
Received 27 March 2023, accepted 12 April 2023, date of publication 21 April 2023, date of current version 26 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3269285

Passive IR-UWB Localization System for
UAV-Based Electric Facility Inspection
During GPS Outage
UI-SUK SUH1,2, GEUNHAENG LEE 3, JIEUN HAN1, TAE WOOK KIM 2, (Senior Member, IEEE),
AND WON-SANG RA 1
1Department of Mechanical and Control Engineering, Handong Global University, Pohang 37554, South Korea
2Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
3Department of Electronic Engineering, Andong National University, Andong 36729, South Korea

Corresponding author: Won-Sang Ra (wonsang@handong.edu)

This work was supported in part by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of
Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000010) and in part by the Ministry of Science and ICT
(2014M1A3A3A02034806; Geunhaeng Lee performed this work during his Ph.D. studies at Yonsei University).

ABSTRACT A practical localization system is proposed for an unmanned aerial vehicle (UAV) performing
its inspection mission under the global positioning system (GPS) signal blockage. The sensor hardware
consists of a single transmitter and a cruciform receiver array, which produces the range difference (RD)
information for UAV positioning. Our sensor is based on the impulse-radio ultra wide-band (IR-UWB)
technology; hence it is robust to RF interference due to exogeneous electromagnetic fields from electric
facilities. With this sensor configuration, UAV localization problem is formulated as state estimation for
an uncertain linear measurement model, which can be solved by using the robust weighted least squares
(RWLS) estimator. To cope with the performance degradation of the RWLS estimator due to the imperfect
prior knowledge of the measurement noise statistics, a geometric constraint expressed by the UAV state
variables is exploited to compensate the localization errors. Through experimental results, it is verified that
the proposed solution provides satisfactory UAV positioning performance and secures the reliability of the
localization system in practice.

INDEX TERMS Substation inspection, UAV positioning system, IR-UWB transceivers, constrained esti-
mation.

I. INTRODUCTION
An electric substation that supplies electrical power to con-
sumers is one of the most critical facilities in power grids.
Failures of substation components may lead to severe acci-
dents such as fires, explosions, and blackouts. To prevent
power grids from accidents, it is crucial to inspect the sub-
station periodically [1], [2], [3]. However, it is a daunting or
even dangerous task to inspect all the substation components
in person. Since many components are widely distributed
across a substation site, much time and effort are required
for their health check. Moreover, human inspectors could be
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exposed to unsafe working conditions due to high-voltage or
high-current environments of the substation. As a practical
resolution to these problems, an autonomous inspection sys-
tem based on unmanned aerial vehicles (UAVs) with portable
diagnosis devices has been studied recently [3].

Existing inspection UAVs analyze the failure risks by fol-
lowing a planned flight path around the electric facilities of
interest [4], [5]. They assume that the UA,s position is always
available from a global positioning system (GPS) for flight
control. However, as shown in Fig. 1, when the UAV flies
underneath or near the facilities, the GPS signal could be
blocked by the complicated metal structures of the substa-
tion [6]. Besides, an electromagnetic field formed around
high-voltage transmission lines may cause unpredictable
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FIGURE 1. Substation inspection UAV at GPS-denied environment.

navigation errors of the GPS [7]. Therefore, a new localiza-
tion system is crucial for a UAV to accomplish its inspection
mission under GPS-denied environments.

To tackle this technical issue, vision-based simultaneous
localization and mapping (SLAM) has been attempted by
many researchers [8], [9]. By applying a nonlinear Kalman
filter to the image data acquired from the vision sensor, this
approach tries to detect the prescribed electric facilities, con-
struct an environmental map, and localize a UAV ultimately.
Despite remarkable theoretical advances, the vision-based
SLAM could fail to guarantee reliable UAV positioning in
practice. Since the UAV localization performance of this
method is influenced by the image quality, it tends to be
susceptible to motion blur or variations in weather condi-
tions [10]. In addition, their application might be restric-
tive because of the heavy computational burden of image
processing [11].

On the other hand, a wireless communication-based local-
ization systemwas suggested for UAV localization [12], [13],
[14]. The underlying idea of this approach is to estimate the
position of an inspection UAV by using the range information
between the UAV and the transceivers attached to the region
where the GPS signal blockage often occurs. Based on this
concept, a UAV localization system using onboard ultrasonic
range finders was developed [12]. Through prior knowledge
of the beam patternmodel of the ultrasonic arrays, this system
tried to enhance both the range measurement accuracy and
the UAV localization performance. However, its performance
could be severely deteriorated due to the multi-path, which
makes this methodology inapplicable.

To supplement this shortcoming of the previous wireless
communication-based positioning systems, the impulse radio
ultra-wideband (IR-UWB) technologywas applied [13], [14],
[15]. It can drastically reduce multi-path and delay caused by
signal interference or reflection [13]. Most IR-UWB local-
ization systems use synchronized transceivers to obtain the
distance of a UAV to the reference position. Therefore, this
approach is not an affordable solution because an expen-
sive synchronizer is needed to interlock the transceivers
for enhanced accuracy of distance measurements [16]. Fur-
thermore, this methodology usually utilizes nonlinear fil-
ters to estimate the UAV position using a set of distance

measurements; hence it is unsuitable for real-time implemen-
tation on a cheap microprocessor [17].

To overcome these flaws, this paper proposes a novel
IR-UWB localization system shown in Fig. 2. The proposed
system consists of passive sensors which measure the range
difference (RD) using IR-UWB transceivers. The RD mea-
suring sensor consists of a transmitter placed at a region of
GPS signal blockage and a cruciform receiver array mounted
on the UAV. Due to the passive manner of RD measuring,
our sensor does not require an expensive synchronization
device. Thus, unlike the previous IR-UWB distance mea-
suring scheme, our RD measuring device is cost-effective.
Meanwhile, for computational efficiency, the UAV localiza-
tion problem is solved within the framework of a linear robust
state estimation theory. To do this, the nonlinear relationship
between the RD measurement and the relative UAV position
is first modeled as an uncertain linear measurement equation.
Then, a UAV localization algorithm is designed by applying
the robust weighted least-squares (RWLS) estimation theory
to the measurement model [18]. Provided that the statisti-
cal knowledge on the RD measurement is perfectly known,
the RWLS estimator guarantees the unbiasedness, and the
fast convergence of the UAV position estimates. However,
this is not the case in real applications where the exact sta-
tistical knowledge of the RD measurement is unavailable.
To secure the reliability of UAV positioning, a constrained
RWLS (C-RWLS) localization algorithm is designed. Notic-
ing that the imperfect measurement noise statistics result in
the unwanted scale-factor error of the design parameter used
for the RWLS estimator, the correct design parameter is cal-
culated by using the equality constraint about the geometric
relationship among the UAV state estimates. Accordingly, our
C-RWS localization algorithm enables precise UAV position-
ing even when the statistical property of the measurement
noise is uncertain. To check the validity of the proposed UAV
localization system, an RD measuring sensor is implemented
using an IR-UWB transceiver chipset, and its localization
performance is analyzed through experiments.

II. IR-UWB RANGE DIFFERENCE SENSOR DESIGN
A. SYSTEM CONFIGURATION
This section briefly introduces the configuration of the pro-
posed localization system for the substation inspection UAV.
As shown in Fig. 2, the proposed system consists of a
range difference (RD) measuring sensor, and a localization
algorithm embedded in the digital signal processor (DSP)
that estimates the relative UAV position. The RD measur-
ing sensor is comprised of an impulse radio ultra-wideband
(IR-UWB) transmitter located at a known position and five
cruciform receiver arrays mounted on the UAV. Since the
receivers Rx #j in Fig. 2 are spaced equally from the refer-
ence Rx #0 by width d , the RD can be defined as the 1tj
between the received time difference of arrivals (TDOAs)
from Rx #0 and its neighboring Rx #j.

1tj ≜ tj − t0, j = 1, 2, · · · , 4. (1)
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FIGURE 2. Configuration of the proposed localization system.

FIGURE 3. Signal processing unit of receiver array.

Then, the RD rj is easily derived by multiplying (1) with the
speed of light c as follows:

rj ≜ c · 1tj, c = 3 · 108 [m/s]. (2)

Fig. 3 is the signal processing unit of the RD mea-
suring sensor. When a transmitter generates an impulse,
each receiver detects and amplifies the magnitude of the
received signal. Also, an envelope detector is developed to
be self-mixing to improve the detection efficiency to pick
the outside of the signal. Next, a comparator converts the
envelope signal to pulse by comparing the envelope and
the preset threshold, Vth. Finally, the RD information rj is
calculated by TDOA 1tj between the rising edges sC0 and sCj .

B. ERROR ANALYSIS OF RANGE DIFFERENCE
MEASUREMENT
The RD information obtained from the devised IR-UWB
transceivers inevitably includes measurement noise. It is
well-known that the Gaussian thermal noise of the receiver is
the most apparent component of the noises [19]. The thermal
noise can convert into jitter at the rising edge of the receiver
output, which results in RD output errors. Thus, the RD
measurement r̃j is expressed as the summation of the true
RD rj and its measurement noise δrj following a Gaussian
distribution as follows:

r̃j = rj + δrj, δrj ∼ N (0, σ 2
r,j), (3)

where σ 2
r,j is the variance of the RD measurement r̃j.

Remark 1: The walk error and time variation also corre-
spond to aminor bias error in the RDmeasurement [20].Walk
errors are a type of delayed effect. If the amplitude of the
envelope signal decreases as the measured distance increases,
the digital signal generated will be delayed in the analog

FIGURE 4. Test points.

comparator. Also, the timing error due to the gain deviation
between receivers can be regarded as a time variation.
Remark 2: The walk error mentioned in Remark 1 is

deterministic, so it can be easily removed using batch cal-
ibration. Then, the gain variation is compensated with the
individual calibration method [21]. Thus, the error of the
RD measurement obtained from the devised sensor can be
modeled as Gaussian thermal noise, as shown in (3).

C. RESULT OF RANGE DIFFERENCE MEASUREMENT
The measurement error properties of our RD sensor are ana-
lyzed through experiments. As illustrated in Fig. 4, various
transmitter locations are set to confirm the performance of
the receiver array. The system configuration of our sensor
is shown in Fig. 2. The signal generator excites the clock
Txin to the transmitter, and the received signal outputs a
digital pulse sCj from each receiver chipset. Afterward, sCj
is measured using a multi-channel oscilloscope. The receiv-
ing antennas are arranged in a cruciform with a spacing of
d = 0.2[m]. In the measurement setup, an omni-directional
monopole antenna with 0[dBi] antenna gain is used, and the
receivers, which were fabricated with 65[nm] CMOS, are
mounted on a printed circuit board (PCB) using the chip-
on-board (COB) technique. The devised receiver consumes
50[mA] with 1.2[V] supply voltage.
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FIGURE 5. Received IR-UWB signal.

FIGURE 6. Comparator output.

FIGURE 7. Error modeling of RD measurements.

Using the transceivers described above, the measured
received impulse waveform at the reference receiver Rx #0 is
depicted in Fig. 5 when the transmitter is placed in point #7 in
Fig. 4. From this result, it is confirmed that this signal has a
maximum amplitude of 0.25[Vpp]. Then, the above impulse is
converted to a digital pulse in the receiver, and its pulse waves
are captured using an oscilloscope. At this time, the TDOA
is measured between an output pulse, which is transformed
from the envelope of the received impulse of the reference,
and that of an adjacent receiver. The measured pulses are
shown in Fig. 6. It can be seen that all the received pulses
have almost identical rising slopes. It implies that our RD
measuring sensor can obtain precise RD measurements.

Next, the receiver array is reviewed to observe whether it
provides precise RDmeasurements. Fig. 7 is the histogram of

FIGURE 8. Statistical characteristics of RD measurements.

the 1000 RD measurement samples at test point #7 in Fig. 4
and its fitted result. The obtained RD measurements have
a Gaussian distribution with a mean value close to the true
RD information. In addition, as mentioned in Section II-B,
the measurement noise of the proposed RD measuring sensor
mainly includes Gaussian thermal noise. Therefore, it is pos-
sible to model the statistical properties of themeasured values
with a Gaussian distribution like the fitted results (solid line
in Fig.7).

Based on the above analysis, the RD measurement is
regarded as Gaussian distribution. So, the statistical proper-
ties of the RD measurements at all the test points in Fig. 4
are described as the error mean and standard deviation of the
measurement noise depicted in Fig. 8. The overall RD mea-
surements nearly maintain zero mean and standard deviation
of approximately 0.5[mm]. Note that minor bias depending
on the range, such as walk errors, can be easily removed
through batch calibration, as described in Remark 2. In sum-
mary, the devised RD measuring sensor is able to provide a
precise RD measurement, as shown in the experiments.
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FIGURE 9. PSD of RD measurement error.

Remark 3: The proposed localization algorithm in Sec-
tion III assumes that the RD measurement noise is white.
It means that the RD measurement noise does not have to
follow the Gaussian distribution, as shown in Fig. 7. The
power spectral density (PSD) of the noise in Fig. 7 is shown
in Fig. 9, and it can be seen that all RD noise satisfies the
white noise condition. To summarize, it is possible to design
our localization estimator obtained from the devised sensor.
Remark 4: Even if the RD measurements are contami-

nated by colored noises, the well-known pre-whitening filter
can be applied to the raw measurements [22], [23]. In this
case, the design requirement of our localization algorithm can
be met.

III. ROBUST LINEAR LOCALIZATION APPROACH USING
RANGE DIFFERENCE MEASUREMENTS
In this section, a UAV localization algorithm is designed
using RD measurements obtained from the sensor devised in
the previous section.

A. UNCERTAIN LINEAR MEASUREMENT MODEL
To solve the UAV localization problem within the framework
of linear state estimation theory, let us derive the relationship
between the RD measurement and the relative position of
the inspection UAV as an uncertain linear state-space model.
From Fig. 2, the RD rj is defined as follows:

rj ≜ dt,j − dt,0, j = 1, 2, · · · , 4. (4)

In the above equation, the distance from the transmitter to the
jth receiver dt,j is given by (5).

dt,j =

√
(xt − xj)2 + (yt − yj)2 (5)

Using a similar method to (5), the distance from the reference
receiver to the jth receiver dj,0 can be written as

dj,0 =

√
(xj − x0)2 + (yj − y0)2. (6)

After squaring both sides of (4) and inserting (5), we have

r2j − d2j,0 = hj

xt − x0
yt − y0
dt,0

 , hj = −2

xj − x0
yj − y0
rj

 . (7)

Substituting (3) for (7) results in an uncertain linear measure-
ment equation (8).

r̃2j − d2j,0 − σ 2
rj =

[
h̃j − 1hj

]xt − x0
yt − y0
dt,0

+ vj, (8)

where

h̃j ≜ −2
[(
xj − x0

) (
yj − y0

)
r̃j
]
,

1hj ≜ −2
[
0 0 δrj

]
, vj ≜ 2r̃jδrj − δr2j − σ 2

rj .

The noise variance of the above measurement model Rj can
be calculated as follows:

Rj ≜ var
{
vj
}

= 2σ 2
rj

(
2r2j + σ 2

rj

)
. (9)

Because the equation (8) holds for all receivers, at time instant
k , we can define the following uncertain linear measurement
model.

yk = Hkxk + vk =

[
H̃k − 1Hk

]
xk + vk (10)

In the above equation, the state vector x, the measurement
vector y, the measurement noise vector v, and the matrices
are defined as follows:

x ≜

xt − x0
yt − y0
dt,0

 , y ≜


...

r̃2j − d2j,0 − σ 2
rj

...

 , v ≜


...

vj
...

 ,

H ≜


...

hj
...

 , H̃ ≜


...

h̃j
...

 , 1H ≜


...

1hj
...

 .

Note that the matrix H̃k in (10) can be constructed by the
RD measurements and is available for UAV localization.
This matrix is decomposed into the noise-free observation
matrixHk , which is not known in real cases, and the stochastic
parametric uncertainty matrix 1Hk .

H̃k = Hk + 1Hk (11)

Using (9) and (10), the following statistical properties of1Hk
and vk are obtained.

E {vk} = 04×1, E {1Hk} = 04×3 (12)

Rk ≜ var {vk} = diag
([

· · · Rj · · ·
])

(13)

Wk ≜ E
{
1HT

k R
−1
k 1Hk

}
= diag

([
0 0

4∑
j=1

2
2r2j +σ 2

rj

])
(14)

Vk ≜ E
{
1HkTRk−1vk

}
=

[
0 0

4∑
j=1

2rj
2rj2+σrj

2

]T
(15)
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TABLE 1. Robust weighted least-squares method [18].

Remark 5: The devised RD measuring sensor equips the
five identical receivers which are arranged in a cruciform
structure and are placed with equi-distance d from the refer-
ence receiver Rx #0. Hence, it is assumed that the variances
in the RD measurement noise are nearly equal to each other.
As shown in Fig. 8b, the variances of the RD measure-
ment noise at various test points have almost similar values.
This implies that the experimental results support the above
assumption. That is, σ 2

r,j ≈ σ 2
r , thus (15) can be approximated

as follows:

Vk ≈ 03×1. (16)

B. CONSTRAINED ROBUST WEIGHTED LEAST-SQUARES
LOCALIZATION ALGORITHM
To effectively solve the localization problem with an uncer-
tain measurement model, the robust weighted least-squares
(RWLS) estimation theory summarized in TABLE 1 is con-
sidered [18]. The RWLS algorithm adopts the estimation
design parametersWk and Vk to remove the estimation errors
caused by the parametric uncertainty 1Hk . To obtain sat-
isfactory RWLS-based localization performance, a standing
assumption about using precise design parameters is required.
Unfortunately, if the a priori statistical properties of the RD
measurement σ 2

r are not exact, the design parameter can-
not be calculated correctly, which may lead to performance
degradation.

This issue can be tackled by the constrained RWLS
(C-RWLS) in Theorem1 and Theorem2.
Theorem 1: (C-RWLS estimator for UAV localization)

The UAV position estimate is calculated by the C-RWLS
estimator.

(Pck )
−1

=

k∑
i=0

{
(H̃i)TR

−1
i H̃i

}
− (1 + γ )Wi (17)

x̂ck = Pck

k∑
i=0

{
(H̃i)TR

−1
i yi

}
(18)

In (17), γ denotes an imperfectness of the available design
parameterW .

□
proof: Recall that the design parameter W is determined
by the prior knowledge about the RD measurement noise
statistics as shown in (14). For the sake of convenience, W
can be rewritten as follows:

W = diag
([
0 0 w

])
, w =

4∑
j=1

2σ 2
j

Rj
. (19)

Noticing thatW is a sparsematrix, we can simply compensate
its imperfectness by introducing a scalar constant γ . That
is, the perfect but unavailable design parameter W o can be
rewritten as

W o
= (1 + γ )W . (20)

In (20), γ represents the scale-factor error of the available
design parameterW .
By substitutingW o in (20) intoW of the RWLS estimator in
TABLE 1, the C-RWLS estimator can be easily derived.

■
In order to implement the C-RWLS estimator in Theorem1,
we should devise an algorithm to calculate the scale-factor
error γ .
To do this, let us consider the estimates x̂ok and x̂k , which are

calculated using the perfect and imperfect design parameter
W o and W , respectively.

(Pok )
−1

=

k∑
i=0

{
(H̃i)TR

−1
i H̃i

}
−W o

i ,

x̂ok = Pok

k∑
i=0

{
(H̃i)TR

−1
i yi

}
, (21)

and

(Pk )−1
=

k∑
i=0

{
(H̃i)TR

−1
i H̃i

}
−Wi,

x̂k = Pk
k∑
i=0

{
(H̃i)TR

−1
i yi

}
. (22)

Inserting (20) into (21) and rearranging the results, the ideal
RWLS estimate x̂o calculated using the perfect design param-
eterW o can be rewritten as a function of the imperfect design
parameterW and the nominal RWLS estimate x̂.

x̂ok = (I − γ kPkW )−1x̂k (23)

From the definition of the state variables x in (10), the
following hard constraint is derived.

(xt − x0)2 + (yt − y0)2 − d2t,0 = 0 → xTMx = 0 (24)

In (24), the weighting matrixM is defined as

M ≜ diag
([
1 1 −1

])
.
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TABLE 2. Configuration of experiment environment.

Note that (24) indicates the geometric constraint among the
state variables x. It is well-known that the ideal RWLS esti-
mate x̂ok almost surely converges to the true state variable x̂k ;
hence it also satisfies the constraint (24). Using this property,
the unknown constant γ , which compensates the scale-factor
error of W , can be calculated.
Theorem 2: (Calculating the scale-factor error of the

design parameter) The constraint condition (24) can be
transformed into a quadratic equation of λ.

c(λ) =

2∑
m=0

cmλm = 0, λ ≜
γ k

1 − γ kwp33
, (25)

where

c0 = x̂TkM x̂k ,

c1 = x̂Tk (MPkWk +WkPkM )x̂k ,

c2 = x̂Tk (WkPkMPkWk )x̂k ,

Pk ≜

p11 p12 p13∗ p22 p23
∗ ∗ p33

 .

By solving (25), the scale-factor error γ can be obtained.
□

proof: The ideal RWLS estimate x̂o in (23) is substituted into
the geometric constraint (24).

x̂Tk (I − γ kPkW )−TM (I − γ kPkW )−1x̂k = 0 (26)

The matrix (I − γ kPkW ) can be diagonalized as follows:

I − γ kPkW = SDS−1, (27)

where

S =

1 0 p13/p33
0 1 p23/p33
0 0 1

 , D = I − γ k
1
w
WPkW T .

Using the sparsity of W in (19), the inverse of the diagonal
matrix D is written as

D−1
= I +

γ k
|D|

1
w
WPkW T , |D| = 1 − γ kwp33. (28)

Let us define λ ≜ γ k/|D|, then the following equation is
obtained from (27) and (28).

(I − γ kPkW )−1
= I + λPkW (29)

FIGURE 10. Experiment environment.

By substituting (29) into (26), we have

c(λ) = x̂Tk (I + λPkW )TM (I + λPkW )x̂k

=

2∑
m=0

cmλm = 0, (30)

where

c0 = x̂TkM x̂k ,

c1 = x̂Tk (MPkWk +WkPkM )x̂k ,

c2 = x̂Tk (WkPkMPkWk )x̂k .

■
Remark 6: In the case that the equality constraint (25)

produces two distinct solutions of γ , we need to choose one
of them to compute (17) and (18). For this purpose, it is
preferred to choose γ with the smallest absolute value under
the assumption that the modeling error is quite small. Since
the design parameterW is defined as the weighted sum of the
noise variance σ 2

r , a valid solution has to satisfy γ > −1.

IV. PERFORMANCE EVALUATION
A. CONDITIONS FOR EXPERIMENT
In order to verify the performance of the proposed local-
ization system, simulations and experiments are carried out
under the test conditions summarized in TABLE 2. The test
results are obtained from 50 Monte-Carlo trials at every
test point, depicted in Fig. 4. As in Fig. 2 or Fig. 10, the
receiver array is mounted on the HUINS BlueEye-1k UAV.
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TABLE 3. Experimental condition.

This inspection UAV hovers above each test point while
maintaining an altitude of h = 0.88 [m]. For the performance
analysis, a highly accurate OptiTrack indoor positioning sys-
tem consisting of 18 Flex13 cameras is used. Using this
system, the UAV position with respect to the transmitter can
be acquired within 3[mm] accuracy.

The performance of our C-RWLS algorithm is compared
with that of a standard RWLS estimator. In addition, we com-
pared the H∞ filter, which is known as robustness for the
parameter uncertainty [24]. The optimal weighted least-
squares (OWLS) estimator constituted by the noise-free mea-
surement matrix Hk is also simulated to provide the theoret-
ical performance bound of the linear localization filter. Note
that the OWLS estimator cannot be realizable in practice.
To show the effectiveness of the linear filter structure for
UAV localization using passive measurements, the extended
Kalman filter (EKF), which is the most commonly used non-
linear localization algorithm, is also considered [25]. Since
only the bearing angle can be guessed from the TDOA mea-
surements, the a priori position estimate of each localization
algorithm is set by using the maximum detection range of our
localization sensor, as in TABLE 3. In the table, N (m, σ 2)
represents a normal distribution with a mean of m and a
variance of σ 2.

B. SIMULATION RESULTS
First, it is checked how the proposed method is useful to
guarantee the robustness of the localization filter against

FIGURE 11. Performance of γ calculation: simulation result.

FIGURE 12. Localization performance variation due to the imperfectness
of design parameter: simulation result.

FIGURE 13. Localization performance at various test points: simulation
result.

the imperfectness of the statistical knowledge on the TDOA
measurement noise.
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FIGURE 14. Convergence property of localization estimator at test
point #7: simulation result.

In accordance with the above point, the imperfectness
ratio γ is arbitrarily chosen within −0.5 ≤ γ ≤ 0.5 and
is computed γ by the C-RWLS algorithm. As illustrated in
Fig. 11, the root mean square error (RMSE) of γ does not
exceed 0.008. It means that the imperfect design parameter
Wk is very close to the ideal design parameterW o

k . So, we can
analyze that excellent localization performance is guaranteed
even in difficult cases when an accurate design parameter
is not computed. Based on this result, it is clear that the
imperfectness of the nominal design parameter Wk can be
adaptively estimated by Theorem 2.
Also, to discuss the effect of the estimation performance

degradation caused by the imperfect design parameter Wk ,
the RMSE of the localization results toward the compensating
parameter γ is depicted in Fig. 12 for the test point #7 in
Fig. 4. As the magnitude of the uncertainty of the design
parameter γ increases, the performance of the standard
RWLS estimator becomes worse and worse. By exploiting
the γ compensation algorithm in (25), the C-RWLS estima-
tion scheme produces reliable localization performance even

FIGURE 15. Localization performance at various test points: experimental
result.

when the ideal design parameter W o is unknown. In other
words, accurate localization could be successfully carried out
because it can alleviate the sensitivity problem of the RWLS
approach.

Next, the estimation performance when γ = −0.4 at the
every test point in Fig. 4 is shown in Fig. 13. The EKF
method has poor estimation performance and does not pro-
vide consistent results because of an imprecise initial guess.
The RMSE of the H∞ filter and the RWLS approach does
not exceed 0.35[m]. However, one can see that a bias error
remains which increases as the distance between the trans-
mitter and the receiver array is far away. Typically, the posi-
tioning result from the localization sensor is feedback in the
control loop of the UAV to generate a guidance command for
a set path. For this reason, if the localization sensor provides
a biased estimation error, it might ultimately cause overall
performance degradation of the substation inspection UAV.
Meanwhile, the proposed C-RWLS localization algorithm,
which considers the geometry of the state variables, shows
a quasi-optimal estimation performance at every test point.
Since it is difficult to model a precise measurement error and
its statistics on the stochastic parametric uncertainty in a real
substation environment, the proposed estimator may be an
excellent choice in such cases.

Furthermore, let us verify the convergence characteris-
tics of each localization performance. The error mean and
its standard deviation of the estimators at test point #7 are
illustrated in Fig. 14. Due to its inherent nonlinearity, the
EKF-based method has a slower convergence rate than lin-
ear filters. This implies that a linear estimator structure is
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FIGURE 16. Convergence property of localization estimator at test
point #7: experimental result.

advantageous to improve the convergence rate when imple-
menting real-time localization algorithms. Since the H∞

filter focuses on guaranteeing robustness for parameter
uncertainty, conservativeness cannot be avoided. Therefore,
a biased error means is still in existence. The standard RWLS
method has also a biased error means because of its imper-
fect design parameter, Wk . On the other hand, the proposed
C-RWLS localization estimator increases the error standard
deviation by 0.01[m] compared to the H∞ filter; however,
unlike the results of the other algorithms, it satisfies nearly
zero-mean characteristics. Thus, the RMSE of the C-RWLS
localization algorithm in Fig. 13 shows the closest results to
the OWLS estimation result.

C. EXPERIMENTAL RESULTS
To demonstrate the proposed localization system perfor-
mance, an experiment is performed using the RD measure-
ments obtained from the devised cruciform receiver array in
Fig. 2. After equipping the inspection UAV with the devised
RD measuring sensor based on the experimental conditions
described in Section IV-A, the experiment is executed at the

same test point, as Fig. 13 and Fig. 14, and the results are
depicted in Fig. 15 and Fig. 16.

The EKF estimates do not satisfy the consistency regard-
less of the relative geometry between the transceivers, and
it converges after the 250th index at test point #7. This
is because it cannot know the exact initial value from the
characteristics of the passive measurement-based localization
method, and it uses the non-linear measurement model. In the
case of H∞ filter and RWLS localization results, its RMSE
and convergence characteristics are similar to those of the
simulation results. This is because none of these estima-
tion methods can directly deal with the imperfectness of the
design parameter Wk modeled as a statistical properties of
the RD measurement noise. Whereas, the proposed C-RWLS
algorithm meets the RMSE level within 0.05[m] at all test
points. Moreover, the proposed approach provides a fast con-
vergence rate and stable estimation performance, despite the
use of imperfect design parameter. From the above results,
it is expected that the proposed passive localization system
can be a viable solution for substation inspection UAVs in
non-GPS environments.

V. CONCLUSION
A novel passive localization system was developed for sub-
station inspection UAVs under GPS-denied environments.
Firstly, a CMOS IR-UWB-based range difference (RD) mea-
suring sensor was devised. With the help of the passive
IR-UWB RD sensor, a high-cost synchronization device
between the transceivers was not required. Also, our hard-
ware was significantly less affected by multi-path. Secondly,
an uncertain linear measurement model was derived to for-
mulate the UAV localization problem within the frame-
work of linear least-squares estimation theory. Then, a con-
strained robust weighted least-squares (C-RWLS) estimator
was designed to reduce the performance degradation due to
the imperfectness of the RDmeasurement noise statistics that
is an important design parameter of the localization algo-
rithm. The geometric relationship between the transmitter and
the receiver array was used to correct the erroneous design
parameter and to secure the reliability of UAV localization.
The effectiveness of our proposed solution for substation
inspection UAVs was verified with experimental results.

Our future works aim to check the practicality of the
proposed localization system through a performance evalu-
ation in an actual substation or similar environment. In addi-
tion, we plan to study a supplemented C-RWLS localization
algorithm that can estimate the attitude of inspection UAVs.
A plurality of IR-UWB transmitters can be exploited to cope
with the performance deterioration of the magnetic sensor
mounted on the UAV due to electromagnetic interference in
the substation facility.
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