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ABSTRACT In this work we consider the joint problem of offloading and pricing in heterogeneous
networks comprising two-tier operators, namely, aMobile Network Operator (MNO) and a pair of competing
Small-cell Service Providers (SSPs). The offloading problem involves the MNO deciding the amount of
traffic that it wishes to offload onto the SSPs. The SSPs, in turn, interact with each other through a pricing
problem that requires the SSPs to fix competitive prices so as to maximize their revenue by trading more
offloaded data with the MNO. The nature of the pricing scheme – flexible or flat – is fixed by the regulators.
In flexible-pricing the SSPs can charge the MNO differently for different amount of traffic flows offloaded
onto them. In contrast, under the flat-pricing scheme the SSPs are restricted to announce a fixed price
irrespective of the offloaded traffic. For both pricing schemes, the MNO’s offloading problem is first
formulated as a Stackelberg game with MNO as the leader, while SSPs constitute the followers. The solution
to the offloading problem is characterized in terms of Stackelberg equilibria, referred to as the optimal-
offloading strategy, which is in contrast to the full-offloading scenarios considered in the literature (where
the entire data is naively offloaded onto the SSPs by the MNO). Next, the SSPs’ pricing problem (which
appears as the followers’ game in the Stackelberg’s formulation) is formulated as a Bayesian game and
the solution is characterized in terms of Bayesian Nash equilibria (BNE). We first establish that there are
no BNEs in pure strategies, and then proceed to derive the structure of a mixed strategy symmetric BNE.
Finally, we conduct an extensive numerical work to compare the performances of the flexible and flat-pricing
schemes under optimal-offloading and full-offloading strategies. Through our studywefind that the proposed
optimal-offloading strategy yields a better payoff to the MNO, while the choice of pricing scheme (flexible
or flat) that is favorable for the SSPs varies with the system parameters.

INDEX TERMS Mobile data offloading, heterogeneous networks, network pricing, Stackelberg games,
Bayesian games, mixed strategy Nash equilibrium.

I. INTRODUCTION
We are in the midst of a very challenging communication
era that is witnessing an ever-increasing demand for mobile
data. Indeed, with increasing mobile connectivity and sub-
scriptions,1 as well as with more-and-more data-intensive
applications being introduced into the digital space, this trend

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li .
1According to a latest report by Cisco [2], the number of mobile sub-

scribers are expected to grow from 5.1 billion (66 percent of the population)
in 2018 to 5.7 billion (71 percent of the population) by 2023.

(of an upward surge in the demand for mobile data) is bound
to continue well into the future. In order to meet this increas-
ing demand, although the mobile operators are proactively
adopting the 5G standards, complementary solutions are also
necessary that can leverage the benefit of using the ser-
vices of other small-cell technologies (e.g., WiFi, femtocells,
road-side units, etc) that have also been providing wireless
connectivity [3], [4], [5]. One promising solution in this
direction is the proposal of mobile data offloading [6], [7],
[8], [9], [10] whereby the mobile operators are allowed to
offload some of their users onto small-cell service providers
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(e.g., public WiFi operators, femto-cell operators, road-side
unit operators, etc.), thus balancing the mobile-traffic load
among the heterogeneous networks.2

Enabling mobile data offloading requires methods to hand-
off mobile users onto small-cell networks in a ubiquitous
fashion. Existing standards such as the 3GPP ATSSS (Access
Traffic Steering, Switching, Splitting) [13], [14], [15] can
be easily adopted for this purpose. Thus, the technological
challenges involved in realizing the proposal of mobile data
offloading are relatively easy to address, although significant
research and development efforts are still required in reducing
the protocol and signalling overhead that may be incurred
while handing-off the mobile users onto small-cell providers.

In addition to the above technological challenges, there
are also some important economic implications that need to
be addressed in parallel in order to realize the full poten-
tial of the mobile data offloading technology [16]. Such
economic implications arise primarily because the heteroge-
neous networks, in general, are owned by competing private
operators. As a result, the small-cell service providers (SSPs)
will be reluctant to provide the offloading services unless the
mobile network operators (MNOs) provide attractive mone-
tary incentives to the SSPs, thus compensating the SSPs for
the additional CAPEX and OPEX that they may incur.

Introducing monetary transactions into the data offload-
ing market will yield interesting economic scenarios. For
instance, since offloading incurs a cost to theMNOs, theywill
now exercise caution towards the amount of mobile data that
they wish to offload. Simultaneously, the SSPs will seek to
maximize their individual profit by fixing competitive prices
for their offloading service. In this work, we study one such
offloading and pricing scenario comprising a single MNO
and a pair of SSPs. The offloading problem of the MNO is
formulated as a Stackelberg game, while the pricing problem
(involving competition among the SSPs) is captured using the
framework of Bayesian games. Before proceeding to discuss
in detail the main contributions of this work, we present a
summary of related work in literature to highlight the novelty
of the current work.

A. RELATED WORK
Some early works to have studied the economic aspects of
mobile data offloading include [16], [17], [18], [19], [20],
[21]. Gao et al. in [16] propose a model where the MNOs
choose prices they are willing to pay, while the SSPs decide
the amount of traffic they wish to offload. The resulting nego-
tiation process between theMNOs and the SSPs is formulated
as a Stackelberg game. The solution is characterized in terms
of subgame perfect equilibrium (SPE), and its performance is

2In contrast to mobile data offloading is the proposal of 5G-Unlicensed
(i.e., 5G New Radio Unlicensed [11], [12]) where the mobile operators are
permitted to transmit directly on the unlicensed WiFi band (thus increasing
their capacity to support more traffic). Although this approach would find
merit in regions with sparse WiFi deployments, in urban settings however,
transmitting on the WiFi band would significantly reduce the throughput of
the users that are consciously connected to the WiFi network.

compared against market scenarios with perfect-competition
and no-competition. Authors in [17], using the framework of
Nash bargaining theory, systematically study the processes
of sequential and concurrent bargaining between the MNO
and the SSPs. The profits-gained (or losses-incurred) by the
MNO and the SSPs under the two bargaining approaches
are presented. The possibility of allowing multiple SSPs
to bargain in a group is also considered. Techniques from
auction theory have been employed in [18] and [19] to
model the interactions that arise between MNO and SSPs in
data offloading markets. While the study in [18] proposes a
double-auctions mechanism for pricing and rate allocation,
the authors in [19] propose a reverse auction based approach
to enable efficient data offloading. In contrast to auction
theory, the work in [20] employ a Stackelberg game approach
to conduct incentive analysis in data offloading markets.
Werda et al. in [21] propose an optimization theory based
pricing framework for heterogeneous networks where the
users can choose to connect to either femto or macro cellu-
lar base-stations, given the respective prices. In contrast to
the user-initiated offloading mechanism of [21], we propose
a network-initiated mechanism where the MNO and SSPs
negotiate offloading prices (thus the users remain oblivious
to the offloading decisions of the MNO). More recent works
employing techniques from optimization and game-theory
(involving auctions, contracts, etc.,) to address the challenges
involved in realizing data-offloading include [22], [23], [24],
[25], and [26].

Among the recent references, studies addressing the prob-
lem of offloading in opportunistic and vehicular networks are
also available [25], [26], [27], [28], [29], [30]. Zhou et al.
in [27] consider the problem of selecting the initial set of
mobile nodes onto which themobile network can offload con-
tent. These initial nodes can serve requests for the offloaded
content from other nodes in their vicinity, thus indirectly
reducing the load on the mobile network. Authors in [25]
propose to use some moving vehicles as SSPs to deliver
data to other vehicles in an opportunistic fashion. Although a
Stackelberg-game formulation is proposed in [25], the objec-
tive remains to identify the set of SSPs (i.e., vehicles) that
can provide offloading service at the lowest price. In our
context, the SSPs are fixed; the challenge lies in determining
the equilibrium prices when they compete for offloading
traffic that lies in the overlap of their coverage regions. For
more literature on offloading in vehicular networks, see [28],
[29] (and reference therein). Cellular data offloading using
satellite networks has also been studied in the literature. For
instance Du et al. in [30] propose a second-price auction
based mechanism to facilitate a terrestrial MNO and a satel-
lite to negotiate spectrum sharing and offloading decisions.
In contrast, in our work we assume that both MNO and SSPs
already possess non-overlapping spectrum – offloading is
accomplished by negotiating (competitive) prices of the SSPs
with the MNO.

In general, most of the above works on data-offloading
assume that the coverage regions of the SSPs do not overlap,
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due to which the SSPs have monopoly over the traffic flows
generated by theMUs in their coverage region. This is in con-
trast to our work where the duopoly competition, that arises
due to overlapping coverage regions, is modeled. One of the
few works to have considered overlapping SSPs’ coverage
regions include that of Li et al. in [31]. Formulating the SSPs’
pricing problem as a game, the authors in [31] show that
there is no Nash equilibrium in pure strategies when the SSPs
coverage regions overlap. The authors then seek to derive the
structure of a mixed strategy Nash equilibrium. The work
in [31] however assumes that the MNO chooses to offload
all traffic onto the SSPs, i.e., they do not address the MNO’s
offloading problem. Further, similar to all of the other work
in literature, Li et al. [31] also assume that the offloaded
traffic is deterministic, and is known to both the SSPs before
fixing their prices. In contrast to the existing work, we model
the traffic flows as random, and thus introduce uncertainty
at the SSPs regarding flows offloaded onto their competitor
SSPs. Thus, the SSPs’ pricing problem in our case is modeled
as a Bayesian game. Additionally, we also study the MNO’s
offloading problem (unlike that in Li et al. [31]), yielding
an overall Stackelberg game. In summary, to the best of our
knowledge, this is the first work to model uncertainty at SSPs
regarding the traffic flow offloaded onto their competitor
SSPs.

In addition to data-offloading, the framework of Stackel-
berg games has been extensively employed in the literature
to address the problem of resource allocation in general. For
instance, the problem of power allocation in heterogeneous
networks and D2D networks has been considered in [32]
and [33], respectively. Work in [34] and [35] propose Stack-
elberg game formulations to address the problem of pricing
and sub-channel allocation in the context of network slicing.
Similarly, [36], [37], and [38] consider adopting Stackelberg
formulations to address the problem of resource allocation
arising in caching networks. In the context of edge computing
systems, there are works in literature that employ Stackel-
berg game formulations to accomplish the task of offloading
computation requests to cloud servers [39], [40]. Specifically,
the authors in [39] propose a Stackelberg differential game
based approach for facilitating computation resource sharing
between a cloud server and a collection of edge computing
service providers. Similarly, interactions between multiple
edge servers and Industrial IoT devices (for enabling com-
putation offloading) are modeled using Stackelberg game in
[40]. Although Stackelberg-game based resource allocation
problems are commonly considered in the literature, the par-
ticular formulation that we consider (where the SSP flows are
a-priori unknown) and the results that we derive (Bayesian
Nash equilibrium prices in Fig. 2, etc.) are unique to the best
of our knowledge.

Finally, our model comprising two SSPs falls under the
realm of competition in duopoly markets [41], [42], [43],
[44], [45]. Wang et al. in [41] consider the problem of design-
ing attractivemobile subscription packages by two competing
MNOs. The problem of competitive pricing for spectrum

sharing in cognitive radio networks has been studied by
Li et al. in [42]. Similarly, the problem of pricing in cloud
markets is considered in [43], while the duopoly competi-
tion among renewable energy suppliers in energy markets is
studied by Zhao et al. in [44]. With reference to the above
literature, our work on competitive pricing in data-offloading
markets can also be considered as a novel contribution to the
studies on duopoly markets.

B. OUR CONTRIBUTIONS AND PAPER OUTLINE
Our main technical contributions are as follows:

1) We model the SSPs’ pricing problem using the frame-
work of Bayesian games, and characterize the solu-
tion in terms of Bayesian Nash equilibrium (BNE).
We show that no BNE exists in pure strategies (The-
orem 1), and then proceed to derive the structure of a
mixed strategy symmetric BNE (Theorem 2).

2) TheMNO’s offloading problem is solved via a Stackel-
berg game formulation that involves theMNO solving a
utility maximization problem by anticipating the effect
of its offloading decision on the BNE prices of the
SSPs.

3) Through a detailed theoretical as well as numerical
study we compare and contrast the payoff’s achieved
by the MNO and the SSPs under flexible and flat-
pricing schemes, when the MNO exercises (i) optimal
offloading (i.e., Stackelberg game solution), as well as
(ii) full offloading where the MNO naively offloads all
data onto the SSPs (like in the existing work [31]).

The remainder of the paper is outlined as follows. In Sec-
tion II we present the proposed flexible-pricing model, where
the associated offloading and pricing problems are formu-
lated using the frameworks of Stackelberg and Bayesian
games, respectively. The solution to the pricing problem,
characterized in terms of Bayesian Nash Equilibrium (BNE),
is studied in Section III. Specifically, the case of BNE in pure
strategies is studied in Section III-A, while in Section III-B
we consider mixed strategy BNEs. In Section IV we derive
the solution to the offloading problem which is character-
ized in terms of Stackelberg equilibrium. In Section V we
present the corresponding results for the flat-pricing model
where the SSPs are restricted to set a single price (irrespective
of the amount of traffic offloaded onto them). In Section VI
we discuss the heuristic full-offloading scheme where the
MNO naively offloads all traffic onto the SSPs. Results from
our numerical study are reported in Section VII, and we
finally draw our conclusions in Section VIII. For convenience
we have presented glossary of symbols in Table 1.

II. FLEXIBLE-PRICING MODEL
We consider a system comprising aMobile Network Operator
(MNO) and two Small-cell Service Providers (SSP-1 and
SSP-2). As illustrated in Fig. 1, the MNO and the SSPs may
have installed multiple base stations (cellular and femtocell,
respectively) in a geographical location with overlapping
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FIGURE 1. An illustration of a data offloading scenario comprising
3 cellular base-stations of MNO, and 4 and 5 femtocell base-stations of
SSP-1 and SSP-2, respectively. The green-shaded portions represent the
overlap regions of SSP-1 and SSP-2’s coverage areas.

coverage regions. The femtocells of the SSPs could represent
Road-Side Units (RSUs) of a vehicular network provider,
Access Points (APs) of a public WiFi operator, etc. Thus,
the SSPs could represent heterogeneous network providers,
operating in the vicinity of one another. In such a setting,
MNO can achieve data offloading by handing-off some of its
users’ requests (i.e., traffic load) onto the SSPs for service.
Specifically, requests of the users that lie exclusively in the
coverage region of (the base-stations installed by) SSP-i, i ∈

{1, 2} (but not in the coverage region of SSP-j, j ̸= i) can
be offloaded to SSP-i, while the users that lie in the overlap
regions (green-shaded regions in Fig. 1) can be offloaded to
either of the SSPs.

Let Fi ∈ ℜ+ (i ∈ {1, 2}) denote the aggregate traffic
demand (or traffic flow) generated by the users that lie exclu-
sively in the coverage region of SSP-i, while we use Fo ∈ ℜ+

to denote the flow generated by the users that lie in the overlap
region. We assume that the values of F1 and F2, being private
information, are known only to the respective SSPs; whereas,
the overlap flow Fo is commonly known to both the SSPs.
We model the above scenario by assuming that F1 and F2 are
random variables (and thus their realized values are known
only to the respective SSPs), while the overlap flow Fo is
considered a constant (whose value is known to both SSPs).
For simplicity, we begin with a simple model where F1 and
F2 are i.i.d. (independent and identically distributed) taking
values Fℓ and Fh with probabilities θℓ and θh, respectively,
such that θℓ + θh = 1. We assume that Fℓ ≤ Fh, so that the
probability that the flow Fi (i = 1, 2) is low (i.e., Fℓ) is θℓ,
while the flow is high (i.e., Fh) with probability θh.
Remarks: Although we assume two flow-levels for sim-

plicity, we note that our results can be generalized to a setup
comprisingmore than two levels. Details of the general model
will be discussed in Section III-D.
Note that we are implicitly assuming a slotted system

where the values of the flows Fi and Fo (which depends on
users’ locations and requested traffic) do not varywithin a slot
(but may fluctuate across slots). The offloading and pricing
strategies that we develop in this paper are for a typical slot
with flow levels Fi and Fo. The developed strategies can

however be applied independently to each slot, yielding a
continuously varying offloading and pricing decisions across
slots. Thus, we are envisioning a dynamicmobile-data trading
market (like the stock market) between the MNO and the
SSPs in the future.

A. MNO’s OFFLOADING STRATEGY
The MNO can choose to offload a portion of the above flows
onto the SSPs. Specifically, when Fi = Fℓ we assume that
the MNO offloads fℓ := βℓFℓ amount of flow onto SSP-i
(irrespective of the value of Fj) where βℓ ∈ [0, 1]. Similarly,
when Fi = Fh the offloaded flow is given by fh := βhFh
where βh ∈ [0, 1]. Thus, denoting the flow offloaded onto
SSP-i asFi (referred to as themonopoly-flow since only SSP-i
can serve this flow), we have3

Fi =

{
fℓ = βℓFℓ w.p. θℓ

fh = βhFh w.p. θh.
(1)

Since, βℓ and βh do not depend on the flow Fj corresponding
to the other SSP (SSP-j), it follows that the monopoly flows
Fi and Fj are i.i.d. The average monopoly-flow is given by
fa := θℓfℓ + θhfh. Finally, the portion of the overlap-flow
offloaded onto the SSPs is given by fo = βoFo, where again
βo ∈ [0, 1]. The offloading strategy of the MNO can thus be
represented as a vector β := (βℓ, βh, βo) in [0, 1]3 ⊂ ℜ

3.
Given an offloading strategy β, the amount of flow retained
by the MNO (after offloading to SSPs) is given by

FM :=



2(1 − βℓ)Fℓ + (1 − βo)Fo w.p. θ2ℓ∑
t∈{ℓ,h}

(1 − βt )Ft + (1 − βo)Fo w.p. 2θℓθh

2(1 − βh)Fh + (1 − βo)Fo w.p. θ2h .

(2)

We refer to FM as the self-loaded flow. The average
self-loaded flow is given by

fM := 2θℓ(1 − βℓ)Fℓ + 2θh(1 − βh)Fh + (1 − βo)Fo. (3)

where, for simplicity, we have used fM to denote E[FM ].

B. SSPs’ PRICING STRATEGY
The MNO directly charges the users (irrespective of whether
a respective user’s flow is offloaded or self-loaded) at a fixed
flat-price of pM per-unit-flow of request for data. The SSPs,
on the other hand, are allowed to implement a flexible-pricing
scheme whereby the SSPs can charge the MNO different
prices for the different flow levels (low or high) they actually
experience (during a slot). Formally, let pi =

(
pi,ℓ, pi,h

)
denote the price vector of SSP-i (i ∈ {1, 2}) where pi,ℓ
(resp. pi,h) is the price per-unit-flow that SSP-i charges the
MNO when the offloaded flow is Fi = fℓ (resp. fh). Thus,
given a price vector pi, the price set by SSP-i depends on
the realized value of the offloaded flow Fi (equivalently, the

3Notice that we are using bold-face Fi (i = 1, 2) to denote the aggregate
flows while normal-case Fi are used to denote the offloaded flows.
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TABLE 1. Glossary of symbols.

original aggregate flow Fi). For convenience, we define the
price random variables Pi as follows:

Pi =

{
pi,ℓ if Fi = fℓ
pi,h if Fi = fh.

Note that P1 and P2 are independent (since F1 and F2 are
i.i.d.) and their respective p.m.fs are given by Pi = pi,ℓ w.p.
θℓ, and Pi = pi,h w.p. θh. Finally, we use cM (fM ) and cS to
denote the costs incurred by theMNO and SSPs, respectively,
to serve one-unit of flow. Note that we are assuming the
MNO’s cost to be a (convex-increasing) function of the aver-
age self-loaded flow fM while the SSPs’ cost is considered to
be simply constant.

Remarks: The justification for the above cost model are as
follows:

• First, we assume that the MNO (being a big player in
the mobile-data market) is operating very close to its
capacity so that its service cost (being in the steeply-
increasing regime) is sensitive to the average offloaded
flow. Hence we assume that cM (·) is convex-increasing
in fM . From a theoretical standpoint, expressing the
MNO’s cost cM (fM ) as a function of the self-loaded flow
fM will allow the MNO to tradeoff between the amount
of offloaded vs self-loaded flows (see the remarks fol-
lowing expression (9) for more details).

• The SSPs on the other hand (being relatively new to
the market) are assumed to be operating well below
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its capacity limits, so that its service cost (being in the
slowly-increasing regime) does not vary much with the
amount of offloaded flows. Hence the SSPs’ cost cS is
considered constant.

• Finally, we also note that the MNO’s service cost cM (·)
is expressed as a function of the average self-loaded
flow fM rather than the instantaneous flow FM . The
justification for choosing the former comes from the
consideration that the provisioning of theMNO’s facility
(i.e., allocation of resources such as processors, servers,
bandwidth, etc., which decides the service cost of the
MNO) would be based on the forecasted load (i.e., aver-
age flow) because the facility has to be setup before the
commencement of the operational phase.

Now, since Fi can be served only by SSP-i, the SSPs
have monopoly over their respective flows (assuming that the
SSPs’ prices are less than the MNO’s price of pM , otherwise
the MNO has no incentive to offload). However, since the
MNO would naturally offload the overlap flow fo to the SSP
that charges the lowest price,4 the SSPs are hence expected
to set competitive prices so as to optimize their profits by
additionally serving the offloaded overlap-flow fo.
Remarks: For a given offloading strategy, the above pricing

model generalizes the model proposed in [31] as follows:
when θℓ = 0 or θℓ = 1 our model degenerates to that studied
in [31] where the flows are assumed to be deterministic.
Alternatively, in the context of our setting, the model in [31]
can be thought as simply taking the average flow fa into
account while fixing the SSPs’ prices, instead of considering
the detailed distribution like in our model. Thus, unlike the
above flexible-pricing scheme, the authors in [31] naturally
propose a flat-pricing schemewhere the SSPs are restricted to
set a single price, irrespective of the amount of flow offloaded
onto them. The flat-pricing scheme of Li et al. [31] will be
discussed in detail in Section V.

C. PAYOFF FUNCTIONS
Given the MNO’s offloading strategy β = (βℓ, βh, βo), and
the price vectors (pi, pj) of both SSPs, the revenue or payoff
accrued by the MNO can be written as5

UM
(
β; (pi, pj)

)
= Fi

(
pM − Pi

)
+ Fj

(
pM − Pj

)
+ fo

(
pM − min{Pi,Pj}

)
+ FM

(
pM − cM

)
(4)

where for simplicity we henceforth use cM to denote cM (fM ).
Thus, the average payoff of the MNO is given by

UM
(
β; (pi, pj)

)
= E

[
UM

(
β; (pi, pj)

)]
(5)

where the expectation is w.r.t the joint p.m.f of (F1,F2,FM ).

4In case of a tie, the overlap flow fo is equally split among both the SSPs
(as can be seen from the Pi = Pj case in (6)).

5For simplicity, here after we use the flexible notation (pi, pj) (i ̸= j) to
denote the price-vectors of both SSPs (instead of fixing these to (p1, p2)).

The revenue (i.e., payoff) achieved by the SSPs can be
similarly obtained. First, the payoff of SSP-i is given by

Ui
(
(pi, pj); β

)
=


Fi(Pi − cS ) if Pi > Pj
(Fi + fo)(Pi − cS ) if Pi < Pj
(Fi + 0.5 fo)(Pi − cS ) if Pi = Pj

(6)

The average payoff is then given by

Ui
(
(pi, pj); β

)
= E

[
Ui
(
(pi, pj); β

)]
. (7)

where the expectation is w.r.t the joint p.m.f of (F1,F2) (note
that the self-service flowFM does not directly affect the SSPs’
payoff functions).

Further, given that SSP-i has information about its flow-
level (but not that of SSP-j), we define the following condi-
tional payoffs as follows: for t ∈ {ℓ, h}

Ui,t
(
(pi,t , pj); β

)
= E

[
Ui
(
(pi, pj); β

)∣∣∣Fi = ft
]
. (8)

Note that the value of the conditional payoffs, for instance
say Ui,ℓ (corresponding to low-flow), is not affected by the
price term pi,h (corresponding to high-flow), and vice versa.
Hence, Ui,t in (8) is shown to be a function of pi,t alone
instead of the entire price-vector pi = (pi,ℓ, pi,h) as in the case
of the unconditional payoff function Ui in (7). However, the
unconditional payoff in (7) can be expressed using the above
conditional payoffs as follows:

Ui
(
(pi, pj); β

)
= θℓ Ui,ℓ

(
(pi,ℓ, pj); β

)
+ θh Ui,h

(
(pi,h, pj); β

)
. (9)

Remarks: While writing the above expressions we have
assumed that cS ≤ Pi ≤ pM (i ∈ {1, 2}). This assumption
is natural because, otherwise (i) if Pi > cM , the MNO will
have no incentive to offload any flow onto the SSPs, or (ii)
if Pi < cS , then the SSPs have no benefit in accepting to
serve the offloaded flow. The MNO’s cost cM = cM (fM )
on the other hand varies with the amount of (average) self-
loaded flow fM . As mentioned earlier, cM enables the MNO
to tradeoff between offloading and self-loading. For instance,
increasing offloading (i.e., reducing fM ) will reduce cM ,
which in-contrast entices theMNO to self-load. Alternatively,
increasing self-loading (i.e., increasing fM ) will increase cM ,
thus encouraging the MNO to offload. Hence, there exists
an interesting trade-off between the amount of flow that the
MNO can offload vs self-load. The solution to this trade-off
is characterized via a Stackelberg game formulation as dis-
cussed in the following.

D. GAME FORMULATION
The above model, involving the joint problems of
data-offloading and pricing, yields an interesting game for-
mulation comprising two layers. First, (at a higher-layer)
there exists a data-offloading problem (or offloading game)
which can be formulated as a Stackelberg game (i.e., leader-
follower game). Specifically, the game begins with the MNO
choosing an offloading strategy β, following which SSP-i
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and SSP-j are required to announce their respective prices
pi and pj. Thus, the MNO acts as the leader, while the SSPs
constitute the set of followers of the Stackelberg game.

Next, given the MNO’s offloading decision, the SSPs
themselves are involved in a (lower-layer) pricing game to
resolve the problem of setting competitive prices so as to
maximize their individual payoffs. More specifically, since
SSP-i lacks information about the offloaded flow Fj at SSP-j,
the SSPs’ pricing-game can be formulated as a Bayesian
game [46]. For a given β, the correspondence between the
SSPs’ pricing game and the Bayesian game formulation can
be established as follows:

• SSP-1 and SSP-2 constitute the set of players.
• The set of states is given by the following collection of
flow-pairs: {(fℓ, fℓ), (fℓ, fh), (fh, fℓ), (fh, fh)}.

• The probability distribution over the set of states is
given by θ2ℓ , θℓθh, θhθℓ and θ2h , respectively.

• The set of types of each SSP is simply the set of possible
flow-levels {fℓ, fh}.

• Given the type of SSP-i, the interval [cS , pM ] fromwhich
SSP-i can fix a price constitutes its action space.

• Finally, the payoff functionsUi,ℓ andUi,h in (8) represent
the utility functions of SSP-i given its respective types
fℓ and fh.

The solution to the lower-layer pricing game can hence be
characterized in terms of a Bayesian Nash equilibrium as
defined in the following.
Definition 1 (Bayesian Nash Equilibrium): Given an

MNO’s offloading strategy β, price vectors (p(β)1 , p(β)2 ), where
pi(β) = (p(β)i,ℓ , p(β)j,h ), are said to constitute a Bayesian Nash
equilibrium (BNE) if for all i ∈ {1, 2} and t ∈ {ℓ, h} we have

Ui,t
(
(p(β)i,t , p(β)j ); β

)
≥ Ui,t

(
(pi,t , p

(β)
j ); β

)
(10)

for all pi,t ∈ [cS , pM ]. Thus, unilateral deviation from a BNE
is not beneficial to either of the SSPs. □
Remarks: The above definition corresponds to that of a

pure strategy BNE. The mixed strategy generalization is
obtained by introducing probability distributions from which
the SSPs can pick their respective price-vectors. Details of
mixed-strategy BNEs will be discussed in Section III-B.
Meanwhile, in Section III-A we study the case of pure strat-
egy BNEs.

The solution to the higher-layer offloading game can be
characterized in terms of Stackelberg equilibrium as follows:
Definition 2 (Stackelberg Equilibrium): An offloading

strategy β∗ (along with its associated BNE strategy(
p(β

∗)
i , p(β

∗)
j

)
) is said to constitute a Stackelberg equilibrium

(SE) if the following condition holds:

UM
(
β∗

;
(
p(β

∗)
i , p(β

∗)
j

))
≥ UM

(
β;
(
p(β)i , p(β)j

))
(11)

for all β ∈ [0, 1]3. □
Stackelberg equilibrium constitutes the overall solution to

the joint problem of data-offloading and pricing.We adopt the
backward iteration method to solve the problem as follows:

we first identify the structure of a BNEbyfixing an offloading
strategy β; next, using the BNE solution into the MNO’s
payoff function UM , we compute a Stackelberg equilibrium
by optimizing UM over all offloading strategies β ∈ [0, 1]3.
The details are presented in the following sections.

III. PRICING GAME: BAYESIAN NASH EQUILIBRIUM
In this section, we first establish that there are no BNEs in
pure strategies. In view of this result, we then proceed to
identify BNEs in mixed strategies. We finally generalize our
results to a scenario comprising more than two flows.

Throughout this section we assume that the offloading
strategy β of the MNO is fixed. Hence, for simplicity,
we drop β from the notation of the SSPs’ payoff functions;
for instance, the conditional payoff function Ui,t

(
(pi,t , pj); β

)
is simply written as Ui,t

(
pi,t , pj

)
with the understanding that

the MNO’s offloading strategy is β. Further, we assume that
the offloaded flows satisfy fℓ ≤ fh6; in case, fℓ > fh, then by
simply interchanging the roles of fℓ and fh the results of this
section can be applied to identify the solution.

A. PURE STRATEGY BNE
The results in this sub-section are along the lines of the results
in [31]. However, caution is required as the offloaded flowsFi
(i = 1, 2) are randomwhich is unlike the case in [31]. Further,
in our case the actions are represented as price-vectors pi =

(pi,ℓ, ph) instead of a single real-valued price like in [31]. As a
result, the process of establishing the non-existence of a pure
strategy BNE equilibrium (in Theorem 1) requires careful
investigation of all of the several exhaustive cases. The details
are as follows.

Suppose Fi = ft (t ∈ {ℓ, h}) then SSP-i can accrue a
guaranteed payoff of at least ut := ft (pM − cS ) by setting the
price to maximum (i.e., pi,t = pM ). However, by reducing
the price (i.e., pi,t < pM ), it is possible to achieve a higher
payoff of vt (pi,t ) := (ft + fo)(pi,t − cS ) (by acquiring the
overlap flow fo as well). Since vt (pi,t ) reduces as we decrease
pi,t , it follows that there exists a threshold price p̂t such that
for prices lower than p̂t there is no incentive in acquiring the
overlap flow; SSP-i is instead better-off by simply serving the
monopoly flow at the maximum price pM . The value of p̂t is
obtained by solving for pi,t from the equation vt (pi,t ) = ut ,
and is given by

p̂t =
pM ft + cS fo
ft + fo

. (12)

Note that, since p̂t in the above expression is a weighted sum
of cS and pM , it follows that cS < p̂t < pM . Further, since
the RHS of (12) is increasing in ft we have p̂ℓ ≤ p̂h (because
fℓ ≤ fh).
In the following lemma we formally show that the prices

lower than p̂t are indeed dominated strategies.
Lemma 1: For any t ∈ {ℓ, h} and i ∈ {1, 2}, the pricing

strategy pi,t < p̂t is strictly dominated.

6Note that, although the original flows satisfy Fℓ ≤ Fh, since ft = βtFt
for t ∈ {ℓ, h}, it is not necessary for the offloaded flows to satisfy the same.
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Proof: For any price-vector pj of SSP-j, we can write

Ui,t (pi,t , pj)
(a)
≤ (ft + fo)(pi,t − cS )
(b)
< (ft + fo)(p̂t − cS )
(c)
= ft (pM − cS )
(d)
≤ Ui,t (pM , pj)

In the above expression, (a) holds because the RHS represents
the maximum payoff that SSP-i can possibly accrue at price
pi,t , (b) is due to the hypothesis pi,t < p̂t , (c) simply follows
from the expression of p̂t in (12), and finally (d) holds because
the actual payoff received for playing the pricing strategy
pM may include contribution from the overlap flow (in case
there is a tie with any of the SSP-j’s pricing strategy, i.e.,
if pj,s = pM for some s ∈ {ℓ, h}; otherwise equality holds).
Thus, we see that the pricing strategy pi,t is strictly dominated
by the strategy of choosing the maximum price pM .
Since the SSPs have no incentive to choose a dominated

strategy, we can hence reduce the set of feasible actions to
[p̂t , pM ] ⊂ [cS , pM ]. With the assistance of the above result,
we now state the following main theorem.
Theorem 1: There exists no BNE in pure strategies for the

SSPs’ pricing game (recall Definition 1).
Proof: Let (p1, p2) represent a generic pure strategy

price-vector pair where pi = (pi,ℓ, pi,h) for i ∈ {1, 2}. For
each t ∈ {ℓ, h} and i ∈ {1, 2}, partitioning the price range into
pi,t ∈ (p̂t , pM ] (referred to as range-1) and pi,t = p̂t (range-
2), a total of 16 regions are possible for the values of (p1, p2)
to lie into. We group these 16 regions into 3 exhaustive cases.
For each case, we show that there is always incentive for
one of the SSPs to deviate, thus implying that (p1, p2) cannot
constitute a BNE. The details under each case are discussed
in the following.

Case-1: For some SSP, say SSP-j, both prices pj,ℓ and pj,h
are in range-1. Without loss of generality, we assume that
pj,ℓ ≤ pj,h. Then, SSP-i can benefit by deviating from its
price pi,ℓ under different scenarios as follows:
(a) If pi,ℓ ∈ (pj,h, pM ] (i ̸= j) then SSP-i can acquire the

overlap flow, and thus increase its payoff Ui,ℓ, by choos-
ing a price p̃i,ℓ ∈ (p̂ℓ, pj,ℓ).

(b) If pi,ℓ = pj,h then choosing a price p̃i,ℓ less than, but
arbitrarily close to pj,h, SSP-i can benefit by acquiring
the complete overlap flow fo whenever Fj = fh (instead
of only 0.5fo if it continues to use pi,ℓ).

(c) If pi,ℓ ∈ (pj,ℓ, pj,h) then SSP-i can increase its payoff by
choosing a price p̃i,ℓ ∈ (pi,ℓ, pj,h).

(d) If pi,ℓ = pj,ℓ then, as in case-(b), choosing a price p̃i,ℓ
less than, but arbitrarily close to pj,ℓ, SSP-i can benefit
by acquiring the complete overlap flow fo whenever
Fj = fℓ (instead of only 0.5fo if it continues to use pi,ℓ).

(e) Finally, if pi,ℓ ∈ [p̂ℓ, pj,ℓ) then SSP-i is better-off by
deviating to a price p̃i,ℓ ∈ (pi,ℓ, pj,ℓ).

Case-2: For both SSPs, one price is in range-1 while the
other price is in range-2. Let pi,t ∈ (p̂t , pM ] and pj,s ∈

(p̂s, pM ] denote the range-1 prices of SSP-i and SSP-j, respec-
tively. Then one SSP can benefit under different scenarios as
follows:
(a) If pi,t < pj,s then SSP-i can benefit by choosing a price

p̃i,t ∈ (pi,t , pj,s).
(b) If pi,t = pj,s then choosing a price p̃i,t less than, but

arbitrarily close to pj,s, SSP-i can benefit by acquiring
the complete overlap flow fo whenever Fj = fs (instead
of only 0.5fo if it continues to use pi,t ).

(c) Finally, if pi,t > pj,s then SSP-j can benefit by choosing
a price p̃j,s ∈ (pj,s, pi,t ).

Case-3: Suppose both prices of SSP-j are in range-2, while
one or both prices of SSP-i are in range-2. Let pi,t = p̂t
denote the price of SSP-i in range-2. Then, SSP-i can benefit
by deviating to p̃i,t = pM as shown below:

Ui,t (p̃i,t , pj) = ft (pM − cS )

= (ft + fo)(p̂t − cS )

> Uj,t (pi,t , pj).

where the inequality simply follows because, using pi,t = p̂t ,
SSP-i would only acquire partial overlap flow (i.e., 0.5 fo)
whenever Fj = ft .

With the above non-existence result in place, it is now natu-
ral to ask questions about mixed-strategy BNEs. Specifically,
we are interested in determining probability distributions
over the range of price-vectors (instead of individual price-
vectors) that can constitute a solution to the SSPs’ pricing
game. The details are presented in the following sub-section.

B. MIXED STRATEGY BNE
The definition of mixed-strategies involves allowing the SSPs
to choose prices pi,t in a random fashion. Specifically, for
i ∈ {1, 2} and t ∈ {ℓ, h}, let Gi,t denote the c.d.f of pi,t , i.e.,
Gi,t (p) = P(pi,t ≤ p). We assume that Gi,t is a distribution
on the set of undominated prices [p̂t , pM ] (since there is no
rational in choosing any price less than p̂t ; recall Lemma 1).
Finally, we use Gi = (Gi,ℓ,Gi,h) to denote a mixed-strategy
of SSP-i.

Given a mixed strategy Gj of SSP-j, the payoff received by
SSP-i for playing price p, given that Fi = ft (t ∈ {ℓ, h}), can
be written as in (13), shown at the bottom of the next page.7

The payoff term associated with θℓ in (13) can be understood
as follows. With probability θℓ the flow at SSP-j is fℓ. Then,
further, with probability Gj,ℓ(p) SSP-j chooses a price less
than p in which case SSP-i gets to serve only the monopoly
flow ft accruing a payoff of ft (p− c); on the other hand, with
probability (1−Gj,ℓ(p)) the price set by SSP-j is greater than
p in which case SSP-j receives a payoff of (ft + fo)(p− c) by
serving both monopoly as well as the overlap flows. The term
associated with θh can be similarly understood. Simplifying
(13) yields the simpler form in (14), as shown at the bottom
of the next page, for the expression of the payoff Ui,t .

7For simplicity, in (13) we overload the notation Ui,t from (8) to also
denote the payoff received by SSP-i in response to a mixed strategy of SSP-j.
Also, for simplicity, β is dropped from the notation as mentioned earlier.
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The expected payoff received by SSP-i for using themixed-
strategy Gi,t whenever Fi = ft is given by

Ui,t (Gi,t ,Gj) :=

∫ pM

p̂t
Ui,t (p,Gj) dGi,t (p) (15)

where the integral in the above expression is understood as
the Riemann-Stieltjes integral with respect to the distribution
function Gi,t [47].

We can now define mixed-strategy BNEs as follows.
Definition 3 (Mixed-Strategy BNE): For a given β, a

mixed-strategy pair (G(β)
1 ,G(β)

2 ) is said to constitute a
mixed-strategy BNE for the flexible-pricing game if the fol-
lowing holds: for all i ∈ {1, 2} and t ∈ {ℓ, h} we have
Ui,t (G(β)

i,t ,G(β)
j ) ≥ Ui,t (Gi,t ,G(β)

j ) for all mixed-strategiesGi,t
of SSP-i. A mixed-strategy BNE (G(β)

1 ,G(β)
2 ) is said to be

symmetric if G(β)
i = G(β)

j = G(β). □

C. STRUCTURE OF A MIXED STRATEGY BNE
Obtaining mixed-strategy BNEs directly from the defini-
tion is difficult in general. However, there is an equivalent
representation that can be used to compute mixed-strategy
BNEs [46, Section 4.11, Proposition 140.1]. We state this
result without proof (however, adapted to our notation) in the
following.
Proposition 1 (Osborne 2004): Consider amixed-strategy

(G(β)
i ,G(β)

j ). For simplicity, denote ui,t (β) := Ui,t (G(β)
i,t ,G(β)

j ).

Then, (G(β)
i ,G(β)

j ) is a BNE if and only if, for each player
i ∈ {1, 2} and state t ∈ {ℓ, h}

• G(β)
i,t does not place any probability distribution on any

p such that Ui,t (p,G(β)
j ) < ui,t (β).

• There exists no p such that Ui,t (p,G(β)
j ) > ui,t (β).

The above two conditions imply that Ui,t (p,G(β)
j ) = ui,t (β)

for all p that lies in the domain of G(β)
i,t , while Ui,t (p,G

(β)
j ) <

ui,t (β) for p that are outside its domain.
Using the above proposition we proceed to identify

mixed-strategy BNEs. Specifically, we compute a symmet-
ric BNE whose structure is as reported in the following
theorem.
Theorem 2: The mixed-strategy pair (G(β),G(β)) consti-

tutes a symmetric BNE for the flexible-pricing game where

G(β)
= (G(β)

ℓ ,G(β)
h ) is given by

G(β)
h (p) =

(fh + θhfo)
θhfo

(p− qh)
(p− cS )

for qh ≤ p ≤ pM (16)

G(β)
ℓ (p) =

(fℓ + fo)
θℓfo

(p− qℓ)
(p− cS )

for qℓ ≤ p ≤ qh. (17)

The thresholds qℓ and qh are computed as follows:

qh =
pM fh + cSθhfo
fh + θhfo

(18)

qℓ =
qh(fℓ + θhfo) + cSθℓfo

fℓ + fo
. (19)

Proof: Before proceeding to the details of the proof, it is
useful to note that G(β)

h and G(β)
ℓ are indeed valid probabil-

ity distributions on their respective domains. For instance,
we see that G(β)

h is increasing in p; also it can be verified
(by direct substitution and simplification) that G(β)

h (qh) =

0 and G(β)
h (pM ) = 1. Similarly, G(β)

ℓ is also increasing in p,
satisfying G(β)

ℓ (qℓ) = 0 and G(β)
ℓ (qh) = 1.

Now, the proof is essentially based on verifying the suffi-
cient conditions in Proposition 1. Equivalently, we show that
the payoff function Ui,t (p,G(β)) is constant on the domain of
G(β)
t , and lower elsewhere. The details are as follows.
We begin by recalling the expression for Ui,t in (14)

(adapted to the current case where (Gi,Gj) = (G(β),G(β))):

Ui,t (p,G(β))

= (ft + fo)(p− cS ) −

(
θℓG

(β)
ℓ (p) + θhG

(β)
h (p)

)
fo(p− cS ).

(20)

For t = ℓ, evaluating the above expression for qℓ ≤ p ≤

qh we obtain (by noting that G(β)
h (p) = 0 for p in the above

range)

Ui,ℓ(p,G(β)) = (fℓ + fo)(qℓ − cS ) =: uℓ(β). (21)

Thus, the payoff stays constant in the domain of G(β)
ℓ . How-

ever, for p < qℓ, since bothG
(β)
ℓ (p) = G(β)

h (p) = 0, we obtain

Ui,ℓ(p,G(β)) = (fℓ + fo)(p− cS ) < uℓ(β).

Finally, for p ≥ qh, substitutingG
(β)
ℓ (p) = 1 andG(β)

h (p) from
(16), and simplifying yields

Ui,ℓ(p,G(β)) = (fℓ − fh)p+ κℓ (22)

Ui,t (p,Gj) := θℓ

(
Gj,ℓ(p)ft (p− cS ) +

(
1 − Gj,ℓ(p)

)
(ft + fo)(p− cS )

)
+ θh

(
Gj,h(p)ft (p− cS ) +

(
1 − Gj,h(p)

)
(ft + fo)(p− cS )

)
(13)

= (ft + fo)(p− cS ) −

(
θℓGj,ℓ(p) + θhGj,h(p)

)
fo(p− cS ). (14)
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where κℓ :=

(
fhqh − fℓcS + θhfo(qh − cS )

)
is a constant

in p. Since fℓ < fh, it follows that the above expression is
decreasing in p. Thus, for p > qh we have Ui,ℓ(p,G(β)) <

Ui,ℓ(qh,G(β)) = uℓ(β).
Similarly, for t = h, evaluating the payoff expression in

(20) for qh ≤ p ≤ pM we obtain

Ui,h(p,G(β)) = (fh + θhfo)(qh − cS ) =: uh(β). (23)

On the other hand, for p ≤ qh we obtain

Ui,h(p,G(β)) = (fh − fℓ)p+ κh (24)

where κh =

(
fℓqℓ−fhcS+fo(qℓ−cS )

)
. Since fh > fℓ the above

expression is increasing in p. Thus, for p < qh we obtain
Ui,h(p,G(β)) < Ui,h(qh,G(β)) = uh(β).

Using the conditional payoffs uℓ(β) and uh(β) in (21) and
(23), respectively, the average payoff of SSP-i at the BNE
(G(β),G(β)) can be written as

ui(β) = θℓuℓ(β) + θhuh(β)

= fa(pM − cS ) +
θℓθh(pM − cS )(fh − fℓ)fo

fh + θhfo
.

Substituting for qh and qℓ from (18) and (19) in the above
expression, and simplifying finally yields (which has been
verified using Mathematica)

ui(β) = fa(pM − cS ) +
θℓθh(pM − cS )(fh − fℓ)fo

fh + θhfo
(25)

where recall that fa = θℓfℓ + θhfh denotes the average flow.

D. ILLUSTRATION AND DISCUSSION
In Fig. 2 we illustrate the structure of the BNE distributions
G(β)
h and G(β)

ℓ for a numerical example (where fℓ = 5, fh =

20, fo = 10, pM = 10, cS = 1, and θℓ = 0.6). Also depicted
in the figure are the respective payoff functions Ui,ℓ and Ui,h
(see the plots corresponding to the right-sided y-axis). The qh
and qℓ values (computed using (18) and (19)) are 8.5 and 5.5,
respectively. These thresholds (marked on the x-axis) deter-
mine the respective domains of the BNE distributions G(β)

h
and G(β)

ℓ . The payoff values uh(β) = 180 and uℓ(β) = 67.5
(computed using (23) and (21), respectively) are similarly
marked on the plot’s RHS y-axis. From Fig. 2 we make the
following observations:

• Wefirst note that the domains are non-overlapping. This
condition is necessary as otherwise (due to the form of
the payoff function in (20)) it would not be possible to
satisfy the condition Ui,t (p,G(β)) = ut (β) (i.e., a con-
stant) for all p in the domain of G(β)

t .
• Further, we also notice that the distribution correspond-
ing to the state of larger flow has a ‘‘greater’’ domain,
and vice versa. Specifically, the domain of G(β)

h is
[qh, pM ] which is greater than that of G(β)

ℓ (which is
[qℓ, qh]). The above requirement is necessary in the
proof to show that the value of the payoff Ui,t (p,G(β)

t )
is lower outside the domain of G(β)

t . For instance, from

(22) we notice that the condition fℓ < fh is critical to
ensure that Ui,ℓ(p,G(β)) < u(β)ℓ for p ∈ (qh, pM ]. The
above condition (i.e., fℓ < fh) is similarly required in
(24) to argue that Ui,h(p,G(β)) < uh(β) for p outside the
domain of G(β)

h .
The above two observations, in fact, enabled us to derive the
result in Theorem 2 as follows:
1) We first recognize that the domains of G(β)

h and G(β)
ℓ

are of the form [qh, pM ] and [qℓ, qh], respectively.
2) We then identify the forms of the distributions G(β)

t (p)
(t ∈ {ℓ, h}) that is necessary to ensure that the pay-
off Ui,t (p,G(β)) remains constant over the respective
domains. Expressions (16) and (17) are results of this
process.

3) Wefinally calculate qh and qℓ in an iterative fashion: we
first obtain qh by solvingG

(β)
h (pM ) = 1; we then derive

qℓ by solving G(β)
ℓ (qh) = 1. The resultant expressions

are as reported in (18) and (19).
The above procedure can be extended to scenarios comprising
more than two flow levels as presented in the following.

Consider a general model where f1 < f2 < · · · < fn
(n ≥ 2) denote the different offloaded-flow levels (with β =

(β1, β2, · · · , βn) ∈ [0, 1]n denoting the offloading decision).
The probability that Fi takes value ft is given by θt (for t ∈ [n]
where [n] := {1, 2, · · · , n}). The other aspects of the model
remain unchanged. As a result, we have the following analog
of expression (20):

Ui,t (p,G(β)) = (ft + fo)(p− cS )

−

n∑
s=1

θsG(β)
s (p)fo(p− cS )

where G(β)
= (G(β)

1 ,G(β)
2 , · · · ,G(β)

n ) represents a mixed-
strategy BNE. Using the above payoff function into the 3-step
procedure discussed earlier (and extending the procedure to
n ≥ 2 flow-levels), we obtain the following generalization of
the result in Theorem 2.
Theorem 3: The mixed-strategy pair (G(β),G(β)) consti-

tutes a symmetric BNE where G(β)
= (G(β)

t : t ∈ [n]) is
given by

G(β)
t (p) =

(
ft +

n∑
s=t

θsfo

)
θt fo

(p− qt )
(p− cS )

for qt ≤ p ≤ qt+1 (26)

for t ∈ [n]. The thresholds qt can be computed via. backward
induction as follows: qn+1 := pM and

qt =

qt+1

(
ft +

(
1 −

t∑
s=1

θs

)
fo

)
+ cSθt fo

ft +

n∑
s=t

θsfo

(27)

for t = n, (n− 1), · · · , 1.
Proof: The proof is exactly along the lines of the proof

of Theorem 2. We do not repeat the proof for brevity.

VOLUME 11, 2023 40855



M. Sushma, K. P. Naveen: Offloading and Pricing Strategies for Heterogeneous Mobile Networks

FIGURE 2. Illustration of BNE distribution and SSPs’ payoff functions. The
distribution functions are depicted using blue coloured curves, while the
payoff functions are shown in red colour. Solid lines represent quantities
corresponding to high-flow (HF), while that corresponding to low-flow
(LF) are shown using dash lines.

Note that, for n = 2 the above result readily simplifies to
the expressions in Theorem 2. Also, we note that the payoffs
functions remain constant over the domain of the respective
distributions. The value of the constant payoff ut (β) that is
achieved by any p in the domain of G(β)

t is given by

ut (β) :=

(
ft +

n∑
s=t

θsfo

)
(qt − cS ). (28)

We can again easily verify that the above expression is consis-
tent with the expressions of uℓ(β) and uh(β) in (21) and(23).

IV. OFFLOADING GAME: STACKELBERG EQUILIBRIUM
For a given offloading strategy β of the MNO, we first
compute the expected payoff received by the MNO when the
SSPs set prices using the symmetric BNEG(β)

= (G(β)
ℓ ,G(β)

h )
derived in Theorem 2. We then optimize the MNO’s pay-
off function to eventually derive a Stackelberg equilibrium.
We proceed as follows.

Let pi = (pi,ℓ, pi,h) denote the random price-vector of SSP-
iwhere the distribution of pi,t is given byG

(β)
t (for t ∈ {ℓ, h});

equivalently, the distribution of pi is given by G(β). Define
pj = (pj,ℓ, pj,h) similarly, and assume that pi and pj are
independent. Then, recalling (4) and (5), the average payoff
of the MNO can be expressed as

uM (β) := E
[
UM

(
β; (pi, pj)

)]
where the expectation is w.r.t the joint distribution
(G(β),G(β)) of the random vector (pi, pj). Towards computing
the above expectation, we define the conditional payoffs of
the MNO as

uM
(
β|ti, tj

)
:= E

[
UM

(
pi, pj

) ∣∣∣Fi = ti,Fj = tj
]

for ti, tj ∈ {ℓ, h}. Now, noting that uM
(
β|ℓ, h

)
= uM

(
β|h, ℓ

)
(since the statistics associated with both SSPs are identical),

we can write

uM (β)

= θ2ℓ uM (β|ℓ, ℓ)) + 2θℓθhuM (β|ℓ, h) + θ2huM (β|h, h). (29)

Recalling (4) and (5) again, the individual payoff terms in the
above expression can be computed as follows: for t ∈ {ℓ, h}

uM (β|t, t) = 2ft
(
pM − E[pi,t ]

)
(30)

+ fo
(
pM − E

[
min{pi,t , pj,t }

])
+ fM (t, t)

(
pM − cM (fM )

)
uM (β|ℓ, h) = fℓ

(
pM − E[pi,ℓ]

)
+ fh

(
pM − E[pi,h]

)
+ fo

(
pM − E[pi,ℓ]

)
+fM (ℓ, h)

(
pM−cM (fM )

)
.

(31)

where (recall (2))

fM (t, t) := E[FM |Fi = ft ,Fj = ft ]

= 2(1 − βℓ)Fℓ + (1 − βo)Fo
fM (ℓ, h) := E[FM |Fi = fℓ,Fj = fh]

=

∑
t∈{ℓ,h}

(1 − βt )Ft + (1 − βo)Fo.

Note that the expressions (30) and (31) have been simpli-
fied by replacingE[pj,t ] byE[pi,t ] for t ∈ {ℓ, h} (since pi,t and
pj,t are i.i.d withG

(β)
t being their common distribution). Also,

in order to simplify the min-term in the second expression
we have made use of the observation that pi,ℓ ∈ [qℓ, qh] and
pj,h ∈ [qh, pM ] so that pi,ℓ ≤ pj,h always (recall Theorem 2).
Expectation of pi,t can be computed using the identity

E[pi,t ] =

∫
∞

0
P(pi,t > p)dp =

∫
∞

0
(1 − G(β)

t (p))dp. (32)

Similarly, since pi,t and pj,t are i.i.d it follows that

E
[
min{pi,t , pj,t }

]
=

∫
∞

0

(
1 − G(β)

t (p)
)2

dp. (33)

Using the above development in (29) and simplifying yields8

uM (β) = fo(pM − cS ) −
2θℓθh(pM − cS )(fh − fℓ)fo

fh + θhfo
+ fM

(
pM − cM (fM )

)
. (34)

However, note that the above expression is applicable when-
ever fℓ ≤ fh, i.e., for β = (βℓ, βh, βo) such that βℓFℓ ≤

βhFh. Suppose β satisfies βℓFℓ > βhFh (i.e., fℓ > fh), then
interchanging the roles of fℓ and fh we obtain

uM (β) = fo(pM − cS ) −
2θhθℓ(pM − cS )(fℓ − fh)fo

fℓ + θℓfo
+ fM

(
pM − cM (fM )

)
. (35)

Expressions (34) and (35) together constitute of the payoff of
the MNO for any given offloading strategy β ∈ [0, 1]3.

8We have used Mathematica for simplifying the expressions; for brevity
the intermediate steps of simplification have been omitted.
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Finally, stackelberg equilibrium β∗
= (β∗

ℓ , β∗
h , β

∗
o ) can be

computed as follows:

β∗
= argmax

β∈[0,1]3
uM (β) (36)

while the MNO’s payoff at the equilibrium is given by

u∗
M := uM (β∗) = max

β∈[0,1]3
uM (β). (37)

Given β∗, the average payoff achieved by SSP-i (i ∈ {1, 2})
at equilibrium can be computed using (25) as follows:

u∗
i := ui(β∗)

= f ∗
a (pM − cS ) +

θℓθh(pM − cS )(f ∗
h − f ∗

ℓ )f
∗
o

f ∗
h + θhf ∗

o
(38)

where f ∗

ℓ = β∗

ℓFℓ, f ∗
h = β∗

hFh, and f
∗
o = β∗

oFo denote the
offloaded flows at β∗, while f ∗

a = θℓf ∗

ℓ + θhf ∗
h represents

the average offloaded flow. Again note that the above payoff
expression is valid provided f ∗

ℓ ≤ f ∗
h . In case f ∗

ℓ > f ∗
h , then

u∗
i = f ∗

a (pM − cS ) +
θhθℓ(pM − cS )(f ∗

ℓ − f ∗
h )f

∗
o

f ∗

ℓ + θℓf ∗
o

(39)

which is simply obtained by interchanging the roles of fℓ and
fh in (25).
In Section VII we will conduct a detailed numerical study

to determine the structure of the Stackelberg equilibrium β∗,
along with the payoffs u∗

M and u∗ received by the MNO and
the SSPs at the equilibrium, respectively. Before proceeding
to Section VII, we will discuss the case of flat-pricing scheme
where the SSPs are restricted to announce a single price
irrespective of the flow-level that the SSPs may experience.
This is in contrast to the flexible-pricing scheme studied
thus far where the SSPs are allowed to set different prices
for different flow-levels they could experience. Details are
presented in the following section.

V. FLAT PRICING MODEL
Like in the flexible-pricing scheme (studied in Sections II
to IV) we begin by fixing the offloading strategy β =

(βℓ, βh, βo) of the MNO so that the offloaded flows are given
by fℓ = βℓFℓ, fh = βhFh, and fo = βoFo as before.
However, unlike the flexible-pricing scheme, here the SSPs
are restricted to announce flat-prices. Let pi ∈ [cS , pM ]
denote9 the price announced by SSP-i (i ∈ {1, 2}). Note
that pi and pj are scalar prices, which is unlike the case in
the flexible-pricing scheme where these are vectors (e.g.,
pi = (pi,ℓ, pi,h)).
Now, given the flat-prices (pi, pj) of the SSPs, the payoff

received by SSP-i is given by

U i
(
(pi, pj

)
; β) =


fa(pi − cS ) if pi > pj
(fa + fo)(pi − cS ) if pi < pj
(fa + 0.5 fo)(pi − cS ) if pi = pj

9We use overline for the notations corresponding to the flat-pricing
scheme.

where fa = θℓfℓ + θhfh denotes the average flow as before.
The above expression is identical to the payoff expression
considered in [31]. Thus, leveraging the results from [31],
we immediately identify the structure of the mixed-strategy
BNE in the flat-pricing scheme as follows.
Theorem 4 (Li et al. 2019): The mixed strategy (G

∗
,G

∗
)

constitutes a symmetric BNE for the flat-pricing scheme
where

G
∗
(p) =

(fa + fo)
fo

(p− qa)
p− cS

for qa ≤ p ≤ pM . (40)

The threshold qa is given by

qa =
pM fa + cS fo
fa + fo

. (41)

Discussion: It is interesting to compare the above result with
the form of the BNE for the flexible-pricing scheme in The-
orem 2. For this, we first note that for θ = 0 or θ = 1,
since only one of the flow-levels occur with probability 1,
our model reduces to the scenario studied in [31]. Suppose
θ = 0 then, noting that fa = fh, and simplifying (16) and (18)
we obtain G∗

h = G
∗
and qh = qa (while the distribution G∗

ℓ

degenerates). The case θ = 1 similarly yields G∗

ℓ = G
∗
and

qℓ = qa. Thus, our result in Theorem 2 is a generalization of
the above result by Li et al. in [31].

Now, for a given price p, the payoff received by SSP-iwhen
SSP-j uses the mixed strategy G

∗
can be written as

U i
(
(p,G

∗
); β

)
= G

∗
(p)fa(p− cS ) +

(
1 − G

∗
(p)
)
(fa + fo)(p− cS )

= (fa + fo)(p− cS ) − G
∗
(p)fo(p− cS )

= (fa + fo)(qa − cS )

= fa(pM − cS )

for p ∈ [qa, pM ]. Thus, we see that the payoff remains
constant for p in the domain of G

∗
. As a result, the average

payoff received by SSP-i under the flat-pricing scheme (for a
given offloading strategy β of the MNO) is given by

ui(β) := U i
(
(G

∗
,G

∗
); β

)
= fa(pM − cS ). (42)

The payoff received by the MNO under the flat-pricing
scheme can now be computed as follows. Analogous to the
conditional payoff term uM (β|t, t) in (30), the MNO’s payoff
in the flat-pricing scheme can be written as

uM (β) := 2fa
(
pM − E[pi]

)
+ fM

(
pM − cM (fM )

)
+ fo

(
pM − E

[
min{pi, pj}

])
where pi and pj are i.i.d random prices with their common
c.d.f given by G

∗
in (40), while fM denotes the average

self-loaded flow (recall (3)). Substituting the expectation
terms (which can be computed using the identities in (32)
and (33)) in the above expression and simplifying yields the
following simple form for the payoff expression

uM (β) = fo(pM − cS ) + fM
(
pM − cM (fM )

)
. (43)
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Finally, the Stackelberg equilibrium β
∗

= (β
∗

ℓ, β
∗

h, β
∗

o) for
the flat-pricing scheme can be computed as follows:

β
∗

= argmax
β∈[0,1]3

uM (β)

while the MNO’s payoff at the equilibrium is given by

u∗
M = uM (β

∗
) = max

β∈[0,1]3
uM (β). (44)

The SSPs payoff at equilibrium can be obtained by using the
above β

∗
in (42):

u∗
i = ui(β

∗
) = f

∗

a(pM − cS ) (45)

where f
∗

a = θℓf
∗

ℓ + θhf
∗

h, f
∗

ℓ = β
∗

ℓFℓ, and f
∗

h = β
∗

hFh.
Through our numerical study in Section VII, we will com-

pare and contrast the performance (in terms of MNO’s and
SSPs’ payoffs) achieved by the flat-pricing scheme against
that achieved by the flexible-pricing scheme of the earlier
sections.

VI. FULL-OFFLOADING STRATEGIES
Before proceeding to numerical work, in this section we will
briefly discuss the full-offloading (flexible and flat pricing)
schemes where the MNO naively offloads the entire flows
onto the SSPs (i.e., without self-loading). This is in contrast to
the flexible and flat pricing schemes with optimal offloading
studied in the previous sections. In terms of prior literature,
full-offloading flexible pricing scheme relates to our earlier
work [1], while the case of flat-pricing with full-offloading
corresponds to the work of Li et al. [31].

Full-offloading is achieved by fixing the offloading strat-
egy of the MNO to β ′

= [1, 1, 1] so that fM = 0 (recall from
(3) that fM is the average self-loaded flow). Then, recalling
(34), the MNO’s payoff under full-offloading flexible pricing
scheme is given by

u′
M := uM (β ′)

= Fo(pM − cS ) −
2θℓθh(pM − cS )(Fh − Fℓ)Fo

Fh + θhFo
(46)

Note that the offloaded flows (fℓ, fh, fo) are replaced by
the overall flows (Fℓ,Fh,Fo). Similarly, for the flat-pricing
scheme with full-offloading, the MNO’s payoff can be easily
deduced from (43):

u′
M := uM (β ′) = Fo(pM − cS ). (47)

Inspecting (46) and (47) we obtain the following result (stated
as Lemma for easy reference):
Lemma 2: The difference in payoffs achieved by theMNO

in full-offloading flexible and flat-pricing schemes is given by

(u′
M − u′

M ) = −
2θℓθh(pM − cS )(Fh − Fℓ)Fo

(Fh + θhFo)
. (48)

TABLE 2. Various offloading and pricing strategies.

The payoff achieved by the SSPs in full-offloading flexible
and flat-pricing schemes, we recall (25) and (42), respec-
tively, to obtain

u′
i := ui(β ′)

= Fa(pM − cS ) +
θℓθh(pM − cS )(Fh − Fℓ)Fo

Fh + θhFo
(49)

and

u′
i := ui(β ′) = Fa(pM − cS ). (50)

where Fa = θℓFℓ + θhFh denotes the average overall flow
(i.e., offloaded flow at β ′). Analogous to Lemma 2, we thus
have the following result.
Lemma 3: The difference in payoffs achieved by the

SSPs in the flexible and the flat-pricing schemes with full-
offloading is given by

(u′
i − u′

i) =
θℓθh(pM − cS )(Fh − Fℓ)Fo

(Fh + (1 − θ )Fo)
. (51)

Discussion: From Lemma 3 we see that u′
i ≥ u′

i. Thus,
under full-offloading, the SSPs can achieve a higher payoff if
flexible-pricing is implemented than if flat-pricing were to be
implemented. In contrast, from Lemma 2 it follows thatMNO
achieves a lower payoff under full-offloading flexible-pricing
scheme. But interestingly we see that the amount of loss in
payoff incurred by theMNO is equal to the total gain in payoff
achieved by both SSPs. Thus, the net-payoff in the system
is conserved when moving from flat to flexible-pricing full-
offloading schemes, although there is a disparity in payoffs
achieved by the SSPs and the MNO under the naive full-
offloading strategy. Through our numerical work we will see
that the optimal-offloading strategy can reduce this disparity
in payoff, thus enabling amore favorable tradeoff between the
flexible and flat pricing schemes. The details of our numerical
study are reported in the next section.

VII. NUMERICAL WORK
In this section we will compare the performances of
the flexible-pricing and flat-pricing schemes, under both
optimal-offloading as well as full-offloading strategies. For
the ease of presentation, we use the short-forms given in
Table 2 to refer to each of the schemes for discussion in this
section.
We first fix the values of the various parameters as follows:

• Traffic flows: Fℓ is normalized to 1, while Fh and Fo are
set to 5 and 3, respectively.

• Flow probabilities: We set θℓ = 0.6 so that θh = 0.4.
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FIGURE 3. Performance of the various schemes listed in Table 2 as a function of θℓ.

• Prices & Costs: We normalize cS to 1, while pM is set
to 4. We assume the MNO’s cost to be a linear function
of the average self-loaded flow fM , i.e., cM (fM ) = fM .

We then vary the values of a few key parameters (namely, θℓ,
pM , Fh, and Fo) (while keeping all other parameters’ values
fixed), and report the observations in the following.

We first vary θℓ in the range [0, 1] and study its effect on
the performance of the various strategies. The results are pre-
sented in Fig. 3(a), 3(b), and 3(c). Specifically, in Fig. 3(a) we
depict the offloading strategies β∗ and β

∗
of FLEX OPT and

FLAT OPT, respectively, by plotting the corresponding high-
flows (HF) and low-flows (LF). The overlap flows satisfy
f ∗
o = f

∗

o = 3 (i.e., the entire aggregate overlap flow Fo = 3 is
offloaded) for all θℓ ∈ [0, 1], and hence for simplicity as well
as to avoid triviality, f ∗

o and f
∗

o are not depicted in Fig. 3(a).
From Fig. 3(a) we derive the following key observations:

• For 0 ≤ θℓ ≤ 0.6 (approx), f ∗
h decreases with θℓ

until f ∗
h = f ∗

ℓ = F∗

ℓ . In this regime, under optimal
offloading, the MNO maximizes its payoff by primarily
reducing the gap (f ∗

h − f ∗

ℓ ) between HF and LF, so that
the second term of the payoff expression in (34) is
optimized.

• For 0.6 < θℓ ≤ 0.75, the offloading strategy remains
unchanged at f ∗

h = f ∗

ℓ = F∗

ℓ . In this regime, the third
term of (34) is primarily being optimized (note that the
second term vanishes once f ∗

h = f ∗

ℓ ).
• Finally, for 0.75 < θℓ ≤ 1, both HF and LF decrease
simultaneously to maintain f ∗

h = f ∗

ℓ due to which the
second term of (34) remains 0, while also optimizing
the self-loaded flow f ∗

M so as to keep the third term
optimized with increasing θℓ.

The above phenomenon (of f ∗
h trying to match f ∗

ℓ first
and then both decreasing/increasing together) will occur
commonly with other parameters as well. For instance, see
Fig. 4(a), 4(d) and 5(a) respectively corresponding to param-
eters pM , Fh and Fo. Unlike other parameters, in the case of
Fh, the offloaded HF f ∗

h increases with the overall HF Fh.
This is because, for large values of Fh, the MNO is better-off

offloading a significant portion of the flow (although the
second term of (34) reduces the MNO’s payoff) than
self-loading which will increase the MNO’s service cost cM ,
thus eventually reducing its payoff (via. the third term in the
payoff expression (34)).
Now, returning back to the case of θℓ, from Fig. 3(b),

as expected, we see that the optimal-offloading schemes
(FLEX OPT and FLAT OPT) yield a higher payoff to
the MNO when compared with the naive full-offloading
schemes (FLEX FULL and FLAT FULL). Furthermore,
under optimal-offloading, the difference in MNO’s payoffs
with flexible and flat pricing schemes reduces when com-
pared with the respective difference under the full-offloading
strategy. In fact, for θℓ ≥ 0.75 we find that both FLEX OPT
and FLAT OPT yield the same payoff to the MNO. In con-
trast, the SSPs’ payoff reduces under optimal offloading as
can be seen from Fig. 3(c). Thus, under optimal-offloading
the SSPs cannot monopolize the incentive as in the case of
the naive full-offloading schemes. More interestingly, we see
that for θℓ ∈ [0, 0.55] FLEX OPT yields a slightly higher
payoff than FLAT OPT, vice versa for θℓ ∈ [0.55, 0.75],
and both strategies yield identical payoff for θℓ ∈ [0.75, 1].
These results can serve as guidelines for the regulators to
fix the nature of the pricing strategy (flexible or flat) so that
both parties (MNO and SSPs) are fairly benefited by the
system.

Similar conclusions can be drawn from the results in other
plots. For instance from Fig. 4(b), where we depict MNO’s
payoff as a function of the MNO’s price pM , we again see
that the gap in the payoffs of flexible and flat pricing schemes
reduces under optimal offloading. From Fig. 4(c), where the
SSPs’ payoff are shown, we can again identify different range
of prices pM where FLEX OPT is better than FLAT OPT, and
vice versa. The performances of the various strategies w.r.t
the variation in the parameter Fh are shown in Fig. 4(d), 4(e),
and 4(f). Similar conclusion can be drawn by investigating
the MNO’s and the SSPs’ payoffs in Fig 4(e), and 4(f),
respectively.
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FIGURE 4. Performance of the various schemes listed in Table 2 as functions of pM and Fh.

Results corresponding to parameter Fo are illustrated in
Fig. 5(a), 5(b) and 5(c). From the results we see that FLAT
OPT yields a better performance than FLEX OPT, both in
terms of achieving a higher payoff to MNO as well as the
SSPs (Fig. 5(b) and 5(c)). However, note that this obser-
vation is for the case where the cost function cM is linear,
i.e., cM (fM ) = fM . For general polynomial cost functions
of the form cM (fM ) = f 2M (for n = 2 the cost function
becomes quadratic), from Fig. 5(e) and 5(f) we find that
the FLEX OPT scheme is more favorable than FLAT OPT
in terms of yielding a higher payoff to the SSPs (while the
MNOs’ payoff remains marginally lower than that of FLAT
OPT). The corresponding optimal strategies are depicted in
Fig. 5(d).

Based on our above results and discussions, we summarize
the following:

• Optimal-offloading strategies (FLEX OPT and FLAT
OPT) prevents the SSPs from monopolizing the pay-
off, unlike the full-offloading strategies in the literature
(FLEX FULL and FLAT FULL which represent prior
work [1] and [31], respectively).

• Given optimal-offloading, the choice of the pricing strat-
egy (FLEX OPT or FLAT OPT) depends heavily on the

operating point (i.e., the values of the various parameters
of the model). Specifically, some observations regarding
the SSPs pricing strategy are as follows:

o Flexible-pricing yields better payoff to SSPs if the
value of θℓ is low (i.e., approximately θℓ ≤ 0.55),
while flat-pricing suffices otherwise (see Fig. 3(c)).

o Similarly, for low values of MNO’s price (i.e.,
approximately pM ≤ 3.8) flexible-pricing is a bet-
ter choice (see Fig. 4(c)).

o In contrast, flexible pricing is a suitable choice for
higher values of high flow (i.e., Fh > 5); see
Fig. 4(f).

o With respect to varying overlap flow, flat-pricing
is optimal whenever the MNO’s cost function cM
is linear, while flexible-pricing should be adopted
otherwise (i.e., whenever cM is super-linear); see
Fig. 5(c) and Fig. 5(f), respectively.

In summary, given the estimates of the system parameters,
our above observations can serve as a guideline for the regu-
lators to decide upon the pricing scheme to use (FLEX OPT
or FLAT OPT) that will mutually benefit a local network
of privately owned MNO and SSPs, thus enticing them to
participate in mobile-data offloading.
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FIGURE 5. Performance of the various schemes listed in Table 2 as functions of Fo and cM (·).

VIII. CONCLUSION AND FUTURE SCOPE
For a model where the SSPs are allowed to set flexible prices,
we proposed a Stackelberg game formulation to study the
joint problem of offloading and pricing in heterogeneous
networks. The pricing problem appears in the Stackelberg
formulation as a Bayesian-game played between the SSPs,
the solution to which is characterized in terms of Bayesian
Nash equilibrium (BNE). We first showed that no BNE
exists in pure strategies, and then proceeded to derive results
illustrating the structure of a symmetric mixed-strategy BNE
(Theorem 2). The BNE solution of the pricing problem is
used to obtain the Stackelberg equilibrium of the MNO’s
offloading problem (see (36)). All the above results are spe-
cialized to the flat-pricing scenario considered in the litera-
ture, where the SSPs are restricted to announce a single price
irrespective of the amount of data that may be offloaded onto
them.We conducted an extensive numerical study to compare
the performances of the flexible and flat-pricing schemes
under optimal-offloading and full-offloading strategies of the
MNO. Through our study we find that the optimal-offloading
strategy prevents the SSPs from monopolizing the market
payoff (unlike the full-offloading strategy), while the pricing
scheme (flexible or flat) that yields a favorable payoff to the

SSPs depends on the system parameters. Thus, given the esti-
mates of the system parameters, our work can simultaneously
recommend the offloading strategy for theMNO (i.e., amount
of traffic to offload) and the pricing scheme (flexible or flat)
that can enable SSPs to accrue a higher payoff.

Extending our study to a scenario comprising more than
two SSPs would constitute an interesting direction for future
work. We note that when multiple SSPs are involved, the
overlap flow amongst different pairs of SSPs may be dif-
ferent, which would render the problem more challenging.
Along similar lines, it will be interesting to consider a setup
comprising multiple MNOs, where the offloading decisions
of the MNOs and the pricing strategies of the SSPs are intri-
cately coupled with one another. In this context, determining
the Stackelberg equilibrium offloading strategy would be an
interesting contribution.
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