
Received 28 February 2023, accepted 19 April 2023, date of publication 24 April 2023, date of current version 2 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3269598

On-FPGA Spiking Neural Networks for
End-to-End Neural Decoding
GIANLUCA LEONE , LUIGI RAFFO , AND PAOLO MELONI
Dipartimento Ingegneria Elettrica ed Elettronica, University of Cagliari, 09123 Cagliari, Italy

Corresponding author: Paolo Meloni (paolo.meloni@unica.it)

ABSTRACT In the last decades, deep learning neural decoding algorithms have gained momentum in the
field of neural interfaces and neural processing systems. However, to be deployed on low-budget portable
devices while maintaining real-time operability, these models must withstand strict computational and power
limitations. This work presents a spike decoding system implemented on a low-end Zynq-7010 FPGA, which
includes a multiplier-less spike detection pipeline and a spiking-neural-network-based decoder mapped in
the programmable logic. We tested the system on two publicly available datasets and achieved comparable
results with state-of-the-art neural decoders that use more complex deep learning models. The system
required 7.36 times fewer parameters than the smallest architecture tested on the same dataset. Moreover,
by exploiting the spike sparsity property of the neural signal, the total amount of computations is reduced by
about 90% during a test carried out on real recorded data. The low computational complexity of the chosen
spike detection setup, combined with the power efficiency of spiking neural networks, makes this prototype
a well-suited choice for low-power real-time neural decoding at the edge.

INDEX TERMS Neural decoding, spike detection, spiking neural network, FPGA, low-power.

I. INTRODUCTION
Neural interfaces proved to be key components for enhancing
the quality of life of disabled patients. Their range of appli-
cations stretches from hand movement decoding in patients
affected by tetraplegia [1], seizure detection in pediatric sub-
jects with intractable seizures [2], hand prosthesis control
with sensory flow restoration in transradial amputees [3],
speech decoding in patients with motor speech disorders [4],
etc. Neural interfaces acquire neural signals, interpret the
patient’s intention, and use this information to accommodate
the patient’s request.

Among several recording solutions, intracortical sensors
have proven to be valuable instruments in decoding multiple
motor functions [5]. The neural data sampled with intracor-
tical arrays of sensors is usually seen as the contribution
of two signals: the local field potentials (LFPs) and the
action potentials, i.e. the spikes. The LFP is usually found
in the frequency range [0.5, 300] Hz and can be obtained
by filtering the recorded samples. Spikes, on the other hand,

The associate editor coordinating the review of this manuscript and

approving it for publication was Amin Zehtabian .

occur above 300 Hz and necessitate being identified along
the neural track after filtering, a neural signal processing task
referred as spike detection [6] and that could be extended
by recognizing the firing neurons, taking the name of spike
sorting [7]. The output of spike detection and sorting are
respectively called multi-unit activity (MUA) and single-unit
activity (SUA). LFP, MUA, and SUA signals have proven
effective in several decoding tasks when supported by reli-
able decoding algorithms, such as Long-Short TermMemory
(LSTM) used for LFP decoding [8], Recurrent Neural Net-
work (RNN) used for MUA decoding [9], Quasi-Recurrent
Neural Network (QRNN) used to decode MUA, SUA, and
Entire Spiking Activity (ESA) [10], which involves process-
ing the spike band without identifying individual spikes.

Regardless of the specific target application, neural
interfaces are subject to strict power and energy limita-
tions. For instance, implantable chips must respect tight
restrictions to avoid endangering the patient, limiting any
temperature increase of the tissue to below 0.5◦C [11].
Furthermore, it is advisable to ensure long battery life for
portable devices, which constrains neural interfaces’ energy
requirements.

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 41387

https://orcid.org/0000-0001-5265-0759
https://orcid.org/0000-0001-9683-009X
https://orcid.org/0000-0002-8106-4641
https://orcid.org/0000-0002-0718-4442


G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

In this context, Spiking Neural Networks (SNNs) are
promising tools for low-power neural processing at the edge.
Unlike other neural network models, SNNs use spiking
neurons as their fundamental units, which are more simi-
lar to biological neurons, from which artificial neural net-
works derive. As biological neurons, spiking neurons have a
memory and can communicate exclusively receiving and
transmitting action potentials, i.e. ones and zeros in the
digital domain. The appeal of SNNs lies in their compu-
tational efficiency: the synaptic connections among spiking
neurons are not always active since the neurons can only
fire o not fire a spike. The phenomenon is called spike
sparsity and causes the number of computations to drop
down, which in turns lead to reduced power consumption
and latency. Despite the non-differentiability of the spike
function held back from extensively using these models in
the past, the effort of the scientific community during the
last decades paved the way for new algorithms suitable for
SNN supervised learning [12], enabling wider use of these
networks.

Furthermore, intracortical spikes and SNN models are
already intrinsically compatible, no further processing is
required to transform a continuous signal into a spiking one,
as happens when other forms of neural activity are used in
place of action potentials.

This work presents a spike-based neural decoding sys-
tem implemented on FPGA that exploits the computational
efficiency of SNNs to decode the displacement of a handle
moved during a delayed reach-to-grasp task [13], recorded
using a 96-channel multi-electrode array (MEA) [14]. More-
over, the neural signal is pre-processed in real-time to extract
the MUA by using a multiplier-less spike detector, mapped in
the Programmable Logic (PL).

The key contributions of this study are resumed as follows:
- It is presented a new computationally efficient real-time
spike detection method along with its hardware
implementation;

- A hardware SNN is used for solving a continuous decod-
ing task in real-time for the first time, to the best of our
knowledge, in the neural signal decoding domain;

- The system’s accuracy has been assessed on a bench-
mark dataset, achieving accuracy comparable to state-
of-the-art methods. Remarkably, it used 7.36 times fewer
parameters than the smallest neural decoder tested on the
same dataset;

- The study demonstrates the computational efficiency of
spiking-neural-network-based decoders in neural appli-
cations, with an average of 90% operations saved.

The following Sections are organized as follows: a descrip-
tion of the studies related to this work is presented in
Section II, the methods are described in Section III,
Section IV reviews the hardware implementation, Sec-
tion V contains the results, Section VI compares the results
with the state of the art, and Section VII is left to the
conclusions.

II. RELATED WORKS
Neural activity decoders can be categorized into two fami-
lies, depending on the nature of the task: gesture or motion
classification and continuous motion or force decoding. The
former produces an output from a predefined set of classes
and determines which class the performed action belongs
to. The latter continuously tracks a target variable, such as
position, speed, or force, and infers its value through regres-
sion. In this section, we analyze several deep-learning neural
decoders that belong to both categories and utilize several
sensor arrays. Table 1 summarizes the main features of the
works analyzed in this section.

In [1] the signals recorded by two electrocorticography
(ECoG)-based implants are decoded during a 3D virtual hand
translation task using a CNN followed by an LSTM block,
using one-second windows with 90% overlap. Similarly,
in [15] the stereo-electroencephalography (sEEG) signal is
used for continuous force decoding during a hand-grasping
task. The neural signal is used to feed a CNN followed by
an LSTM block, in windows of two seconds with a stride of
50 milliseconds.

Both works reached state-of-the-art accuracy, showing that
deep-learning models are valid instruments for neural decod-
ing. However, considering the ultimate goal consists in deliv-
ering low-power neural interfaces, using CNN for analyzing
long time-series data characterized by long periods of idle-
ness interleaved with bursts of activity is not power-efficient.
SNNs better exploit the event-based nature of the task, allo-
cating resources only when needed by the application.

In [16] the Python implementation of an SNN decoder
trained to continuously track the elbow angle of four subjects
moving their arm is compared to the results obtained by an
LSTM-based decoder. The neural recording was acquired
with an 8-channel surface EMG armband. The surface EMG
signal is continuous in time, thus, it requires to be converted
in spike trains. Firstly, a time-domain feature called wave-
form length is computed, defined as the aggregated length of
the EMG waveform over the segment [23], computed over
100 samples in [16]. Then, this feature is given as input to a
spiking layer of 64 units that converts it into spikes. The spike
trains are then processed by two hidden layers of 128 and
64 units. The output of the last hidden layer, in form of spike
trains, is converted into a continuous value by introducing a
final layer, composed of one spiking neuron only, where the
membrane potential of the neuron was used as continuous
output, rather than its spikes.

Another example of an SNN decoder is reported in [17],
where a 3-channel surface EMG (sEMG) signal was used
to carry out a hand gesture recognition task counting five
gestures. The continuous sEMG signal is processed to obtain
frequency-domain features, then converted into spike trains to
be decoded by the SNN. The signal is filtered three times with
three distinct filters to obtain three separated signals, then
smoothed by computing their root mean square value over
a sliding window of 225 samples, corresponding to 150 ms.

41388 VOLUME 11, 2023



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

TABLE 1. State of the art neural activity decoders.

The RMS arrays are normalized and converted into spikes:
the RMS values are accumulated sample by sample until a
certain threshold is reached and a spike is generated. Finally,
the spike trains are used to feed the SNN decoder. The SNN
decoder is a three-layer network with 9 inputs, 20 hidden
units, and 5 output units. The neurons are of type Leaky
Integrate-and- Fire (LIF), and in particular, the units of the
last layer have their threshold set to infinite. The classification
result is determined by applying a winner take all strategy
where the neuron with the higher potential is chosen.

In [16] and [17] is demonstrated SNNs are capable
of decoding different kinds of neural signals and can be
exploited for both regression and classification tasks. How-
ever, the conversion process from continuous signals to spike
trains and vice versa requires additional computations. The
use of spiking signals could simplify the processing pipeline
and lead to more efficient neural interfaces.

We found only one work in literature that directly uses
SNNs for decoding spiking signals [18]. Their network ana-
lyzes SUA recorded during a 3D reach-to-grasp task [24].
The single neuron activity was processed offline and only the
more correlated units were kept. The system was trained to
decode the object direction and orientation, using respectively
the one hundred and ninety-seven more correlated neurons.
The decoding tasks consisted of classifying whether the
movements were toward the left or the right and which was
the orientation of the target. The former task was carried out
by using a hidden layer of 12 units and by training one output
neuron to fire a spike at 51 ms for left prediction, or later,
at 61 ms for right prediction. The latter was implemented
by a 12-unit hidden layer and by applying a winner-take-
all strategy to three output neurons where each neuron rep-
resents one of the three possible orientations. Although the
approach used in [18] is similar to the method proposed in
this work, it is difficult to make a comparison with this study
because the dataset was not acquired using a multi-electrode
array, instead, the same experiment was repeated multiple
times to sample the neural activity of different brain areas,
furthermore, their model was used for classification, not for
continuous regression.

To assess the accuracy performance of our SNN-based
approach we chose to use the dataset reported in [13], which

comprises two intracortical recordings sampled using a 96-
electrode Utah array during a delayed reach-to-grasp task.
The same dataset is used in two works used as benchmarks to
compare the accuracy of our results. In [10] several decoders,
such as QRNN, Gated Recurrent Unit (GRU), and LSTM, are
tested on different neural signal features, such as SUA,MUA,
LFP, and ESA. In [19] RNN, GRU, and LSTM models are
tested on one of the two neural recordings available in [13],
permitting only a partial comparison with our result.

Even though portability and low latency are key properties
in the neural interface domain, we found prospectively few
implementations addressing portable computing platforms
such as FPGAs or microcontrollers (uCs) rather than PCs,
that we reported in Table 1. In [20] a CNN deployed on FPGA
is used for decoding in real-time the electroencephalographic
(EEG) signal acquired from 10 channels during a two-class
motion imagery classification task. The input of the CNN
is structured as a series of frames, with each frame repre-
senting a one-second segment of the EEG signal across three
frequency bands. Each frame overlaps the preceding one by
50%. During inference, the hardware architecture performs
a sequence of matrix multiplications that maps the CNN’s
layers execution, fully utilizing the resources of the hosting
Xilinx z7020 device. In [21] an FPGA is used to accelerate a
two steps process aiming at decoding a 62-channel ECoG sig-
nal during an online finger movement classification task. The
first step of the data processing pipeline consists of a dimen-
sionality reduction performed through Principal Component
Analysis (PCA) from 62 to 3 dimensions, then, a multilayer
perceptron (MLP) is used to classify the finger movements.
A uC is used in [22] for implementing a low-cost neural
interface solution for EEG-based neural decoding during a
hand open/close/idle state classification task using a Bayesian
classifier.

Although several hardware solutions have been proposed
for intracortical neural signal processing, most of them stop
at the spike detection phase [25] or at the spike sorting
phase [26]. Similarly, among numerous existing SNN accel-
erators, some are oriented to understand the brain func-
tionalities, exploiting either FPGA-based prototypes [27], or
higher-end emulators such as SpiNNaker [28]. In [27] is
presented a bio-realistic emulator of Izhikevich neurons

VOLUME 11, 2023 41389



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

addressing a single fully-connected layer structure, imple-
mented on a Xilinx z7020 chip. The implementation is
optimized for biological real-time emulation of SNNs, allow-
ing arbitrary connections among neurons and a per-neuron
parameter set, which consents to reproduce several output
spiking patterns. In [28] is presented a high-end biologically
relevant emulator of spiking neurons where nodes of 48 inte-
grated circuits, embedding 18ARM968 processor cores each,
can be interconnected in a cluster, counting over a million
processors to accelerate the neural network emulation, requir-
ing a peak electrical power of 75 kW.

In this work, we focus on designing an end-to-end acceler-
ator for neural processing and decoding at the edge exploit-
ing low-power properties of SNNs. The existing alternatives
include FPGA-based solutions [29], where is presented a
hybrid spiking and convolutional FPGA-based neural net-
work design deployed on a low-endXilinx z7020, and custom
ASIC neuromorphic multi-core accelerators, such as Loihi
from Intel [30], and TrueNorth from IBM [31].

However, to the best of our knowledge, this is the first
custom neural interface prototyped on FPGA comprehensive
of both neural signal analysis in the form of spike detection
and neural decoding utilizing an SNN, ideal for low-cost
neural signal processing and decoding at the edge.

III. METHODS
In this work, the intracortical recordings of a 96-channel
MEA are used for decoding the velocity of a handle moved
during a delayed reach-to-grasp task in real time. The system
is composed of two main modules: 1) a spike detector, that
processes the raw samples provided by the array of sen-
sors, detecting the spikes, and 2) an SNN that directly pro-
cesses the detected spikes, inferring the handle velocity. The
modules are implemented on a low-end Zynq 7010 FPGA
(XC7Z010-1CLG400C) which allows fast prototyping,
moreover, the FPGA programmability feature permits to
modify the deployment of the parametric design on the FPGA
to match the requirements of several experimental setups,
that could involve a different dataset, a change in the spike
detection hyper-parameters, the choice of a different neural
network topology.

This Section is organized as follows: a description of
the dataset used to validate the system is provided in
Section III-A, in Section III-B is presented the spike detection
pipeline, Sections III-C and III-D describe the neuron model
and the SNN architecture, Section III-E explain the spike
sparsity phenomenon and how to take advantage of it for
reducing at the same time the power consumption and the
system latency.

A. DATASET
The system has been tested using electrophysiological
recordings from two macaque monkeys [13]. During the
experiments, the monkeys were trained to perform a delayed
reach-to-grasp task that involved pulling a cuboid handle with
two types of grips and two levels of force. The datasets, one

for each monkey, consisted of neural recordings obtained
from a chronically implanted 10 × 10 multielectrode Utah
array in the motor cortex. The neural recordings were sam-
pled at 30 kHz, but were downsampled by a factor of 3 for
this study. In addition to neural data, the datasets included
behavioral data, such as the handle displacement and the force
applied to the cuboid handle, whichwas recorded using force-
sensitive sensors. The behavioral data were sampled at 1 kHz.

Figure 1 shows the stages of the handle position processing
before being used as the decoding variable during the training
phase. Initially, the handle position (Fig. 1 (a)) underwent a
smoothing process with a moving average filter of order 64
(Fig. 1 (b)). Next, the first derivative of the smoothed han-
dle position was computed to obtain the handle velocity
(Fig. 1 (c)). The first derivative was evaluated by subtract-
ing adjacent samples. To further refine the handle velocity,
a mean average filter of order 16 was applied (Fig. 1 (d)). The
resulting smoothed handle velocity was then used as the target
variable for decoding during the training phase. We selected
the handle velocity as the decoding variable to enable a
comparison of our neural decoding system’s accuracy with
that of similar studies [10] and [19], which also used handle
velocity as the decoding variable.

FIGURE 1. Target variable processing steps before training: (a) raw handle
position measurement; (b) smoothed handle position (64th-order moving
average filter); (c) handle velocity (subtraction of adjacent samples);
(d) smoothed handle velocity (16th-order moving average filter).

B. SPIKE DETECTION
Spike detection is a key component of neural interfaces based
on spiking signals. Spike detection accuracy directly affects
the reliability of the subsequent steps of the signal processing
chain, thus the reliability of the whole method. In this study,
the spike detector operates on signals sampled at a frequency
of 10 kHz, which is ten times higher than the frequency of
the signals processed by the SNN, which is 1 kHz. Moreover,
as the number of channels increases to either cover a larger
area of the neural tissue, sample at a finer resolution, or both,
the computational and memory demands of spike detection
also increase linearly. This presents a challenge when scaling
up the system to accommodate a greater number of channels.

For all these reasonswe chose to keep as limited as possible
the computational and memory usage per channel, aiming
to contribute with a design well suited for scaling both in
frequency and in the number of channels, proposing a config-
uration that only requires five additions per channel and zero
multiplications. Fig. 2 shows the spike detection processing
chain, which is also resumed in the following points:

41390 VOLUME 11, 2023



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

FIGURE 2. The input neural activity (1) is processed by five pipelined
modules: the MAD filter removes the low-frequency components (2); the
signal is rectified by the spike emphasis module (3); the mean of the
rectified signal is used as a basis to compute the threshold (4) to detect
the spikes (5); one-millisecond spike bins are forwarded in output (6).

- Filter: second-order moving average difference (MAD)
filter - to remove low-frequency components (LFPs);

- Spike emphasis: absolute value - to emphasize the spike
shape and improve the detection reliability;

- Threshold: mean value (times four) - value above which
is detected a spike event;

- Threshold update time: 0.82 ms - how often the spike
threshold is updated;

- Refractory period: 1 ms - time of insensitivity after the
spike detection event (per channel);

- Spike bins: 1 ms - spikes count over a certain interval of
time (per channel).

The MAD filter proposed in [32] is a good candidate to
implement a high-pass filter behavior, since its application
only consists in subtracting from each input sample the mov-
ing mean of the input signal, computed thanks to a moving
average filter, as stated by Eq. 1.

MAD(n) = x(n) −
1
N

N∑
i=1

x(n− i) (1)

where x is the input signal and N is the filter order. Note that,
by choosing N equal to a power of two, as in this study where
it has been chosen N = 2, the filter is implemented by only
N + 1 sums and one right-shift operation, no multiplications
and/or divisions take place.

As regards the spike emphasis method, we did not observe
any consistent accuracy improvement in using more sophisti-
cated solutions than the absolute value of the signal. More-
over, computing the absolute value of a number does not
require any additional memory element or multiplication
contrarily to other widely used methods such as Non-Linear
Energy Operator [33] or Amplitude Slope Operator [32].

The time window size is set at 0.82 ms, corresponding
to 8,192 samples, a value we observed empirically is the
best trade-off among true positives, false negatives, and false
positives, maximizing the detection accuracy.

Finally, to match the frequency of the target variable to
decode, which is 1 kHz, we used spike bins computed over
1-ms windows as input of the SNN. In addition, by setting
the refractory period of each channel to 1 ms, we obtained
that the bins could exclusively be equal to one or zero, match-
ing the input pattern required by the SNN.

C. LOIHI CUBA NEURON MODEL
The basic processing element of the SNN is the Loihi CUr-
rent BAsed Leaky Integrate and Fire (CUBA) Neuron, pre-
sented in [30]. The Loihi CUBA neuron extends the standard
CUBA neuron [34] by introducing an additional internal state
variable. The Python implementation of the neuron model
is derived by the PyTorch package SLAYER (Spike LAYer
Error Reassignment) [35], then extended and embedded as
SLAYER 2.0 in the LAVA software framework [36] used in
this work. The Loihi CUBA Neuron requires two integration
stages, similarly to the Izhikevich neuron [37], but with a
simpler structure. The state variables update equations are
identical: the spiking activity, convolved with the synaptic
weights, feeds the first integrator, whose output feeds the
second one. The second state variable is used as a metric for
the output spike generation. The model equations follow:

S(t) =

∑
ws(t − 1)

i(t) = αi(t − 1) + S(t)

v(t) = βv(t − 1) + i(t)

s(t) = v(t) > θ

v(t) = v(t)(1 − s(t)) (2)

where w is the set of synaptic weights of the neuron, s is the
input spike vector, and S(t) is the convolution between spikes
and weights. S(t) is the Loihi CUBA neuron input. i(t) is the
current state variable, which is computed by multiplying its
previous value by a decay factor α and adding the convolved
spiking activity S(t) to it. v(t) is the voltage state variable,
its equation maintains the same structure seen for i(t). Its
previous value is multiplied by a decay factor β and added
to the current i(t). The neuron fires a spike when the value of
v(t) exceeds the threshold θ . When it happens, the value of
v(t) is reset to zero.

D. SPIKING NEURAL NETWORK
SNNs in LAVA [36] can use convolutional, dense, recurrent
layers, etc. Moreover, many types of neurons are supported
as well, aside from the Loihi CUBA neuron discussed pre-
viously, Resonate & Fire Izhikevich model, Adaptive Leaky
Integrate and Fire model, and others, are available.

The SNN used in this work is constituted of two dense
layers of 256 and 128 Loihi CUBA neurons. The script used

VOLUME 11, 2023 41391



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

for training is based on the Spike to Spike Regression: Oxford1

example given in the platform, the neuron parameters are left
untouched and are shown in Table 2.

TABLE 2. Loihi CUBA neuron parameters.

We tried to find the simplest model enabling an accuracy
competitive with other works in literature tested on the same
dataset. We trained our model using the Slayer library in
the Lava framework [36], using the spike times as a metric
to compute the loss. The training counts 200 epochs, 60%
of the trials are used for training, 10% for validation, and
30% for testing. We selected the model with the best loss on
the validation set. As for the neuron parameters, we left the
training parameters as found in the Lava example template.
The parameters used for training are shown in Table 3.

TABLE 3. SNN training parameters, from left to right: units in the first
layer L1, units in the second layer L2, learning rate, weight decay factor,
number of epochs.

Table 4 reports the memory required by each layer and in
total, considering 15-bit representation for the weights.

TABLE 4. SNN memory requirements, from left to right: first layer L1
memory, second layer L2 memory, total memory.

SNNs are trained to generate target spike trains in response
to input spike trains. Even though in this work the input is
effectively a spike train, the desired output is a number, i.e.
the target velocity. Away to easily transform the output spikes
into a number during the online neural activity decoding,
and on the contrary, a way to generate a target spike pattern
starting from the desired output number during the network
training is thus needed.

Our proposed solution is to attribute to every neuron of
the output layer a weight that could either be +1 or −1 and
compute the target velocity as the sum of the spikes fired by
the output layer. In this case, the maximum and minimum
values of the target velocity are similar, thus, half of the
output neurons contribute positively, whereas the other half
negatively. For this purpose, the handle velocity was cast to
integer and constrained in the range [−64, +63] as shown in
Fig. 3 (a), i.e. the output is represented with a resolution of
7 bits. The firing pattern is established so that, depending on
the value of the target variable at each time step, the same
number of units fire a spike. Fig. 3 (b) shows the target raster

1https://lava-nc.org/lava-lib-dl/slayer/notebooks/oxford/train.html

FIGURE 3. Target variable conversion into spike trains prior training:
(a) the handle velocity is cast to integer, in the range [−64, +63]; (b) the
integer values have a one-to-one correspondence with the number of
spikes that compose the target spike train used for training.

plot used to train the SNN, downsampled by a factor of ten
for display purposes.

E. SPIKE SPARSITY
Spiking signals are characterized by being either active or
inactive. This characteristic makes SNNs event-driven sys-
tems. Figure 4 shows the timing raster plot of a portion of
the dataset, where on the x-axis is represented the time, and
on the y-axis the detected spikes per channel. The spiking
activity increases at three points in Figure 4: right before
2.5 seconds, at 7.5 seconds, and right after 12.5 seconds; in
correspondence with these three points the spikes are denser
in the raster plot. The dark blue line on the bottom of Figure 4
represents the sum of the spikes across all the channels. It is
observable how the number of concurrent spikes is limited to
about twenty, in addition, the superimposed light blue line is
the smoothed sum of the spikes, plotted to better visualize the
trend of the neural activity, which increases where the spikes
are denser. The orange line is the handle velocity, it is possible
noticing that the handle movement happens as soon as the
augmented neural activity is detected in the motor cortex.

FIGURE 4. Measured spiking activity at the input of the SNN. The raster
plot on the background shows the spikes detected on each channel by
the spike detection module; on the bottom is shown the
sample-by-sample sum of the spikes in dark blue and its mean value in
light blue; in orange is shown the handle velocity, i.e. the target variable.

The sparsity property interests the input layer of the SNN,
as well as the following layers. Because of the nature of these

41392 VOLUME 11, 2023



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

networks is possible to avoid wastes of power, such as reading
the entire weight memory when there is no spiking activity
on the input of the layers or hardly any. The SNN exploited
in this work is based on fully-connected layers. Therefore, all
the neurons of the same layer share the same inputs, which
are read multiple times from the spike memory. To avoid
reading the spikes and computing the sums of the inactive
inputs of the layer, we introduce a stack storing the pointers
to the active set of inputs, stored in groups of four. At each
synaptic current computation, only the entries pointed by the
stack need to be read, instead of the entire set of spikes and
synaptic weights. As will be discussed in Section V-B2, this
simple architectural expedient enables avoiding hundreds of
thousands of memory reads and sums per second, as well as
greatly reducing the synaptic current computation time.

IV. SYSTEM ARCHITECTURE
This section describes the digital system hardware architec-
ture, which supports spike detection and spike-based neural
activity decoding. The tasks are deployed to two custom
computational cores implemented on the PL. The system is
designed to handle inputs from a 128-channelMEA, although
the accuracy assessment datasets are limited to 96 chan-
nels. The system receives broadband recordings through a
slave AXI stream interface and outputs the decoder inference
through amaster AXI lite interface. The neural decoder archi-
tecture is shown in Fig. 5.

FIGURE 5. Neural decoder architecture: the core of the neural decoder is
composed of two cascaded modules: a spike detector and an SNN-based
decoder. The former extracts the binned spiking activity directly from the
raw neural signal using a MAD filter, a spike detector, and a binning
module. The SNN is composed of two dense layers, a weight memory, and
a spike-to-number (S2N) converter, that translates the output spike train
generated by the SNN’s second layer into the target variable. The neural
decoder is connected to the Processing System (PS) through three AXI
interfaces: 1) an AXI-stream interface is used to stream the neural
samples in the PL; 2) an AXI-lite interface is controlled from the PS to set
up the neural decoder; 3) an AXI-lite interface is used to transmit the
decoding results.

A. SPIKE DETECTION AND SPIKE BINNING
The spike detection and the spike binning tasks are appointed
to five pipelined modules that process the input channels in a
time-multiplexed fashion. The broadband neural signal is first
filtered and emphasized. Then, the signal is compared with

a mean-value-based threshold to verify the spike condition.
Finally, the spike binning module counts the detected spikes
per millisecond and forwards the bins to the SNN-based
decoder.

1) MEAN REMOVING FILTER
The low-frequency components of the neural signals are
removed by subtracting from every incoming sample its mov-
ing mean value. The mean value is obtained by right shifting
by one position the sum of 2 previous samples. The spike
detector processes 128 channels in a time-multiplexed fash-
ion, therefore, it internally contains 256 registers (to store two
samples per channel). At every incoming sample, the registers
shift by one position, the incoming sample is stored, and the
oldest sample is lost. The output of the registers in positions
128 and 256 are added and right-shifted by one position
to compute the signal mean. The mean value is subtracted
from the incoming sample to obtain a high-pass behav-
ior. The architecture of the 2nd-order MAD filter is shown
in Fig. 6 (1).

2) SPIKE EMPHASIS
The filtered signal is rectified using a 2-ways multiplexer that
selects either the sample or its 2’s complement depending on
the value of its sign bit. The architecture of the spike emphasis
module is shown in Fig. 6 (2).

3) SPIKE THRESHOLD
The spike detection threshold is equal to four times the mean
value of the rectified signal computed during the past 0.82 ms
(8,192 samples). The thresholds are stored in a BRAM-based
memory with one entry of 10 bits per channel and are read
when a new sample needs to be compared with the channel’s
threshold. Concurrently, at every new incoming sample, the
future threshold is updated. The future thresholds are stored in
an additional BRAM-based memory of 128 entries of 23 bits
(10 bits is the sample size+ 13 bits due to the accumulation of
8,192 samples). The future threshold is read, added to the new
incoming sample, and stored back in the same memory loca-
tion. The samples are accumulated during the 0.82 ms time
window, then they are right-shifted by thirteen positions and
used to overwrite the value stored in the threshold memory,
which will not change for the next 0.82ms. After updating the
threshold memory, the corresponding new threshold memory
location is reset. A thirteen bits counter is used to keep track
of time. The architecture of the threshold module is shown
in Fig. 6 (3).

4) THRESHOLD CROSSING DETECTOR
The threshold crossing detector compares the emphasized
sample value with the respective channel threshold. In addi-
tion, it implements a refractory period rule that limits the
spike rate to one spike per millisecond per channel. The
refractory periods are stored in a BRAM memory with an
entry per channel. When a new sample arrives, the refractory
period memory is read, if the value is zero and the sample

VOLUME 11, 2023 41393



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

FIGURE 6. Spike detector internal modules: (1) second-order MAD filter, (2) absolute-value-based spike emphasis module, (3) mean-value-based spike
threshold module, (4) threshold crossing detector, (5) spike binning module.

exceeds the threshold value, the spike is forwarded to the out-
put. Moreover, once a spike is detected, the refractory period
is incremented by one at every sampling cycle, until is reset
by overflow, after 8,192 sampling cycles. The architecture of
the threshold crossing detector is shown in Fig. 6 (4).

5) SPIKE BINNING
The spike binning module accumulates the spikes of every
channel along a time window of 1 ms. However, because
of the refractory period rules implemented by the threshold
crossing detector, which limits the number of spikes per
channel to one permillisecond, the output of the spike binning
module can either be one or zero. Therefore, the bin memory
is a single-bit memory with 128 entries, implemented using a
128-bit register.

When a spike is fired, the spike binning module updates
the flip-flop associated with the firing channel. The module
embeds a counter that keeps track of the time steps elapsed,
incremented every time the whole set of channels is pro-
cessed. At the tenth iteration, the accumulated spikes can be
forwarded to the output. The architecture of the spike binning
module is shown in Fig. 6 (5).

B. SNN-BASED DECODER
The spike decoder is composed of an SNN and a spike-to-
number (S2N) converter. The SNN contains two layers of
128 and 256 Loihi CUBA neurons that process the neural
activity in the form of spikes detected by the spike detection
module. Finally, the output spike trains inferred by the SNN
are converted into the handle velocity by the S2N converter.

1) LAYER MODULE
The layer module is composed of the spike and the weights
memories, a stack where are stored the pointers to the active
input synapses, a synaptic current computation module, two
identical cascade connected integrator modules used to eval-
uate the Loihi CUBA neuron model described by Eq. 2, and
a serial to parallel (S2P) converter. The layer module updates
the neuron one by one: 1) the addresses of the active inputs are
read from the stack, 2) the pointers are used to read the spike
and the weight memories, 3) the synaptic current computation
module accumulates the synaptic weights, 4) the integrator
modules update the neurons’ states that are stored in two

FIGURE 7. SNN’s layer architecture: two memories store the spikes and
the synaptic weights; a stack structure stores the pointers to the active
set of inputs used to read the weights that contribute to the synaptic
current value. The synaptic current module evaluates the synaptic current
accumulating the weights over multiple clock cycles. Two identical
cascaded integrator modules integrate the Loihi CUBA Neuron model. The
neuron internal state variables are stored in two FIFO memories
connected in feedback between the integrators’ input and output. The
serial output spikes are converted in a 4-bit parallel signal, in addition,
the active set signal is generated as the or-reduce of the output spikes.

FIFOs connected between the integrator’s input and output,
5) the second integrator generates a spike, 6) the S2P con-
verter re-organizes the single-bit stream of spikes into a
stream of four bits and appends the active set signal, which is
the or-reduced value of the spikes. Fig. 7 shows the architec-
ture of the layer module.

2) SYNAPTIC CURRENT
The synaptic current is the convolution between the input
spike array of a neuron and its set of synaptic weights.

41394 VOLUME 11, 2023



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

Its computation entails adding the synaptic weights of the
active synaptic interconnections.

The synaptic weights are stored in a BRAM-based mem-
ory, where each entry allocates four weights. The spike mem-
ory has the same structure as the weight memory, therefore,
with only one read operation four spikes and four weights
are read. Weights and spikes are read sequentially, and a
logic-and between each weight and its corresponding spike
is computed, so that if the spike is at logic-1 the weight value
is preserved, otherwise is set to zero not to contribute to the
evaluation of the synaptic current.

A single DSP used in Single-Instruction Multiple-Data
(SIMD) mode can be used to compute two additions, the
resulting partial sums are then accumulated employing two
additional DSPs. The accumulation iterates until the synaptic
current is computed adding four weights at every cycle.

3) LOIHI CUBA NEURON IMPLEMENTATION
The Loihi CUBA Neuron is constituted by two almost iden-
tical cascaded integrators that update the state variables by
multiplying their previous values by a decaying factor and
adding an external input, as described by equations 2. The
only difference is that the second integrator verifies if its
output exceeds the spike threshold, resets the state variable
if it is the case, and outputs the spike. All considered a sin-
gle hardware module was implemented, including an enable
signal to activate the spike evaluation.

The two integrators are cascade-connected, the input of the
current integrator is the synaptic current, whereas its output
feeds the voltage integrator. A FIFO is used to feedback the
old integrated values. The FIFO is BRAM-based and its depth
is equal to the number of neurons of the SNN layer.

The Loihi CUBAmodel of the Lava library [36] represents
the numbers in fixed-point; the state variables, as well as the
synaptic weights, utilize 12 fractional bits, whereas the inte-
ger bits vary depending on the number of inputs of the neu-
ron. This hardware implementation respects the data width
used in the library [36], therefore no accuracy degradation is
expected.

Themultiplication between the state variable and the decay
factor is mapped on a DSP. The state variable is the current
when the integrator module is used to solve the first integra-
tion or the voltage during the second integration. The mul-
tiplication output, having 24 fractional bits, is right-shifted
by 12 bits to be aligned with the external input before their
addition. In the second integrator, where the spike evaluation
is enabled, the output of the adder is compared with the spike
threshold: depending on the outcome a multiplexer forwards
either zero or the sum to the output, and a spike is produced.

4) SPIKE SPARSITY STACK
The spike sparsity stack allows taking advantage of the
spike sparsity property of neural signal. The stack stores the
addresses of the active spike sets by relying on the active set
signal, which is used as awrite enable.When the synaptic cur-
rent computation starts, the stack streams out the addresses of

the active spike sets. The address stream permits to retrieves
spikes and weights of the active sets of inputs, whereas the
inactive ones are skipped. The address stream is directly
connected to the read address port of the spike memory,
instead, to read the weight memory, the address stream is
concatenated to the neuron identifier.

The stack is a flip-flop-based memory, its depth is equal
to a quarter of the number of inputs of the layer where it is
instantiated, whereas its word width is the base-two logarithm
of its depth:

- Layer 1: 32 entries of 5 bits;
- Layer 2: 64 entries of 6 bits.

To stream out the stack content are used two counters.
The former counts the stack entries during the writing
phase; the latter is activated when the address stream starts,
i.e. the second counter is initialized with the number of valid
entries stored in the former counter and decremented until it
reaches zero. The counter value drives the addresses to the
output port through a multiplexer.

5) Spike2Number CONVERTER
The output of the last SNN’s layer requires to be converted
from a spike vector of 128 elements to a number. The number
obtained is the regression output.

The conversion is performed by counting the spikes output
of the last layer. The spike to number conversion problem is
thus a population counting problem. Since the layer outputs
the spikes four at a time, the spike-to-number converter is
implemented as a variable-step counter, that at every new set
of spikes increments its value depending on their sum.

Finally, since half of the neurons contribute positively, and
the second half negatively, the counter increments its value
when it receives the spikes of the first group and decrements
it when it receives the spikes of the second group.

C. EXTERNAL INTERFACES
The architecture communicates by means of three AXI
interfaces:

- AXI-4 stream slave: used to read the broadband signal;
- AXI-4 lite slave: used to initialize the weight memories;
- AXI-4 lite master: used to transmit the decoder
prediction.

For test purposes, it is used a DMA to stream the sample
from the PS to the PL.

V. RESULTS
The result section comprises two subsections; the former
presents the decoding accuracy reached by the model on
the benchmark dataset, and the latter shows the resource
requirements of the hardware implementation.

A. ACCURACY
Two SNN models have been trained on the benchmark
dataset. The first model was a single SNN dense layer
of 128 units and 96 inputs. Although this model had low

VOLUME 11, 2023 41395



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

computational and memory requirements, it performed
poorly compared to the state of the art. Therefore, we tried
training a more complex model consisting of two dense lay-
ers, the former layer having 256 units and the latter having
128 units. Table 5 shows the parameter of the two SNNs,
including the number of layers, units, parameters, and mem-
ory requirements. Additionally, Table 5 shows the achieved
decoding accuracy, which is measured with the Pearson cor-
relation coefficient described by Eq. 3.

CC(A,B) =
1

N − 1

N∑
i=1

Ai − µA

σA

Bi − µB

σB
(3)

where CC is the Pearson correlation coefficient of two ran-
dom variables A and B, µA and σA are the mean and standard
deviation of A,µB and σB are themean and standard deviation
of B. The two-layer model outperformed the single-layer
model on both the used datasets, however, it requires instanti-
ating three times more units, 4.7 times more parameters, and
thus, 4.7 times more memory.

TABLE 5. SNN models decoding accuracy.

The velocity inferred by the 2-layer SNN model and the
target handle velocity are plotted in Figure 8 using 37 sec-
onds of recording taken from the test set. Figure 8 shows
graphically how the spike decoder is capable of tracking the
target variable, inferring its value from the neural recording.

FIGURE 8. Spike decoder output behavior.

B. HARDWARE REPORT
This subsection analyzes the resource requirements of the
presented neural interface and shows the benefit of designing
a spike sparsity-aware architecture, expressing the savings as
the number of saved additions.

1) UTILIZATION
The neural decoder implementation can handle up to
128 input channels. The choice went on 128 since it is the
closest power of two bigger than 96, that is the channels

of the Utah array used for recording the benchmark dataset.
However, the architecture can be synthesized also for a lower
or a higher number of channels. The design is hosted on a
Zybo, a low-cost development board for Xilinx Zynq All-
Programmable SoCs, clocked at 2MHz, a frequency at which
the architecture can comfortably process the data in real time,
ensuring a response in 1.8 ms on average, and in about 3 ms
in the worst-case scenario. The post-implementation resource
requirements of the digital system are shown in Table 6. The
first row indicates the overall resource usage of the design
under test (DUT), the second and the third rows refer to the
individual requirements of the spike detector and the SNN.

The overall required LUTs are about 2.5 k, of which
160 are instanced in the spike detector, and 756 in the
SNN. The registers and the LUTRAMs are about 3.4 k
and 209 respectively, of which 251 and 80 serve the spike
detector, and about 1 k and 30 the decoder. Most of the
spike detector LUTRAMs (72) are employed for storing the
previous samples inside the filter, in fact, each SRLC32E
LUTRAM primitive is a 32-bit shift register, thus: 32 bits ×

80 primitives = 2,560 bits. Note that 10 bits sample ×

128 channels × 2 taps = 2,560 bits as well. By using more
demanding filters, such as a 4th order IIR filter, the number
of LUTRAM primitives necessary to implement the shift
register would rise to about 10 bits sample× 128 channels×

9 taps/32 bits per SRLC32E primitive = 360. The chosen
filter permits saving 77.78% of the LUTRAMs compared to
widely used 4th-order IIR filters.

The 14 DSPs instantiated are entirely used to speed up the
SNN module, thus, each layer of the SNN takes advantage
of the computational power of 7 DSPs. Three DSPs are
used to accumulate the synaptic weights during the synaptic
current computation, the remaining 4 are used for the double
integration of the Loihi neuron, 2 per integrator. As regards
the filter, it does not require any DSP, since the samples are
not multiplied by any parameter. In a 4th-order IIR filter,
to maintain the same throughput of one output sample per
clock cycle, 9 multiplications should be computed in parallel,
requiring 9 DSPs.

The BRAM requirement is 34.5 tiles, of which 1.5 BRAMs
are used by the DMA, instanced to provide the broadband
recording during the test phase, 1 BRAM is used by the spike
detector to store the thresholds and the refractory periods,
and the remaining 32 are used by the SNN. In the SNN
architecture, two BRAMs are used by the integrators to
implement the FIFO memory where are stored the neurons’
state (half of a BRAM for each integrator), and the remaining
30 are used for storing the synaptic weights. Considering
the weight memories of the two layers have the same size:
128 inputs × 256 units × 15 bits = 480 kb for the first layer
and 256 inputs× 128 units× 15 bits= 480 kb for the second
layer, and that each BRAM is 36 kb each, ceil(480/36) = 14
BRAMs should be instanced per layer. However, because of
the suboptimal word size of 60 bits (4 weights), the number
rises to 30 BRAMs instead of 28, as if it was used 16-bit
weights.

41396 VOLUME 11, 2023



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

TABLE 6. Post-implementation hardware utilization: the first row shows
the resource utilization of the design under test that comprises the spike
detector, the SNN-based decoder and the AXI DMA used to stream the
input samples during the test phase, the second row and the third rows
represent the utilization of the spike detector and the spiking neural
network.

2) SPIKE SPARSITY SAVINGS
Spike sparsity has been exploited by instancing on each layer
of the SNN a stack to store the addresses pointing to the active
input sets. The effect of this architectural choice has been
assessed by counting the number of saved additions during
the synaptic current computation using real test data [13].
The savings are reported in Tables 7 and 8, respectively for
datasetN (16 minutes and 43 seconds long) and L (11 minutes
and 49 seconds long) [13]. The saving is reported separately
for each layer and for both.

TABLE 7. Operations saved in dataset N [13].

On dataset N the spike sparsity aware architecture
saves 95% of the sums in the first layer, and 86% in the
second, for a total saving of 88%.

TABLE 8. Operations saved in dataset L [13].

The additions saved on dataset L are 93% in the first layer,
and 91% in the second, for a total saving of 91%, even more
than for dataset N.

It must be considered that the saved sums not only reduce
the switching power of the digital system but also the time
necessary for evaluating the decoder output. Considering
the clock period of the system is set for the worst case
scenario, where all the synapses are active, but on average
less than the 12% are, the SNN on average terminates in
the 12% of the time and could be put in sleep mode for
the remaining 88% of the time, saving also static power,
or on the contrary, it could be used to process larger sen-
sor arrays. The computational and power savings are well
balanced considering the resource requirements of the stacks
reported in Table 9. Note that, the stacks are the only ele-
ments that alone permit the design to be aware of spike
sparsity.

TABLE 9. Stack modules utilization.

VI. COMPARISON WITH THE STATE OF THE ART
The presented neural interface is the first work that directly
uses intracortical recorded spikes jointly with an SNN for
decoding the neural signal, either implemented on FPGA or
ASIC, to the best of our knowledge. Table 10 reports software
decoders tested on the same benchmark dataset used in this
work [13]. Table 10 reports the type of decoder used in each
study, the number of parameters, and the total required mem-
ory when available. Moreover, since the dataset comprises
two different recordings, the accuracy, measured in terms of
the Pearson correlation coefficient (CC), is reported in the
two last columns of the table.

TABLE 10. State of the art neural decoders comparison.

On lines 2, 3, and 4 we show the accuracy of three deep
learning decoders [10], a QRNN, a GRU, and an LSTM. The
deep-learning models have been tested with several neural
signal features, such as SUA,MUA, and ESA. The best model
found in [10] for decoding the MUA was the QRNN of
400 units, which performed similarly to our work. On dataset
N their decoder achieved 0.84 CC, whereas our SNN got 0.83.
On dataset L, this work outperformed the QRNNwith a CC of
0.78 compared to the correlation of 0.73 found by the QRNN.
The best correlation found for dataset L in [10] is the one
of the GRU model, which tied to our result using the ESA
feature rather than the MUA; in the case of dataset N, the
highest correlation was obtained using an LSTM model and
the ESA feature, achieving 0.87. As regards the correlation
obtained on dataset N for the GRU model, and on dataset L
for the LSTM model, they were not available, but it can be
assumed they were lower than the result of the QRNN since
the QRNN is the best decoder found in their study overall.

Lines 5, 6, and 7 of Table 10 show the results obtained from
three deep learning decoders: RNN, GRU, and LSTM [19],
implemented using the PyTorch library, and tested on dataset
N only. The models tested in [19] based their inferences on
the SUA, computed using the Plexon Offline Sorter, which
found 156 units. The decoders achieved outstanding corre-
lation results of 0.91, 0.89, and 0.91 respectively. Moreover,
in [19] is shown the number of parameters utilized for each
model, making possible a memory requirements comparison

VOLUME 11, 2023 41397



G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

with our work. The RNN, which is the smallest model of the
three, makes use of 0.42 million parameters, about 7.4 times
more than the SNN model presented in this work. The GRU
model requires using 20.9 more parameters than the SNN,
the LSTM necessitates 27.4 more parameters than the SNN.
Moreover, we assume a 32-bit floating-point representation
for the parameters, as it is common in the Pytorch library,
to infer the memory usage of the models in [19]. They
respectively require 1.6, 4.5, and 5.9 MB, whereas our model
occupies only 105 kB. Therefore, the memory requirements
for using the presented model are respectively 6.4%, 2.3 %,
and 1.7% of the ones required by the models in [19].

VII. CONCLUSION
We have presented a resource-power efficient intracortical
neural interface system embedding a multiplier-less spike
detection pipeline and a spike-sparsity-aware SNN decoder.
The spike detector is equipped with a filter, dynamic thresh-
old updates, refractory period spike burst limitation, and spike
binning features, ensuring reliable spike detection by only
employing five additions per channel and zero multiplica-
tions. The SNN model, used to decode the neural signal,
takes advantage of the spike sparsity feature of intracorti-
cal recordings, by dynamically indexing the active synaptic
weights during the computation of the synaptic currents,
avoiding waste of dynamic power and accelerating the layers’
inference. The effectiveness of the method was proved on
two datasets, where the 88% and the 91% of the sums during
the computation of the synaptic currents were saved, at the
expense of 568 REGs and 214 LUTs.

Further improvements of this work are possible in several
directions. It would be interesting to verify the accuracy
of SNN models on more datasets, explore the impact on
the decoding accuracy given by a reduced precision for the
weights representation and investigate the effect of convolu-
tional layers to exploit MEA spatial properties.

REFERENCES
[1] M. Śliwowski, M. Martin, A. Souloumiac, P. Blanchart, and T. Aksenova,

‘‘Decoding ECoG signal into 3D hand translation using deep learning,’’
J. Neural Eng., vol. 19, no. 2, Apr. 2022, Art. no. 026023.

[2] P. Busia, A. Cossettini, T. M. Ingolfsson, S. Benatti, A. Burrello,
M. Scherer, M. A. Scrugli, P. Meloni, and L. Benini, ‘‘EEGformer:
Transformer-based epilepsy detection on raw EEG traces for low-channel-
count wearable continuous monitoring devices,’’ in Proc. IEEE Biomed.
Circuits Syst. Conf. (BioCAS), Oct. 2022, pp. 640–644.

[3] F. M. Petrini et al., ‘‘Six-month assessment of a hand prosthesis with
intraneural tactile feedback,’’ Ann. Neurol., vol. 85, no. 1, pp. 137–154,
Jan. 2019.

[4] D. A. Moses, S. L. Metzger, J. R. Liu, G. K. Anumanchipalli, J. G. Makin,
P. F. Sun, J. Chartier, M. E. Dougherty, P. M. Liu, G. M. Abrams,
A. Tu-Chan, K. Ganguly, and E. F. Chang, ‘‘Neuroprosthesis for decoding
speech in a paralyzed person with anarthria,’’ New England J. Med.,
vol. 385, no. 3, pp. 217–227, 2021.

[5] M. W. Slutzky, ‘‘Brain–machine interfaces: Powerful tools for clini-
cal treatment and neuroscientific investigations,’’ Neuroscientist, vol. 25,
no. 2, pp. 139–154, May 2018.

[6] I. Obeid and P. D. Wolf, ‘‘Evaluation of spike-detection algorithms for a
brain–machine interface application,’’ IEEE Trans. Biomed. Eng., vol. 51,
no. 6, pp. 905–911, Jun. 2004.

[7] R. Q. Quiroga, ‘‘Spike sorting,’’Current Biol., vol. 22, no. 2, pp. R45–R46,
2012.

[8] N. Ahmadi, T. G. Constandinou, and C.-S. Bouganis, ‘‘Decoding hand
kinematics from local field potentials using long short-term memory
(LSTM) network,’’ in Proc. 9th Int. IEEE/EMBS Conf. Neural Eng. (NER),
Mar. 2019, pp. 415–419.

[9] D. Sussillo, P. Nuyujukian, J. M. Fan, J. C. Kao, S. D. Stavisky, S. Ryu,
and K. Shenoy, ‘‘A recurrent neural network for closed-loop intracortical
brain–machine interface decoders,’’ J. Neural Eng., vol. 9, no. 2, 2012,
Art. no. 026027.

[10] N. Ahmadi, T. G. Constandinou, and C.-S. Bouganis, ‘‘Robust and accu-
rate decoding of hand kinematics from entire spiking activity using deep
learning,’’ J. Neural Eng., vol. 18, no. 2, Apr. 2021, Art. no. 026011.

[11] A. Nurmikko, ‘‘Challenges for large-scale cortical interfaces,’’ Neuron,
vol. 108, no. 2, pp. 259–269, Oct. 2020.

[12] X. Wang, X. Lin, and X. Dang, ‘‘Supervised learning in spiking neural
networks: A review of algorithms and evaluations,’’Neural Netw., vol. 125,
pp. 258–280, May 2020.

[13] T. Brochier, L. Zehl, Y. Hao, M. Duret, J. Sprenger, M. Denker, S. Grün,
and A. Riehle, ‘‘Massively parallel recordings in macaque motor cortex
during an instructed delayed reach-to-grasp task,’’ Sci. Data, vol. 5, no. 1,
pp. 1–23, Apr. 2018.

[14] Utah Array. Accessed: Jan. 10, 2023. [Online]. Available: https://
blackrockneurotech.com/

[15] X. Wu, G. Li, S. Jiang, S. Wellington, S. Liu, Z. Wu, B. Metcalfe,
L. Chen, and D. Zhang, ‘‘Decoding continuous kinetic information of
grasp from stereo-electroencephalographic (SEEG) recordings,’’ J. Neural
Eng., vol. 19, no. 2, Apr. 2022, Art. no. 026047.

[16] Y. Du, J. Jin, Q. Wang, and J. Fan, ‘‘EMG-based continuous motion
decoding of upper limb with spiking neural network,’’ in Proc. IEEE Int.
Instrum. Meas. Technol. Conf. (IMTC), May 2022, pp. 1–5.

[17] Y. Yang, J. Ren, and F. Duan, ‘‘The spiking rates inspired encoder and
decoder for spiking neural networks: An illustration of hand gesture recog-
nition,’’ Cognit. Comput., pp. 1–16, May 2022.

[18] H. Fang, Y. Wang, and J. He, ‘‘Spiking neural networks for corti-
cal neuronal spike train decoding,’’ Neural Comput., vol. 22, no. 4,
pp. 1060–1085, Apr. 2010.

[19] S.-H. Yang, J.-W. Huang, C.-J. Huang, P.-H. Chiu, H.-Y. Lai, and
Y.-Y. Chen, ‘‘Selection of essential neural activity timesteps for intracorti-
cal brain–computer interface based on recurrent neural network,’’ Sensors,
vol. 21, no. 19, p. 6372, Sep. 2021.

[20] X. Ma, W. Zheng, Z. Peng, and J. Yang, ‘‘FPGA-based rapid electroen-
cephalography signal classification system,’’ in Proc. IEEE 11th Int. Conf.
Adv. Infocomm Technol. (ICAIT), Oct. 2019, pp. 223–227.

[21] M. Agrawal, S. Vidyashankar, and K. Huang, ‘‘On-chip implementation
of ECoG signal data decoding in brain-computer interface,’’ in Proc. IEEE
21st Int. Mixed-Signal Test. Workshop (IMSTW), Jul. 2016, pp. 1–6.

[22] C. M. McCrimmon, J. L. Fu, M. Wang, L. S. Lopes, P. T. Wang,
A. Karimi-Bidhendi, C. Y. Liu, P. Heydari, Z. Nenadic, and A. H. Do,
‘‘Performance assessment of a custom, portable, and low-cost brain–
computer interface platform,’’ IEEE Trans. Biomed. Eng., vol. 64, no. 10,
pp. 2313–2320, Oct. 2017.

[23] S. M. Khan, A. A. Khan, and O. Farooq, ‘‘Selection of features and
classifiers for EMG-EEG-based upper limb assistive devices—A review,’’
IEEE Rev. Biomed. Eng., vol. 13, pp. 248–260, 2020.

[24] J. Fan and J. He, ‘‘Motor cortical encoding of hand orientation in a
3-D reach-to-grasp task,’’ in Proc. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Aug. 2006, pp. 5472–5475.

[25] G. Saggese and A. G. M. Strollo, ‘‘A low power 1024-channels spike
detector using latch-based RAM for real-time brain silicon interfaces,’’
Electronics, vol. 10, no. 24, p. 3068, Dec. 2021.

[26] G. Leone, L. Raffo, and P. Meloni, ‘‘ZyON: Enabling spike sort-
ing on APSoC-based signal processors for high-density microelec-
trode arrays,’’ IEEE Access, vol. 8, pp. 218145–218160, 2020, doi:
10.1109/ACCESS.2020.3042034.

[27] G. Leone, L. Raffo, and P. Meloni, ‘‘A bandwidth-efficient emulator of
biologically-relevant spiking neural networks on FPGA,’’ IEEE Access,
vol. 10, pp. 76780–76793, 2022.

[28] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, ‘‘The SpiNNaker
project,’’ Proc. IEEE, vol. 102, no. 5, pp. 652–665, Feb. 2014.

[29] H. Irmak, F. Corradi, P. Detterer, N. Alachiotis, and D. Ziener, ‘‘A dynamic
reconfigurable architecture for hybrid spiking and convolutional FPGA-
based neural network designs,’’ J. Low Power Electron. Appl., vol. 11,
no. 3, p. 32, Aug. 2021.

41398 VOLUME 11, 2023

http://dx.doi.org/10.1109/ACCESS.2020.3042034


G. Leone et al.: On-FPGA SNNs for End-to-End Neural Decoding

[30] M. Davies et al., ‘‘Loihi: A neuromorphic manycore processor with on-
chip learning,’’ IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018.

[31] F. Akopyan et al., ‘‘TrueNorth: Design and tool flow of a 65 mW 1 million
neuron programmable neurosynaptic chip,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 10, pp. 1537–1557, Oct. 2015.

[32] Z. Zhang and T. G. Constandinou, ‘‘Adaptive spike detection and hardware
optimization towards autonomous, high-channel-count BMIs,’’ J. Neu-
rosci. Methods, vol. 354, Apr. 2021, Art. no. 109103.

[33] J. F. Kaiser, ‘‘On a simple algorithm to calculate the ‘energy’ of a sig-
nal,’’ in Proc. Int. Conf. Acoust., Speech, Signal Process., vol. 1, 1990,
pp. 381–384.

[34] T. P. Vogels and L. F. Abbott, ‘‘Signal propagation and logic gating in
networks of integrate-and-fire neurons,’’ J. Neurosci., vol. 25, no. 46,
pp. 10786–10795, Nov. 2005.

[35] S. B. Shrestha and G. Orchard, ‘‘SLAYER: Spike layer error reassign-
ment in time,’’ in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2018,
pp. 1419–1428. [Online]. Available: http://papers.nips.cc/paper/7415-
slayer-spike-layer-error-reassignment-in-time.pdf

[36] (2022). Lava Software Framework. [Online]. Available: https://lava-
nc.org/index.html

[37] E. M. Izhikevich, ‘‘Simple model of spiking neurons,’’ IEEE Trans. Neural
Netw., vol. 14, no. 6, pp. 1569–1572, Nov. 2003.

GIANLUCA LEONE received the B.S. degree in
electronics engineering from the University of
Cagliari, Cagliari, Italy, in 2016, and the M.S.
degree in electronics engineering from Politecnico
di Torino, Turin, Italy, in 2019. He is currently
pursuing the Ph.D. degree in electronic and com-
puter engineering with the University of Cagliari.
His research interest includes the development and
optimization of hardware accelerators on FPGA.

LUIGI RAFFO joined the Department of Elec-
trical and Electronic Engineering, University of
Cagliari, Italy, in 1994. He has been a Full
Professor of electronics with the University of
Cagliari, since 2006. He has been the Coordinator
of the course of studies in biomedical engineer-
ing, from 2006 to 2012 and from 2017 to 2018.
He teaches courses on system design, digital and
analog electronics design, and processor architec-
tures. Since 2012, he has been a Rector’s Delegate

for international research projects. His research interests include the study,
design, and development of systems and micro-systems for applications
where high performance, high efficiency, and low power are required. In such
a field, he is the author of more than 200 scientific articles.

PAOLO MELONI has been an Assistant Profes-
sor with the University of Cagliari, since 2012.
He teaches advanced embedded systems with the
University of Cagliari. He is currently the Sci-
entific Coordinator of the ALOHA (www.aloha-
h2020.eu) H2020 Project. He is the author of
a significant track of international research arti-
cles. His research interests include the devel-
opment of advanced digital systems and the
application-driven design and programming of
multi-core on-chip architectures and FPGAs.

Open Access funding provided by ‘Università degli Studi di Cagliari’ within the CRUI CARE Agreement

VOLUME 11, 2023 41399


