICTIVE DIAGNOSTIC
MODEL
This section proposes a predictive diagnosis model based on
Elamn-IVIF-TOPSIS in a shared supply chain in a smartman-
ufacturing environment. The corresponding model is shown
in Fig. 8. Fig. 8 shows in detail how to use predictive diag-
nostic systems to help decision-makers choosemanufacturing
equipment suitable for production.

The evaluation system is built in conjunction with existing
equipment, helping DMs (decision makers) to more easily
decide on the equipment that best meets their needs and
enabling equipment to be delivered.

The steps of Elman-IVIF-TOPSIS are proposed and sum-
marized in the following algorithm:

Step 1: Establish the basic needs and common risks of
equipment using a questionnaire survey of multiple enter-
prises. Generate known alternatives and criterion. Sup-
pose that there are m alternatives, denoted by A =

{A1,A2, . . . ,Am} and n criterions be C = {C1,C2, . . . ,Cn}.
Step 2: Generate a set of decisionmaker. Suppose that there

are k decision makers, denoted by D = {D1,D2, . . . ,Dm}.
Expert group statistics historical parameters and the specific
use of equipment, combined with Elman neural network to
obtain the operating parameters of the equipment in this
cycle.

Step 3: Generate aggregated decision matrix Yp. At the
same time, generate average decision matrix Ȳ . The specific
formula is shown in (16).

Yp =

(
f pij
)
m×n

=


f p11 f p12 · · · f p1n
f p21 f p22 · · · f p2n
· · · · · · · · · · · ·

f pm1 f pm1 · · · f pmn


Ȳ =

(
fij
)
m×n , where fij =

(
f 1ij ⊕ f 2ij ⊕ · · · ⊕ f kij

k

)
. (16)

Step 4: Generate the weighting matrix W and the average
weighting matrix W̄ using (17-18).

Wp =
(
ω
p
i

)
1×m =

C1 C2 · · · Cm[
ω
p
1 ω

p
2 · · · ω

p
m
] (17)

Wp =
(
ω
p
i

)
1×m =

C1 C2 C3 C4 C5 C6 C7[
ω1 ω2 ω3 ω4 ω5 ω6 ω7

]
(18)

where W̄ = (ωi)1×m, and ωi =
ω1
i ⊕ω2

i ⊕···⊕ωki
k .

Step 5: Construct the aggregated weighted interval valued
intuitionistic fuzzy decision matrix, D′:

D′
= D⊗W =

(
r ′
ij

)
m×n

, r ′
ij

=

([
a′
ij, b

′
ij

]
,
[
c′ij, d

′
ij

])
(19)

The value of the weighting matrix ω
p
m is calculated by

averaging the linguistic terms of each decisionmaker for each
indicator of different options to obtain a weighting matrix for
the seven indicators.
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FIGURE 8. Predictive diagnostic system.

Step 6: Use (20-21) to determine the positive and negative
ideal solutions.

D
′k+

=

(
D

′k+
1 ,D

′k+
1 , . . . ,D

′k+
m

)
=

(〈[
ak+1 , bk+1

]
,
[
ck+1 , dk+1

]〉
,〈[

ak+2 , bk+2
]
,
[
ck+2 , dk+2

]〉
, . . . ,〈[

ak+m , bk+m
]
,
[
ck+m , dk+m

]〉)
(20)

D
′k−

=

(
D

′k−
1 ,D

′k−
1 , . . . ,D

′k−
m

)
=

(〈[
ak−1 , bk−1

]
,
[
ck−1 , dk−1

]〉
,〈[

ak−2 , bk−2
]
,
[
ck−2 , dk−2

]〉
, . . . ,〈[

ak−m , bk−m
]
,
[
ck−m , dk−m

]〉)
(21)

where:

D
′k+
j =

〈[
ak+j , bk+j

]
,
[
ck+j , dk+j

]〉
=

〈[
max
i
akij,max

i
bkij

]
,

[
max
i
ckij,max

i
dkij

]〉
D

′k−
j =

〈[
ak−j , bk−j

]
,
[
ck−j , dk−j

]〉
=

〈[
min
i
akij,min

i
bkij

]
,

[
min
i
ckij,min

i
dkij

]〉

Step 7: Calculate the distance from each factor to the
IVIF-PIS (IVIF-TOPSIS positive ideal solution) and IVIF-
NIS (IVIF-TOPSIS negative ideal solution) as shown below.
As shown in (22-23).

S+

i

(
Di,A+

)
=

{
1
4

n∑
j=1

[(
aij − a+

j

)2
+

(
bij − b+

j

)2

+

(
cij − c+j

)2
+

(
dij − d+

j

)2]} 1
2

,

i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . ,K

(22)

S−

i

(
Di,A−

)
=

{
1
4

n∑
j=1

[(
aij − a−

j

)2
+

(
bij − b−

j

)2
+

(
cij − c−j

)2
+

(
dij − d−

j

)2]} 1
2

,

i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . ,K

(23)

Step 8: Calculate the coefficient (RCi) by using (24).

RCi =
S−

i

S−

i + S+

i

, i = 1, 2, . . . , n (24)

Step 9: Rank alternatives and choose the best alternative.
Step 10: The dynamic equipment is mobilised and com-

bined with the sensor recording data, the equipment data
is uploaded to the Elman neural network prediction system
to predict the equipment parameters for the next cycle for
the decision maker to select the appropriate IVIF number in
relation to the linguistic terminology.

B. MARKET DEMAND
In an uncertain environment, the manufacturing environment
and market demand environment faced by smart manufactur-
ing systems will continue to change. First, wholesalerRk gen-
erates the corresponding orders by forecasting the demand
for its corresponding customer sources. The wholesaler then
uploads the order into the platform, which performs statisti-
cal analysis based on the demand quantity of each product
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within the order. In addition, the platform counts the idle
capacity of each manufacturing company’s subsidiary and
simulates the occurrence of scheduling to decompose the
wholesaler’s demand orders. Eventually, the idle equipment
scheduling scheme is executed and the corresponding task
volumes are assigned to the subsidiaries within each manu-
facturing company to be manufactured, thus the total number
of products Qki within the wholesaler order will directly
affect the scheduling process of shared idle equipment. The
deviation of the prediction of the actual customer demand
will have a direct relationship with the strength of the system
robustness. The prediction deviation of Qpk forms higher
storage cost by causing storage of products within the storage
system:

∑J
j=1 SCPj ∗ Qjn. The logistics system chooses dif-

ferent paths lik due to the variation of Qik (i = 1, . . . , I , k =

1, . . . ,K ) which indirectly affects the production planning
arrangement of Qikr ,Qikm in the next production cycle.

The Markov forecasting method can effectively predict the
possible states in a certain time based on the current state.
Based on the number of wholesalers Rk , the Markov method
predicts the market demand formula for the (e+n)th cycle as
follows:

(Bkm1,(e+n),B
km
2,(e+n), . . . ,B

km
l,(e+n))

= (Akm1,e,A
km
2,e, . . . ,A

km
l,e)

∗


pkm1,1,e pkm1,2,e · · · pkm1,l,e
pkm2,1,e pkm2,2,e · · · pkm2,l,e
· · · · · · · · · · · ·

pkml,1,e pkml,2,e · · · pkml,l,e


n

, m ∈ M , k ∈ K

(25)

Among them: Bkml,(e+n) denotes the probability of whole-
saler Rk ordering product m in the (e + n)th cycle when the
order quantity of product m is l, Akml,e denotes the probability
of wholesaler Rk ordering product m in the eth cycle when
the order quantity of product m is l, and pml,l,e denotes the
probability of wholesaler Rk ordering product m in the eth
cycle when the effect of uncertain environment is l.
By the existence of profit model analysis within the closed-

loop supply chain system, the corresponding WOGik and
RPkp values need to be established. The specific inferences
are as follows [1]:
Definition 5: Combining the data, the corresponding∑p
p=1Qpk of each wholesaler is denoted as (d1, d2, d3, . . .,

dp), the corresponding probabilities are (p(d1), p(d2),
p(d3), . . . , p(dp)).
Then, the corresponding P(D) is calculated based on the

previous data statistics, where the corresponding P(D) is
calculated when the demand is dp as follows:

P(D) = 1 −

P∑
p=1

P(dp) (26)

Chen and Ma drew the following corollary by analyzing
marginal pricing strategies [35].

TABLE 2. Demand probability table.

Corollary 1: Combining the existence of unit overstock
loss Co and unit out-of-stock loss (opportunity loss) Cu for
wholesaler Rk in the environment of demand uncertainty,
among them: Co = SCPj − SVOk , Cu = RPkp − SCPj,
we have:

RPkp =
SCPj − SVOk

P(D∗)
+ SVOk , j ∈ J , k ∈ K , p ∈ P

(27)

Li established the wholesale price in the case of maxi-
mum expected profit by constructing a supply chain game
model [36]. Combining (3), the following corollary is drawn:
Corollary 2: Subject to the principle of maximizing the

manufacturer’s profit, the manufacturer’s wholesale price
WOGik is:

WOGik =
SCPj − SVOk

2P(D∗)
+
SVOk + Cu

2
,

i ∈ I , j ∈ J , k ∈ K (28)

V. UNITS DT-ASSISTED COLLABORATIVE
MANUFACTURING CAPABILITY OPTIMIZATION MODEL
Different from previous studies, we consider the problem of
maximizing the value of the supply chain on the basis of the
original collaborative manufacturing capability optimization
research between enterprises. Combined with the analysis
of the problems faced by the sharing supply chain in the
actual operation, the corresponding value co-creation index
system is established, such as profit, product quality, delivery
time, green environmental protection and so on. We establish
the corresponding evaluation function based on quantitative
analysis to ensure that the results fit the actual supply chain
operation process to a greater extent. In the context of smart
manufacturing, using fewer production resources as much as
possible to create greater shared supply chain value.

In the context of smart manufacturing, collaborative manu-
facturing amongmanufacturing enterprises will create greater
resource value, which will better serve the market demand
and create greater economic benefits. In an increasingly
volatile market environment, manufacturing companies are
constantly faced with dynamic changes in both changing
market demand and uncertain production capacity. How-
ever, inter-enterprise collaborative manufacturing will be bet-
ter able to overcome this problem. At the same time, the
manufacturing barriers between enterprises will be gradu-
ally diluted under the joint action of multiple relevant data
information such as orders, production capacity, and equip-
ment failure problems within the smart manufacturing sys-
tem. To facilitate the establishment of production planning
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FIGURE 9. Inter-enterprise collaborative optimization process under smart manufacturing.

in the collaborative manufacturing process between coop-
erating enterprises in the context of smart manufacturing,
we combine robust optimization methods to establish a multi-
objective optimization model. In addition, in order to fur-
ther enhance the actual performance of dynamic equipment
resources after mobilization, we build corresponding match-
ing performance functions in the smart manufacturing system
to help enterprises establish the final scheduling plan and pro-
duction plan of dynamic equipment resources. The operation
process of collaborative production capacity optimization
under smart manufacturing is shown in Fig. 9.

Under the Industry 4.0 model, smart manufacturing will
help manufacturing companies to prevent equipment prob-
lems and optimize the production operation process, which
in turn will help companies to jump out of time and space
constraints to improve supply chain value and enhance their
core competitiveness. The specific application value and con-
tribution of the supply chain value model based on value co-
creation is shown in Fig. 10.

A. VALUE CO-CREATION INDICATORS AND EVALUATION
SYSTEM
In recent years, more and more experts and scholars have
focused on maintaining the sustainability of the supply chain
from the perspective of value creation in addition to maintain-
ing the robustness of the system. Smart manufacturing sys-
tems rely on digital twin technology, combined with dynamic
market data information to assist manufacturing companies
in this process and maximize the value of the supply chain
as much as possible. Based on the existing literature, Wang

proposed four elements of corporate competitiveness: prod-
uct quality, price, delivery time and service, and then com-
prehensively described the various advanced manufacturing
technologies and management methods that have emerged
to maintain the stable performance of the supply chain sys-
tem [37]. Li pointed out that green should be given more
attention and proposed three different types of green co-
creation strategies based on the three-level supply chain [38].
Based on the existing theoretical foundation, we explore the
five aspects of product quality, profit, delivery time, ser-
vice, and green environment under the existing uncertain
environment and construct the corresponding factor indica-
tors based on quantitative analysis. The value of the value
co-creation evaluation function is calculated by the value co-
creation evaluation function and the corresponding weight
percentages are set up according to the actual situation within
different industries as ω = (ω1, ω2, ω3, ω4, ω5)T . The spe-
cific indexes are defined and expressed by the formula as
follows:

1) PROFIT SIDE—SYSTEM PROFITABILITY
The shared manufacturing model implies an increase in
capacity within the supply chain system, which indirectly
affects the change in profitability of each part of the supply
chain system, thus constructing a system profitability func-
tion to ensure a more even distribution of profits between
companies and retailers.
Definition 6: Multiple enterprises contain a total of B

idle equipment available for inter-enterprise scheduling. Let
(Q∗

11,Q
∗

12,Q
∗

13, . . . ,Q
∗
kp) denotes the number of products
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FIGURE 10. Application value and contribution based on value co-creation.

sold by each wholesaler to each retailer in the ideal case,
and we have

∑P
p=1Q

∗
kp =

∑I
i=1Qikn. Let f1(x) denotes

the system profitability function of manufacturing firms and
wholesalers in the supply chain system under the shared
manufacturing model, f11(x) denotes the system profitabil-
ity function of manufacturing firms, and f12(x) denotes the
system profitability function of wholesalers. Among them:
f 111(x), f

2
11(x) denote the profit of the manufacturing firm

and the maximum profit of the manufacturing firm for the
scheduling scheme under the shared manufacturing model,
respectively. f 112(x), f

2
12(x) denote the profit of the wholesaler

and the maximum profit of the wholesaler for the scheduling
scheme under the shared manufacturing model, respectively.
The formulas are as follows:

f1(x) = f11(x) ∗ f12(x) (29)

where:

f11(x) =
f 111(x)

f 2
11
(x)

, f12(x) =
f 112(x)

f 212(x)

f 111(x) =

I∑
i=1

K∑
k=1

(WOGik ∗ Qik )

− [
I∑
i=1

K∑
k=1

(Vikd1 ∗ Qik ) +

K∑
k=1

J∑
j=1

(Vkjd2 ∗ Qkj)]

−

I∑
i=1

K∑
k=1

(MCMik +MCPik ) ∗ Qikm

−

I∑
i=1

K∑
k=1

(RCMik + RCPik ) ∗ Qikr

−

J∑
j=1

[(Qj(e−1) +

K∑
k=1

Qkjn −

I∑
i=1

Qji) ∗ SCPj]

−

B∑
b=1

I∑
i=1

I∑
i′=1

[xbii′ ∗ (ETCbii′ + EICbii′ )],

d1, d2 ∈ D

f 2
11
(x) =

I∑
i=1

K∑
k=1

(WOGik ∗ Qik )

−

B∑
b=1

I∑
i=1

I∑
i′=1

[xbii′ (ETCbii′ + EICbii′ )]

−

I∑
i=1

K∑
k=1

(Qik ∗ Vikd1)

−(
I∑
i=1

K∑
k=1

[Qikr ∗ (RCMik + RCPik )]

+

I∑
i=1

K∑
k=1

[Qikm ∗ (MCMik +MCPik )]), d1 ∈ D

xbtt ′ =


1, Idle equipment b transferred from

manufacturing enterpriseMt to Mt ′

0, Other

,

b ∈ B, t, t ′ ∈ T

f 212(x) =

I∑
i=1

K∑
k=1

P∑
p=1

[Q∗

kp
∗ (RPkp −WOGik )],

P∑
p=1

Q∗

kp
=

I∑
i=1

Qikn

2) DELIVERY PERIOD ASPECT—GOODS DELIVERY PERIOD
Definition 7: Let (Q11r ,Q12r,Q13r , . . . ,Qikr ) denotes the

quantity of inventory products re-produced by each manu-
facturing firm during the production process after receiving
the Task Agent, (Q11m,Q12m,Q13m, . . . ,Qikm) denotes the
quantity produced by raw material processing in the produc-
tion process carried out by each manufacturing enterprise
after receiving the Task Agent. Tikr , Tikm denote the unit
product processing time for reproduction and production by
raw material processing, respectively. Tikd , Tkmax denote the
unit product transportation time and the maximum goods
delivery period of wholesalers for transporting products from
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manufacturing enterprises to wholesalers, respectively. f2(x)
denotes the goods delivery period function specified by each
wholesaler. f ik2 (x) denotes the goods of eachwholesaler deliv-
ery period satisfies the function.

f2(x) =

I∑
i=1

K∑
k=1

f ik2 (x)

K∑
k=1

Tk max

(30)

Among them:

f ik2 (x) = Qikr ∗ Tikr + Qikm ∗ Tikm + Qik ∗ Tikd1,

i ∈ I , k ∈ K , d1 ∈ D

3) SERVICE ASPECT—CUSTOMER LOSS
There is also the problem of surplus goods disposal within the
supply chain system under the shared manufacturing model,
and the supply chain system should minimize the loss of
goods from wholesalers under an uncertain environment to
maintain the interests of wholesalers. Thus, the customer loss
rate function is constructed, and the function also ensures the
robustness of the system to a certain extent.
Definition 8: After the enterprise accepts the schedul-

ing of B idle equipment, the corresponding produc-
tion plan is generated. In the uncertain environment,
let

(
Q1n,Q2n,Q3n, . . . ,Qjn

)
denotes the existing goods

storage quantity of each warehouse, respectively, and
(Q1max ,Q2max,Q3max , . . . ,Qjmax) denotes the maximum
goods storage quantity of each warehouse, respectively. f3(x)
denotes the customer loss rate function within the supply
chain system under this scheduling scheme. f k3 (x) denotes
the customer loss rate of a single wholesaler within the
corresponding scheduling scheme. The formula is set up by
combining different cargo surplus cases as follows:

f3(x) =

K∑
k=1

f k
3
(x)

K∑
k=1

[
J∑
j=1

(Qkj ∗ SCPj)+(
I∑
i=1

Qikn−
J∑
j=1

Qkj) ∗ SVOk ]

(31)

Among them:

f k3 (x)

=



J∑
j=1

[Qkj ∗ SCPj],

if ((
I∑
i=1

Qikn −

P∑
p=1

Qkp)>
J∑
j=1

[Qjmax −Qjn])

0, if ((
I∑
i=1

Qikn −

P∑
p=1

Qkp) ≤

J∑
j=1

[Qjmax − Qjn]),

k = 1, . . . ,K

4) QUALITY ASPECTS—CARGO WEAR RATE
Definition 9: After receiving the corresponding Task

Agent, multiple manufacturing companies produce after
receiving B shared equipment and adjusting by Process
and Scheduling Agent. Let (Q11,Q12,Q13, . . . ,Qik) denotes
the quantity of goods produced by each firm corre-
sponding to each wholesaler. e11d1, e12d1, e13d1, . . . , eikd1),
(e11d2, e12d2, e13d2, . . . , ekjd2), d1, d2 ∈ D denote the path
wear rate per unit product corresponding to the choice of
transportationmode d1 and the choice of transportationmode
d2 for the return of the remaining goods by each enter-
prise corresponding to each wholesaler in the transportation
process, respectively. eikmax , ekjmax indicate that each enter-
prise transport to each wholesaler in the transport process
to choose the transport wear and tear maximum and return
the remaining goods to choose the transport wear and tear
maximum transport mode corresponding to the wear rate per
unit of product path. f4(x) denotes the function of the rate
of wear and tear of goods occurring within the supply chain
system during transportation, f k4 (x) denotes the cargo wear
rate function corresponding to a single wholesaler with the
following equation:

f4(x)

= 1 −

K∑
k=1

f k4 (x)

I∑
i=1

K∑
k=1

[Qik ∗ eik max] ∗

K∑
k=1

J∑
j=1

[Qkj ∗ ekjmax]

,

if


(
I∑
i=1

Qikn ≤

P∑
p=1

Qkp),
J∑
j=1

[Qkj ∗ ekjmax] = 0, k ∈ K

(
I∑
i=1

Qikn ≤

P∑
p=1

Qkp), ∀k,
K∑
k=1

J∑
j=1

[Qkj ∗ ekjmax] = 1

(32)

Among them:

f k4 (x) =



(
I∑
i=1

[Qik ∗ eikd1])(
J∑
j=1

[Qkj ∗ ekjd2]),

if (
I∑
i=1

Qikn >

P∑
p=1

Qkp)

I∑
i=1

[Qik ∗ eikd1], if (
I∑
i=1

Qikn ≤

P∑
p=1

Qkp)

,

k = 1, . . . ,K , d1, d2 ∈ D

5) GREEN ENVIRONMENT PROTECTION—ENERGY LOSS
RATE
Definition 10: After receiving the corresponding Task

Agent, multiple manufacturing companies produce after
receiving B shared equipment and adjusting by Pro-
cess and Scheduling Agent. Let (Q11,Q12,Q13, . . . ,Qik)
denotes the quantity of goods produced by each firm
corresponding to each wholesaler. p12d1, p13d1, . . . , pikd1),
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(p11d2, p12d2, p13d2, . . . , pkjd2), d1, d2 ∈ D denote the
energy loss rate per unit of product for each enterprise corre-
sponding to each wholesaler’s choice of transportation mode
d1 and return of the remaining goods to the transportation
mode d2. pikmax , pkjmax indicate the energy loss rate per
unit of product corresponding to the transportation process
of each enterprise transporting to each wholesaler choosing
the largest energy loss and returning the remaining goods
choosing the transportation mode with the largest energy
loss. f5(x) denotes the energy loss rate function occurring
within the supply chain system during transportation, f k5 (x)
represents the energy loss rate function corresponding to a
single wholesaler with the following equation:

f5(x)

= 1 −

K∑
k=1

f k5 (x)

I∑
i=1

K∑
k=1

[Qik ∗ pik max] ∗

K∑
k=1

J∑
j=1

[Qkj ∗ pkjmax]

,

if


(
I∑
i=1

Qikn≤

P∑
p=1

Qkp),
J∑
j=1

[Qkj ∗ pkjmax] = 0, k ∈ K

(
I∑
i=1

Qikn≤

P∑
p=1

Qkp), ∀k,
K∑
k=1

J∑
j=1

[Qkj ∗ pkjmax]= 1

(33)

where:

f k5 (x) =



(
I∑
i=1

[Qik ∗ pikd1])(
J∑
j=1

[Qkj ∗ pkjd2]),

if (
I∑
i=1

Qikn >

P∑
p=1

Qkp)

I∑
i=1

[Qik ∗ pikd1], if (
I∑
i=1

Qikn ≤

P∑
p=1

Qkp)

,

k = 1, . . . ,K , d1, d2 ∈ D

In summary, the system value co-creation comprehensive
evaluation function is constructed, and the five factors are
calculated by normalizing them and assigningweights to each
factor in a way that the system comprehensive evaluation
value is generated and then executed. The formula is as
follows:

f (x) = ω1 ∗ f1(x) + ω2 ∗ f2(x) + ω3 ∗ f3(x)

+ ω4 ∗ f4(x) + ω5 ∗ f5(x) (34)

ω1 + ω2 + ω3 + ω4 + ω5 = 1 (35)

B. DT-ASSISTED CAPACITY PREDICTIVE DIAGNOSTIC
MODEL BASED ON ELAMN-IVIF-TOPSIS
Combining the above construction of the value co-creation
model and the proposed collaborative production capability
under the shared manufacturing model, we find the following
conclusions:

(1) In the worst environment, market demand is difficult to
determine, and the original production planning scheme
will cause a huge loss of resources and waste of capac-
ity, increasing the inventory and transportation pressure.
At the same time, it will increase the profit loss of
wholesalers, which is not conducive to the formation
of long-term relationships. In terms of the environment,
it increases the waste of non-renewable energy.

(2) Although the matching of equipment resources on a
sharedmanufacturing platform can be simulated to estab-
lish capacity, the matching effect itself is highly uncertain
under the influence of an uncertain environment. The
matching solution is difficult to adjust to the uncertain
market changes, resulting in a lot of wasted capacity and
benefits.

When an enterprise produces under a production plan in a
normal environment, the following consequences will result
from the impact of a sudden and uncertain environment on
the actual process:

(1) Idle equipment is dispatched and processed using a
large amount of production materials, labor and material
costs, but will result in a large amount of product accumu-
lation in the inventory. If we re-analyze the adjustment of the
system production plan after the uncertain environment, it is
easy to find that the idle equipment is less effective and the
rental cost is higher, and its maximum production capacity is
not utilized. The formula for wasted idle equipment perfor-
mance is shown below:

B∑
b=1

1α
bti =

B∑
b=1

1CObti − [
K∑
k=1

Qα
ik −MOTti],

t ∈ T , i ∈ I , if MOTti <

K∑
k=1

Qki (36)

where: 1α
bti denotes the wasted capacity of idle equipment

within uncertain environment α after idle equipment is dis-
patched to production center Ci within manufacturing enter-
priseMt .Qα

ik denotes the quantity of products that production
center Ci should transport to wholesaler Rk after uncertain
environment α occurs.MOTti denotes the existing production
capacity of production center Ci within manufacturing enter-
prise Mt .

(2) Wholesaler Rk has difficulty in making adjustments
when facing an uncertain environment and can only pas-
sively accept the losses brought by the market. It will cause
the occurrence of problems such as imbalance in system
profitability, difficulty in meeting delivery dates, increased
customer losses, elevated goods wear and tear, and deepened
energy losses, etc. The specific value loss function is as
follows:

1f (x) = ω1 ∗ 1f1(x) + ω2 ∗ 1f2(x)

+ ω3 ∗ 1f3(x) + ω4 ∗ 1f4(x) + ω5 ∗ 1f5(x) (37)

Among them: 1f (x) denotes the degree of value loss.
1fi(x) = fi(x)− f α

i (x), and f
α
i (x) denotes the value rate under

uncertain environment α.

40554 VOLUME 11, 2023



Q. Tang et al.: DT-Assisted Collaborative Capability Optimization Model for SM System

Thus, we introduce the idea of robustness to deal with
this dual uncertain environment in order to obtain the most
reasonable design of the production planning scheme. The
robustness idea is proposed to connect two uncertain envi-
ronments with certain correlation, so that the system can
maximize the system performance even under an uncertain
environment. Compared with the conservative nature of the
traditional maximum-minimum objective function descrip-
tion method, the relative robustness function is proposed and
explained in the context of the existing practical environment
in this paper, with the following equation.

minmax{
f (Qik , 1CObti) − f (Q∗

ik , 1CObti)

f (Qik , 1CObti)∣∣g(Q∗
ik , 1CObti) ≤ 0 }, b ∈ B, ∀t, i, k (38)

Among them: f (Qik , 1CObti) denotes the maximum
capacity of the manufacturing system after scheduling by
multiple machines. f (Q∗

ik , 1CObti) denotes the capacity of
the manufacturing system after scheduling by b machine in
the present scheme.

C. MULTI-BOJECTIVE PRODUCTION CAPACITY
OPTIMIZATION MODEL FOR MANUFACTURING
COMPANIES
The idle waste of equipment resources can be effectively
reduced by establishing the objective function of maximum
supply and demand matching capability. In addition, by max-
imizing the evaluation function of value co-creation, the sta-
bility of the system can be maximized, the normal operation
of the system can be maintained, and the satisfactory results
of all parts of the system can be ensured. The objective
function is shown below.

minmax{
f (Qik , 1CObti) − f (Q∗

ik , 1CObti)

f (Qik , 1CObti)∣∣g(Q∗
ik , 1CObti) ≤ 0 }, b ∈ B, ∀t, i, k

max f (x) = ω1 ∗ f1(x) + ω2 ∗ f2(x) + ω3 ∗ f3(x)

+ ω4 ∗ f4(x) + ω5 ∗ f5(x)

where:

RPkp =
SCPj − SVOk

P(D∗)
+ SVOk , k ∈ K , j ∈ J , p ∈ P

WOGik =
SCPj − SVOk

2P(D∗)
+
SVOk + Cu

2
,

i ∈ I , j ∈ J , k ∈ K

The constraints are shown below:

B∑
b=1

I∑
i=1

I∑
i′=1

xbii′ = B (39)

Qikn = (Qikr + Qikm) ∗ (1 − eikd ),

i = 1, . . . , I , k = 1, . . . ,K (40)

Qjn = Qj(e−1) −

I∑
i=1

Qji +
K∑
k=1

[Qkj(1 − ekjd )],

j = 1, . . . , J (41)

RPkp > WOGik > SVRkj > SVOk ,

i = 1, . . . , I , k = 1, . . . ,K ,

j = 1, . . . , J , p = 1, . . . ,P (42)

(Qikr ∗ Tikr ) + (Qikm ∗ Tikm) + (Qik ∗ Tikd1)

+

B∑
b=1

I∑
i=1

I∑
i′=1

EITbii′ ≤ Tk max,

i = 1, . . . , I , k = 1, . . . , K , d1 ∈ D

(43)

Qkj ∗ Tkjd ≤ Tjmax,

k = 1, . . . ,K , j = 1, . . . , J , d ∈ D

(44)

Qik = Qikr + Qikm, i = 1, . . . , I ,

k = 1, . . . ,K (45)
I∑
i=1

Qikn =

P∑
p=1

Qkp+
J∑
j=1

Qkj+Qk , k = 1, . . . ,K

(46)

Qjn +

K∑
k=1

Qkjn ≤ Qjmax, j = 1, . . . , J (47)

I∑
i=1

Qji ≤ Qjn, j = 1, . . . , J (48)

K∑
k=1

Qik ≤ COti +
B∑
b=1

1CObti,

t = 1, . . . ,T , i = 1, . . . , I (49)

xbtt ′ =


1, Idle equipment b transferred

from manufacturing
enterpriseMt to Mt ′

0, Other

,

b ∈ B, t, t ′ ∈ T (50)

Equation (39) indicates the total number of exogenous
idle equipment within the manufacturing system that are
transferred from manufacturing firm Mt to manufacturing
firm Mt ′ as B. Equation (40) indicates that the wholesaler
Rk from the manufacturing enterprise Mt the actual arrival
of goods equal to the manufacturing enterprise Mt will be
shipped to the wholesaler Rk the amount of wholesale goods
and the difference between the amount of goods worn in
the transportation process. Equation (41) indicates that the
existing warehouse Wj warehouse storage volume should be
equal to the warehouse Wj warehouse goods volume before
the start of the cycle minus the production process con-
sumed in the warehouse products, while adding some of
the wholesalers returned to the warehouse Wj surplus goods.
Equation (42) indicates that wholesaler Rk will be shipped to
each demand point source of product sales price are greater
than the wholesaler from each manufacturing company’s
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wholesale price of the product are greater than the wholesaler
will return the product to each manufacturing company’s
return price are greater than the wholesaler to other channels
to sell at a lower price. Equation (43) indicates the processing
time required for the re-processing of each manufacturing
company’s products, the processing time required for the
production line to produce the product, the sum of product
transportation time should be no greater than the maximum
delivery period required by the corresponding wholesaler Rk .
Equation (44) indicates that the wholesaler Rk will return the
remaining product to the warehouseWj the amount of product
required should not be greater than the maximum return time
required by the warehouse Wj. Equation (45) indicates that
the manufacturing companyMt transported to the wholesaler
Rk transported product source is divided into two parts, part
from the amount of reprocessed product by the warehouse,
the other part from the amount of product processed by the
complete production line. Equation (46) indicates that the
actual arrival of wholesalers Rk processing is divided into
three parts, respectively, the number of wholesalers Rk to
each demand point sales of products, the number of products
returned to the warehouse of the remaining products, the
remaining products to other channels to deal with the number
of products at low prices. Equation (47) indicates that the
warehouse Wj existing warehouse stock and the sum of the
number of returns from each wholesaler k is not greater than
the maximum warehouse stock of warehouse Wj. Equation
(48) indicates that the total amount of products delivered from
warehouse Wj to each manufacturing enterprise should be
no greater than the existing storage capacity of warehouse
Wj. Equation (49) indicates that the production of each pro-
duction center within each manufacturing enterprise after the
occurrence of equipment scheduling should be less than its
maximum capacity. Equation (50) indicates the 0-1 variable.

D. SMART MANUFACTURING SYSTEM BASED ON
COLLABORATIVE PRODUCTIVITY OPTIMIZATION
In summary, a complex production capacity optimization
process will be realized among multiple enterprises under
smart manufacturing, which includes: resource scheduling
and decision making based on equipment resource sharing
platform, supply chain management combined with value co-
creation, and collaborative production capacity optimization
process among enterprises. Based on the above analysis, the
smart manufacturing system based on collaborative produc-
tion capacity optimization proposed in the article is shown in
Fig. 11.
Step 1: The cycle starts.
Step 2: First, real-time end-of-market data is counted and

the normal order quantity is determined based on
Markov forecasting methods and the wholesale and
retail prices of goods are established based on the
corresponding formulas.

Step 3: Production orders are generated and decomposed,
and manufacturing companies establish partners to
realize the collaborative production process.

Step 4: Each collaborative enterprise establishes its own
production capacity and uploads the required
equipment to the sharing platform of related equip-
ment resources.

Step 5: Based on the concept of collaborative manufactur-
ing, establish the corresponding evaluation indexes,
such as quality, service, green environment, etc.

Step 6: With the help of sensors and other information
equipment, we record the operating parameters
and operating conditions of the equipment in the
manufacturing enterprise, and predict the operating
parameters and operating conditions of the equip-
ment in the current cycle in real time to make
accurate equipment diagnosis process.

Step 7: Construct a predictive diagnosis model based on
Elman-IVIF-TOPSIS method, establish the corre-
sponding equipment indicators and invite the expert
group and others to establish the weight matrix
based on linguistic terms, etc.

Step 8: After the calculation results, rank the existing
equipment resources within the platform and
upload the results to the smart manufacturing
system.

Step 9: Combine the digital twin technology enterprise to
simulate the matching of each resource Agent with
the corresponding equipment after the schedul-
ing occurs and the collaborative processing of the
scheduling Agent and the process Agent to calcu-
late the capacity improvement. Establish the trans-
fer cost required for each transferred equipment in
the transfer process and the labor and material cost
required for each production center after receiving
the equipment.

Step 10: Construct a multi-objective robust optimization
model based on the market and capacity fluctuation
problems in a bi-directional uncertain environment.

Step 11: Combine the multi-objective population intelli-
gence algorithm to solve the model and establish
the final collaborative enterprise production plan
and equipment scheduling plan.

Step 12: Combine with other data statistical software or
equipment such as manufacturing and market end
sensors to collect data in real time and upload to the
smart manufacturing system to provide historical
data for the system operation in the next cycle.

Step 13: The cycle ends.

VI. MODEL APPLICATION
Since the proposed method requires too much data informa-
tion, we choose to compare it with actual manufacturing cases
and perform multiple comparisons to verify the feasibility
and validity of the model in both normal and significant
risk situations. Referring to the actual case presented by
Tang and Wu [1], there are three existing steel enterprises,
A, B and C, with multiple subsidiaries existing within
each enterprise. Each enterprise has the ability to process
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FIGURE 11. Smart manufacturing systems based on collaborative capacity optimization.

independently and upload digital information for
equipment scheduling in conjunction with the data-based
platform. In order to better meet customer demand, each
subsidiary within enterprises A, B and C decides to adopt
an intermediary-based sharing platform to share idle equip-
ment in order to enhance its production capacity. For
the sake of differentiation, the subsidiaries with the capa-
bility of processing cold-rolled high-strength steel plates
with phosphorus are indicated by ⊚, the subsidiaries with
the capability of processing seamless steel pipes are indi-
cated by ⃝, the subsidiaries with the capability of pro-
cessing galvanized steel coils are indicated by ⊙, and
the subsidiaries with the capability of processing low-
carbon wire rod for drawing are indicated by ▽. The
main production products of each subsidiary are shown
in Table 3.

The original system transportation path and facilities dis-
tributions are shown in Fig. 12 and Fig. 13. The subsidiaries
are named in the way of ’enterprise + subsidiary’, e.g., the
subsidiaries of enterprise B are named in order as B1 and B2.

The specific implementation and analysis process is as
follows:
Step 1: The uncertain environment establishes orders based

on Markov prediction models and uploads the order-
ing information to an intermediary-type platform.

Step 2: The intermediary-type platform subdivides orders
according to the types of products and establishes
various scheduling scenarios by counting the exist-
ing idle equipment of each corporate subsidiary.
To better explain the illustration, taking cold-rolled
high-strength steel plates with phosphorus as an
example, the total forecast of existing demand by
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TABLE 3. Table of main production products of subsidiaries.

FIGURE 12. Original system transportation path map.

FIGURE 13. Plan of subsidiaries, warehouses, wholesalers and demand point distribution.

each wholesaler is 371. Under the influence of uncer-
tain environmental factors, the forecast of wholesaler
demand is 320.

Step 3: The platform simulates the scheduling of exist-
ing idle equipment and constructs a multi-objective
function model under the shared manufacturing
model. And under the influence of current multi-
ple uncertain environments, most wholesalers face
greater survival pressure and incur greater benefit
loss. Each enterprise is coordinated to establish the
weight of each factor within the value co-creation

evaluation function as (ω1, ω2, ω3, ω4, ω5)T =

(0.33, 0.13, 0.27, 0.12, 0.15)T . Other products are
evaluated and multi-objective models are built in
the same way as the model for cold-rolled high-
strength steel plates with phosphorus. We combine
the MOPSO algorithm to obtain the pareto surface
and present the information to each company to
establish the most satisfactory scheduling and pro-
duction plan for each party. The pareto surfaces of the
four products were simulated separately and drawn
as shown in Fig. 14. (For comparison purposes,
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FIGURE 14. Comparison figure of the corresponding scheduling scheme
for each product.

we take the opposite of the original objective function
two as the objective function two.).
The objective function values of the four products
corresponding to the chosen scenarios were obtained
by the companies after consultation: (0.02356,
−0.42886), (0.04507, −0.44682), (0.10165,
−0.36023), and (0.04184, −0.45346). The corre-
sponding production planning schemes are shown in
Table 4.

Combined with the Elman-IVIF-TOPSIS predictive diag-
nosis model, the existing idle equipment resources in the
platform are sorted and the results are uploaded to each
enterprise. The final scheduling scheme is generated by
enterprise decision-making and multi-objective optimization
results. The specific production scheduling scheme is shown
in Fig. 15, and the scheduling plan is shown in Fig. 16.

Step 4: Now verify the performance of the scheme, firstly
verify the performance comparison of the production
scheme under a normal environment. In order to visu-
ally distinguish the advantages and disadvantages
of program robustness, we select several different
groups of equipment scheduling scenarios for com-
parison in the scenario selection of cold-rolled high-
strength steel plates with phosphorus, respectively.
Their demands in normal environment are 65, 92,
52, 76 and 86, with a total of 371. Now, according
to the actual enterprise operation, four groups of
similar programs have been selected, a total of five
groups of programs and named: 1-1, 1-2, 1-3, 1-4,
and 1-5 respectively. Among them, 1-2 is the robust
scenario selected in this paper. In addition, under
normal conditions, there is no uncertain environment,
so there is no customer loss and the storage pressure
is 0. The performance comparison results of each
scheme under a normal environment are shown in
Table 5.

The profit comparison of each scheme under a normal
environment is shown in Fig. 17, and the comparison of cargo
wear and gasoline consumption of each scheme is shown
in Fig. 18.

TABLE 4. Production planning scheme for each species.

Step 5: Nowwe verify the robustness of the scheme and ana-
lyze the performance of the existing production plan-
ning scheme under an uncertain environment with
cold rolled plus phosphorus high strength steel plate
as an example. Its worst demands obtained under the
influence of multiple uncertain environments are 60,
81, 45, 62 and 72 for a total of 320. based on the
existing scheme, the warehouse inventory and the
profit variation under uncertain environments.
The performance comparison for each scenario under
an uncertain environment is shown in Table 6.

The comparison of profit for each scenario is shown in
Fig. 19, and the comparison of cargo wear and gasoline
consumption for each scenario is shown in Fig. 20.
At the same time, there is the problem of customer profit

loss in an uncertain environment, which is a key part of
the robustness problem, and a comparison of the scenarios

VOLUME 11, 2023 40559



Q. Tang et al.: DT-Assisted Collaborative Capability Optimization Model for SM System

FIGURE 15. Production scheduling scheme diagram.

FIGURE 16. Equipment plan scheduler.

TABLE 5. Comparison of the performance of the schemes under normal environment.

in terms of customer loss and lead time ratios is shown
in Fig. 21.

After analysis, it can be seen that the 1-2 scheme in the
operation process to ensure the maximum system interest
rate, combined with the advantages of its storage capacity,
to maximize the impact of the uncertain environment in the
market to wholesalers, while the scheme 1-1 although to a
certain extent to ensure the improvement of the overall profit

of the system, but wholesalers face a certain loss of surplus
goods, and wholesalers are allocated less profit, which is not
conducive to the formation of long-term cooperative relation-
ships. In addition, scenarios 1-1 are deficient in terms of stor-
age pressure, cargo wear and tear, and energy consumption.
Other scenarios have lower capacity, although to a certain
extent by using the existing warehouse storage capacity to
ensure the operation of the system as well as in the uncertain
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TABLE 6. Worst-case performance comparison of the scenarios within the uncertain environment.

FIGURE 17. Comparison of profit each scenario under normal
environment.

FIGURE 18. Comparison of cargo wear and gasoline consumption by
scenario under normal environment.

FIGURE 19. Profit comparison chart for each scenario under an uncertain
environment.

environment to play better. However, it is difficult to ensure
that the system can still play to the maximum benefit of the

FIGURE 20. Comparison of cargo wear and gasoline consumption for
each scenario under an uncertain environment.

FIGURE 21. Comparison of cargo wear and gasoline consumption for
each scenario under an uncertain environment.

system in the normal environment during the implementation
of the normal scheme, whichwill lead to a large residual value
loss of the system in the normal environment. In turn, it can
be verified that scenarios 1-2 perform well in both normal
and worst-case environments, thus proving the feasibility and
effectiveness of our proposed method.
Step 6: After analysis, the following recommendations can

bemade to companies formaintaining system robust-
ness and improving system value co-creation eval-
uation within the uncertain environment under the
shared manufacturing model:

1) Increasing the storage capacity to cope with the accu-
mulation of goods under the uncertain environment,
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FIGURE 22. Comparison of system performance under different
warehouse capacities.

to alleviate the degree of profit loss of wholesalers.
At the same time, the increase in storage capacity
will also make the system more robust, in the uncer-
tain environment, the storage capacity will greatly
alleviate the system exists in the remaining goods
pressure.

Taking the cold-rolled high-strength steel plates with phos-
phorus as an example, we compare its system performance
under different warehouse capacities as shown in Fig. 22.
From this, we can find that: the system with a larger ware-
house capacity will be better able to maintain the satisfaction
of all parts of the system, and play a more stable system per-
formance in extreme situations, greatly reducing the degree of
influence of the uncertain environment on the system. Under
the same production capacity of manufacturing companies,
manufacturing companies with large warehouse capacity will
play a greater economic efficiency in a normal environment,
and the reliability of the system is significantly higher.

2) Manufacturing companies can appropriately increase
the number of warehouses to reduce the wear and tear
of goods and energy consumption during the return
of goods to the warehouse in uncertain environments.
At the same time, the increase in the number of ware-
houses will enhance the total amount of goods stored
in the system, will be more conducive to maintaining
the stability of the system in an uncertain environment.
The increase in the storage capacity of individual manu-
facturing companies will also enhance their own market
competitiveness.

3) To reduce the consumption of non-renewable resources
and maintain green development by adding new energy
for freight transportation.

4) Wholesalers in similar areas can increase the number
of exchanges, increase their own ability to judge the
uncertain environment, and better judge the probability
of the occurrence of uncertain environments.

5) The subsidiaries of each company can improve the speed
of shipments by changing the mode of transportation to
better meet the needs of wholesalers.

6) When the uncertain environment continues to affect and
play a large role, the company can maintain the interests
of wholesalers by reducing the wholesale price of goods.
Better defend the interests of wholesalers in an uncertain
environment.

7) Within the uncertain environment, the selection of
equipment resources in the sharing mode should be
based on the degree of influence of the uncertain envi-
ronment and then select themost appropriate equipment.
On the one hand, this approach can effectively reduce
the waste of resources and equipment, on the other hand,
it can maintain the interests of the enterprise itself and
reduce the waste of labor, materials and other costs.

In summary, the collaborative production capacity opti-
mization model of manufacturing enterprises under the smart
manufacturing model mentioned in this paper has significant
effects in terms of utilization of equipment resources and
control of resource costs. In addition, this paper finds that
the wholesaler’s ability to accurately judge the uncertain
environment needs some time to accumulate to better obtain
its maximum benefit in an uncertain environment. The quan-
titative analysis-based value co-creation model constructed
in this paper enables the system to maintain stable charac-
teristics under an uncertain environment, and shows good
performance in terms of product quality control, system profit
distribution, and sustainable cooperative relationship. The
maximum supply and demand matching efficiency function
improves the matching degree based on the conventional
shared equipment matching, and further reduces the waste of
idle equipment resources. The method used in this paper will,
to a certain extent, enable the integration and coordination
between manufacturing and service industries in a deeper
level.

VII. CONCLUSION AND DEVELOPMENT SUGGESTIONS
There is no doubt that intelligence is the way forward for
manufacturing automation. Artificial intelligence technolo-
gies are widely used in almost all aspects of the manufactur-
ing process. The corresponding technology can be used for
engineering design, process engineering design, production
scheduling, fault diagnosis, etc.; advanced computer intel-
ligence methods such as neural network and fuzzy control
technology can also be applied to production scheduling,
etc. to realize the intelligence of manufacturing process.
The introduction and development of the smart manufac-
turing concept in the Industry 4.0 environment facilitates
self-optimization for improved automation, predictive main-
tenance, and process improvement. Companies are enabling
information data collection with the help of end-of-line
sensors, which will enable new and unprecedented levels
of productivity and responsiveness to customers. After the
equipment scheduling occurs, the normal operation of the
equipment will ensure the stability of production efficiency
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in actual production. Analyzing the vast amount of data col-
lected from sensors on the factory floor ensures real-time
visibility of manufacturing resources and can provide tools
for performing predictive maintenance to minimize the prob-
ability of equipment failure and avoid potential equipment
operational risks.

However, the multi-enterprise production capacity opti-
mization model under smart manufacturing proposed in this
paper has some shortcomings. In the flexible and changeable
manufacturing environment, there are still other production
methods applied in the same enterprise, such as sharing of
human resources, leasing of production lines, etc. In addition,
the resilience of the manufacturing system is not mentioned
too much, which would be very good for the manufacturing
system to resist disruptions in the complex and changing mar-
ket environment. The collaborative manufacturing process is
usually accompanied by a large amount of data information,
and some of the information security issues that exist in
the sharing process of this information are not considered
in the article. In future research, we should focus on build-
ing the standardized information model required for digital
twin technology to facilitate high-performance data process-
ing and industrial communication collaboration. In practical
applications, the functions of smart manufacturing systems
for screening, classifying, and organizing end data still
need further development as well as application. As a new
manufacturing concept of inter-enterprise cooperation, col-
laborative manufacturing has a certain anti-interference capa-
bility; under major emergencies, the resilience of enterprises
will play a certain role, and further research is needed to
improve the resilience of cooperative enterprises and their
enterprises. The deep integration of digital twin technology
and supply chainmanagement will ensure a further rapid flow
of data information and real-time monitoring, prevent risks
and reduce unnecessary losses, etc. How to quickly filter out
reasonable information from the huge data information and
apply it to real-time supply chain management will proba-
bly become a new research direction. The configuration and
reconfiguration stages of collaborative manufacturing sys-
tems need to be further discussed in the event of major emer-
gencies, and more research is needed on how to minimize
the negative impact of the environment on manufacturing
enterprises and make timely adjustments in the process of
inter-enterprise collaborative manufacturing.
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