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ABSTRACT Automated identification of thoracic diseases from chest X-ray images (CXR) is a significant
area in computer-aided diagnosis. However, most existing methods have limited ability to extract multi-scale
features and accurately capture the spatial location of lesions when dealing with thoracic diseases that exhibit
concurrency and large variations in lesion size. Based on the above problems, we propose a multi-level
residual feature fusion network (MLRFNet) for classifying thoracic diseases. Our approach can quickly
capture receptive field information across different lesion sizes and enhance disease-specific features within
the spatial domain on feature maps. The MLRFNet comprises two main components: a feature extractor that
learns multi-scale semantic information from chest X-ray images and a multi-level residual feature classifier
(MRFC) that refines disease-specific pathological features at spatial locations to reduce interference from
irrelevant regions. Additionally, the ECA attention modules connect both components to enable flexible
channel-wise focus on critical pathological information.We evaluated the performance ofMLRFNet through
a series of experiments on two datasets: ChestX-Ray14 and CheXpert. Our results show that MLRFNet
achieves an average AUC of 0.853 on the ChestX-Ray14 dataset and 0.904 on the CheXpert dataset. The
results of experiments demonstrate that our proposed method works better than the current state-of-the-art
baselines. Future work will focus on investigating the interdependencies among labels for thoracic diseases
and techniques for model compression.

INDEX TERMS Chest X-ray image classification, convolutional neural network, attention mechanism,
residual feature vector, medical image processing.

I. INTRODUCTION
Clinical analysis of CXR images is one of the most
critical methods for screening thoracic diseases such as
pulmonary nodules, pneumonia, and pneumothorax. The
hospital receives a large number of patients and creates con-
siderable CXR image data every year. Traditional diagnostic
methods rely on manual labeling by professional doctors,
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which is time-consuming and laborious. Computer-aided
diagnosis (CAD) is significant because it makes doctors’ jobs
easier and reduces the number of misdiagnoses. Researchers
have paid much attention to automatic medical image anal-
ysis technology based on deep learning in recent years.
In particular, convolutional neural networks (CNN) have
gradually become the preferred method in medical image
segmentation [1], [2], [3], detection [4], [5], [6], and classifi-
cation [7], [8], [9] tasks. It can learn potential pathological
information from large datasets and automatically identify
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thoracic diseases in CXR images to help doctors make clini-
cal diagnoses. Many CNN-based classification methods for
thoracic diseases have been proposed and can be broadly
categorized into the following types: (1) Network structure
optimization [10], [11], [12], [13], [14]; (2) Attention-guided
methods [15], [16], [17], [18], [19]; (3) Correlation modeling
methods [20], [21], [22], [23], [24].

Methods based on network structure optimization aim
to improve feature extraction capabilities by refining the
network structure to obtain richer feature representations
from CXR images. Chen et al. [10] proposed a new dou-
ble asymmetric feature learning network (DualCheXNet) to
realize feature-level and decision-level fusion in structure.
Rajpurkar et al. [12] proposed CheXNet for detecting tho-
racic diseases by fine-tuning the modified DenseNet121 [25].
However, the performance gains of these methods are limited
due to their lack of attention to key pathological informa-
tion. Attention-guided methods can direct the model’s focus
toward salient pathological features and have demonstrated
notable success in the thoracic disease classification task.
As a typical example, Wang et al. [16] proposed a triple atten-
tion network (A3Net) for channel-level, element-level, and
scale-level attention learning in feature extraction. However,
this method is susceptible to the influence of incorrect labels
and noisy regions, which may result in a decrease in model
performance. Thoracic diseases exhibit comorbidity, and cor-
relation modeling methods can effectively model the depen-
dencies between diseases. Typically, Yao et al. [20] combined
DenseNet and a long short-term memory network (LSTM) to
learn the dependencies between target labels. Chen et al. [24]
proposed a label co-occurrence learning framework based on
graph convolutional neural networks (GNN) and CNN mod-
els to explore the correlations between pathological features.
This method requires leveraging other model structures on
top of CNNs, making it relatively complex.

As shown in Fig. 1, the thoracic diseases have multiple
lesion areas with different lesion sizes, which is one of the
main challenges in the automatic analysis of CXR images.
However, the methods mentioned above share a common
shortage that fails to fully utilize semantic information at
different downsampling stages in the process of classifying
thoracic diseases. Many shallow features, such as spatial
location information and texture of many diseases, have been
ignored, resulting in the model’s inability to effectively cap-
ture the regions where disease lesions occur. Meanwhile, the
multi-scale feature extraction capabilities of the backbone
network used in many works are limited, making it difficult
to adapt to the varying sizes of lesions. As we can see in
Fig. 1, the ‘‘Nodule’’ are often small, but ‘‘Cardiomegaly’’
and ‘‘Infiltration’’ can cover a large area. Therefore, enhanc-
ing the ability of the network to capture multi-scale infor-
mation is beneficial for increasing the accuracy of thoracic
disease recognition. Furthermore, Khan et al. [26] reviewed
the CXR image datasets available in deep learning methods
and found that most of them suffer from sample imbalance.

FIGURE 1. Example images of ChestX-Ray14. Thorax diseases may have
multiple lesion areas and are variable in lesion size. The disease in the
bounding box corresponds to the pathology name in the bottom row with
the same color.

Imbalanced datasets can cause bias in the model’s learning
direction, resulting in poor classification performance.

To solve these issues, we propose a thoracic diseases
classification network MLRFNet based on multi-level resid-
ual feature fusion. Firstly, to address the issue of complex
morphological manifestations of different thoracic diseases
in CXR images and the large differences in lesion sizes,
Res2Net [27] is selected as the feature extraction network
to obtain receptive field information from different lesion
sizes and enhance the model’s multi-scale feature extraction
ability. Secondly, to mitigate the impact of variable lesion
areas on the model’s discriminative ability, a multi-level
residual feature classifier (MRFC) is proposed to effectively
capture the spatial location of lesions at different down-
sampling stages and convert them into residual feature vec-
tors conducive to disease classification. Then, the efficient
channel attention mechanism (ECA) [28] is introduced to
enable the model to adaptively calibrate channel responses
of feature maps and enhance key pathological features while
suppressing the transmission of useless information. Finally,
according to the characteristic that most disease categories
in the dataset have more negative samples, a Biased Focal
Loss (BFL) is proposed to increase the loss proportion of
difficult-to-classify samples among negative samples and
shift the optimization direction towards this part, thereby
improving overall classification accuracy. Experiments show
that MLRFNet achieves better results than the current state-
of-the-art methods. We summarize the contributions of this
work as follows:

• We propose a multi-level residual feature fusion net-
work (MLRFNet) for the multi-label classification of
thoracic diseases. Compared to the existing methods,
our approach can quickly get receptive field information
on different lesion sizes and improve disease-specific
features at spatial locations to reduce the interference of
irrelevant regions;

• Wepropose a novel multi-level residual feature classifier
to generate classification vectors, which fully utilizes the
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spatial location information of the disease in the feature
map at different downsampling stages;

• We conduct a comprehensive experiment on the ChestX-
Ray14 and CheXpert datasets. The results demonstrate
that MLRFNet has better performance than the existing
advanced models.

The rest of our document is organized as follows. Section II
reviews the related works in the thoracic disease classifica-
tion tasks. And Section III presents our approach in detail.
We conduct comprehensive experiments in Section IV.
A summary of the experimental results is also included in this
Section. Section V discusses the purpose and achievements of
this study, highlighting the limitations of the current work and
suggesting potential future endeavors. In section VI, we draw
a conclusion to this project.

II. RELATED WORK
The application of deep learning to medical image process-
ing has made significant breakthroughs in recent years. The
release of the public ChestX-Ray14 [29] and CheXpert [11]
datasetsmakesmore andmore researchers pay attention to the
automatic analysis technology of CXR images based on deep
learning. This section will review state-of-the-art methods
for classifying thoracic disease and some valuable works
currently in this field.

A. NETWORK STRUCTURE OPTIMIZATION
Optimizing or fine-tuning the structure of CNN models
can help to obtain more comprehensive feature representa-
tions and was the initial research direction for researchers.
Wang et al. [29] first released a large CXR image dataset
ChestX-Ray14 and studied the performance of redesigned
ImageNet model [30] for thoracic diseases classification,
such as AlexNet [31], GoogleNet [32], and ResNet [33].
Subsequently, Rajpurkar et al. [12] detected 14 diseases
in the ChestX-Ray14 dataset by fine-tuning the modified
DenseNet121 [25] and calling it CheXNet. It is important
to note that CheXNet was better at finding pneumonia than
professional radiologists. Chen et al. [10] proposed a new
double asymmetric feature learning network (DualCheXNet)
based on ResNet and DenseNet for multi-label classification
of thoracic diseases, which realized feature-level fusion and
decision-level fusion in structure. Hashmi et al. [13] fine-
tuned five classic CNN models using transfer learning and
proposed a weighted classifier that combines the classifica-
tion results of these CNN models, which achieved high accu-
racy in identifying pneumonia. Irvin et al. [11] presented the
large dataset CheXpert and investigated different policies to
process the uncertainty labels for training CNNs. Moreover,
they reported the ensemble result from 30 models on the
validation set. Jiang et al. [14] proposed a new variant of
the Pyramid Vision Transformer (MXT) [34] for multi-label
CXR image classification, which can capture visual infor-
mation at short and long-range in CXR images through self-
attention. However, the above methods only use mainstream

deep learning networks to extract pathological features from
CXR images and are easily affected by image noise and
irrelevant regions. The MLRFNet proposed in this paper uti-
lizes the ECA attention mechanism and the MRFCmodule to
enhance the model’s attention to critical features in channels
and space, which is conducive to improving classification
accuracy.

B. ATTENTION-GUIDED METHODS
As the attention mechanism has become more influential
in computer vision, researchers have tried to introduce it
into medical image processing. The attention mechanism can
guide the deep learning model to focus on the lesion area in
the CXR image. Wang et al. [16] proposed a triple attention
network (A3Net). Specifically, A3Net utilizes pre-trained
DenseNet121 as the backbone network for feature extrac-
tion and integrates three attention modules into a unified
framework for channel-level, element-level, and scale-level
attention learning. Guan et al. [18] proposed a network Con-
sultNet which uses a novel variational selective informa-
tion bottleneck (VSIB) to focus on the disease-correlated
regions. Chen et al. [15] proposed an attention-guided net-
work LLAGnet to focus on the discriminative features from
lesion location, which combines region-level attention (RLA)
and channel-level attention (CLA). Zhu et al. [17] proposed a
pixel classification and attention network (PCAN) to simulta-
neously perform disease classification and weakly supervised
localization, providing interpretability for disease classifica-
tion. Chen et al. [19] proposed a new network PCSANet
for thoracic disease classification and COVID-19 detection
based on pyramidal convolution and shuffle attentionmodule.
Although the above methods use attention mechanisms to
guide the model’s focus on key features, they rely solely on
the output of the final feature map from a CNN during clas-
sification and lack the utilization of semantic information at
different levels. This limits the improvement of classification
accuracy.

C. CORRELATION MODELING METHODS
In multi-label thoracic disease classification tasks, model-
ing and analyzing dependencies between thoracic diseases
can help to improve the model’s recognition ability. The
researchers also achieved good results in this area. Yao et al.
[20] combined DenseNet and a long short-term memory
network (LSTM) to learn the dependencies between target
labels. Subsequently, Graph Neural Networks (GNNs) gar-
nered considerable interest among researchers due to their
robust ability to model relationships between node data.
Chen et al. [24] proposed a label co-occurrence learning
framework based on GNN and CNN models to explore the
correlations between pathological features. To enable the
model to leverage prior knowledge in diagnosing thoracic
diseases like a professional radiologist, Chen et al. [21]
introduced a Semantic Similarity Graph Embedding (SSGE)
module designed to investigate the semantic similarity
between images and optimize the feature extraction process.
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FIGURE 2. Overview of the proposed MLRFNet. The MLRFNet consists of a feature extractor, ECA attention modules, and a multi-level
residual feature classifier (MRFC). First, we do data augmentation on a CXR image and then feed it into the feature extractor to get feature
maps at different sampling stages. Then, we use attention modules to enhance disease potential critical features between channels
adaptively. Finally, the MRFC utilizes feature maps of different sizes to generate residual feature vectors. The residual feature vectors are
finally fused and added to achieve a joint decision.

Lee et al. [23] proposed a hybrid deep learning model
(CheXGAT) based onCNN and graph convolution neural net-
works (GNN), which uses self-attention to aggregate domain
features from graphical structures to enhance potential corre-
lations between thoracic diseases. Jung et al. [22] proposed
a novel framework called FGR-PCAM based on GNNs and
CNNs that leverages graph structure to learn the relationships
between lesion-specific features in localized regions. How-
ever, they still lack the utilization of semantic information at
different downsampling stages.

D. OTHER VALUABLE WORKS
In addition to the aforementioned methods, there are other
valuable research efforts focused on diagnosing thoracic dis-
eases that warrant attention. For instance, some researchers
have employed a combination of traditional machine learning
and deep learning techniques to identify thoracic diseases.
Rehman et al. [35] utilized CNN to extract deep features
from CXR images and employed classical machine learning
classifiers to process these features. This approach improves
the accuracy of identifying COVID-19 and increases the pre-
dictability rates for other thoracic diseases. Khan et al. [36]
employed VGG19 to extract deep features from CT images
and concatenated them with handcrafted features to enhance
the accuracy of pulmonary nodule identification. Further-
more, this method also employs image segmentation algo-
rithms to extract lung nodule regions. A similar approach was
used by Jaszcz et al. [37], who utilized a heuristic red fox
algorithm to segment the lungs from CXR images before fur-
ther processing. High-performance models generally require
advanced hardware to run and may not be suitable for
resource-constrained regions. Thus, the lightweight model is

TABLE 1. The network structure of Res2Net50, where R2conv k× k block
consists of a set of k× k convolution kernels connected in a hierarchical
residual style as shown in Fig. 3. Conv k× k block stands for k× k
convolution, Batch Normalization, and ReLU. Feature map represents the
output tensor of different layers.

one of the areas of focus for researchers. Amirkhani et al. [38]
trained a lightweight studentmodel usingmulti-teacher distil-
lation to improve the segmentation performance and robust-
ness of the student model. Mahbub et al. [39] designed an
easy-to-train and lightweight CNN model that achieved high
accuracy in identifying COVID-19.

In contrast to the above methods, our proposed MLRFNet
fully utilizes semantic information at different levels and
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FIGURE 3. Comparison of ResNet block and Res2Net block. The left
structure represents the ResNet block, and the right represents the
Res2Net block. In the Res2Net block, feature splitting is processed
multi-scale, which is conducive to extracting global and local information
from CXR images.

enhances the model’s attention to specific disease features in
spatial locations. This further improves the model’s ability to
identify thoracic diseases.

III. METHOD
This section introduces the details of the proposed
multi-level residual feature fusion network (MLRFNet) for
the multi-label CXR image classification. Fig. 2 shows the
architecture of MLRFNet. We first describe the feature
extractor in Sec. III-A and then introduce the ECA atten-
tion module and multi-level residual feature classifier in
Sec. III-B and Sec. III-C, respectively. Finally, we present the
optimization of the loss function in Sec. III-D.

A. FEATURE EXTRACTOR
Feature extractor aims to extract feature maps in different
downsampling stages. CXR images show a significant differ-
ence between the lesion size of different diseases. Thus the
neural network is required to have solid multi-scale feature
extraction capability. We utilize Res2Net50 as the feature
extractor, which can represent multi-scale features at a finer
level of granularity. Fig. 3 shows the difference between the
traditional bottleneck block in ResNet and the Res2Net block.
Res2Net50 replaces a set of 3 × 3 convolution kernels with
smaller convolution kernel groups while connecting different
convolution kernel groups in a hierarchical residual style.

As shown in Table 1, the feature extractor consists of
a 7 × 7 convolutional layer, a 3 × 3 max pooling layer,
and four consecutive stages containing different numbers
of Res2Net50 blocks. A given CXR image is preprocessed
first and then fed into the feature extractor. After a series of
convolution operations, the H × W × C feature tensor from
different downsampling stages can be obtained. The feature
maps U2, U3, and U4 from Stage2, Stage3, and Stage4 are
used as input of the ECA attention module.

B. ECA ATTENTION MODULE
During the training phase, the network should paymore atten-
tion to the relevant channel feature of the lesion. The attention

FIGURE 4. Diagram of the ECA attention mechanism. The aggregated
information can be obtained by global average pooling. ECA learns the
weights of channels by a fast 1D convolution, and the 1D convolution
kernel size is set to 3 in the MLRFNet.

mechanism can model dependencies between channels and
calibrate the response characteristics for each channel. In this
work, the ECA attention module is adapted to enhance the
critical information for each class, which is an efficient and
lightweight component. As shown in Fig. 4, the global
average pooling is used to gather the global information of
the feature map. Then, the ECA attention takes an efficient
approach to learn the dependencies between channels. This
strategy can be implemented by a 1D convolutional kernel
with the size of k , which allows channels to share learning
parameters. Finally, the sigmoid function is utilized to gener-
ate the weighting factors. The above process is implemented
as follows:

Ũ = U ⊙ sigmoid[C1Dk(GAP(U)], Ũ ∈ RH×W×C , (1)

where GAP represents the global average pooling layer, and
C1Dk stands for 1D convolutional operation. The kernel size
k is set to 3 in this work. ⊙ denotes the channel-wise multi-
plication. After the above operation, each channel of the input
feature mapU is assigned a different weight, which enhances
relevant pathological information and suppresses irrelevant
information transfer.

C. MULTI-LEVEL RESIDUAL FEATURE CLASSIFIER (MRFC)
On a CXR image, there is often more than one lesion area,
so one or more pathologies are assigned based on what they
mean. We hope that the model not only focuses on the global
information of the image but also on the spatial location of
the lesions in the feature map. At different stages of CNN’s
feature extraction, MRFC can make the network pay more
attention to the critical positions of certain diseases and pay
less attention to the irrelevant parts.

MRFC consists of three CSRAmodules [40] with different
λ. CSRA has achieved satisfactory results in the multi-label
image classification task of natural images. It uses the spatial
pooling operation to make a simple spatial attention score
map that describes the spatial feature information of a certain
category. Then the global average pooling, independent of the
specific category, combines itself with the spatial pooling to
generate the output vector. The working principle of CSRA
is shown in Fig. 5.
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In MRFC, the feature vector Ũ from the ECA attention
module undergoes dimensionality reduction via a 1 × 1 con-
volution operation to a size of H × W × N , where N
represents the number of disease categories under consid-
eration. Subsequently, the resulting feature map is fed into
the CSRA module, where it is decoupled into characteristic

tensors µ1, µ2, µ3, . . . ,µHW (µj ∈ R1×1×N ). Then, after the
softmax operation, the corresponding probability of locations
with large pixel values in the feature map is further increased,
and we can get the spatial attention scores of specific cat-
egories in the jth position. Using the attention score as the
weight value, we can get the results of spatial pooling, which
is also called a residual classification vector. On the other
hand, the CSRAmodule uses the global average pooling vec-
tor as the primary classification vector. Finally, the prediction
score P ∈ R1×1×N of the diseases can be obtained:

P =
1
HW

HW∑
j=1

µj + λ

HW∑
j=1

softmax(Tµj)µj, (2)

where T is called the temperature coefficient, which controls
the sharpness of a single position score. λ is the hyperpa-
rameter that controls the weight of the residual classification
vector. To effectively enhance the valuable information on the
spatial location of thorax disease, T is set to a typical value
of 99 [40].

During the downsampling of CXR images by CNN, the
feature map with higher resolution corresponds to a smaller
receptive field. It retains more low-level features, such as
the spatial position and texture of lesions. The loss of this
original information is not conducive to the network’s ability
to recognize diseases.

Tomake better use of the spatial position information in the
feature map, MLRFNet adopts a multi-level residual feature
fusion method to predict 14 types of pathologies. As shown in
Table 1 and Fig. 2, the shape of feature map output by Stage2,
Stage3, and Stage4 is 28 × 28 × 512, 14 × 14 × 1024, and
7 × 7 × 2048, respectively. They first pass through the ECA
module to enhance the critical features between channels and
then are sent to the CSRA modules corresponding to λ1 =

0.5, λ2 = 0.3, λ3 = 0.1. The hyperparameter λ controls
the weight of the residual features in the prediction vector.
Finally, the prediction vectors P1, P2, and P3 output by three
CSRA modules are added for a joint judgment of thoracic
diseases: Psum = P1 + P2 + P3.

D. OPTIMIZATION OF LOSS FUNCTION
The uneven distribution of samples usually hinders the
improvement of the accuracy of multi-label classification
tasks. In the ChestX-Ray14, some pathologies like ‘‘Hernia’’
and ‘‘Pneumonia’’ tend to have fewer positive samples and
more negative samples. Unbalanced distribution leads to seri-
ous classification difficulty with fewer positive samples, and
CNN needs to learn more pathological information. To allevi-
ate this problem, we optimized the focal loss [41] and called

FIGURE 5. Diagram of class-specific residual attention module. The
residual feature can be obtained by spatial pooling, which enhances the
larger value among all spatial locations for specific diseases.

it the biased focal loss (BFL):

BFL = −α
(
1 − P̂sum

)β

y log P̂sum

− (1 − α)(P̂
s
sum)

β (1 − y) log
(
1 − P̂sum

)
, (3)

where P̂sum is the predicted confidence score normalized
by a sigmoid layer. The labels for each CXR are expressed
as a one-shot vector y = [y1, . . . , yi, . . . , yN ], where N is
14 in ChestX-Ray14 and CheXpert. yi ∈ {0, 1} represents the
ground truth of class i. β > 0 denotes the focus parameter.
Compared to the focal loss, we further set the weight factor
α to increase the contribution of negative samples to the
loss function. In the experiment, α is set to 0.4. In addition,
inspired by [42], probability shift factor s is set to make the
network focus more on the hard-to-classify parts of negative
samples:

P̂
s
sum = max(P̂sum − s, 0), (4)

when the predicted score of a negative sample is between
0 and s, it is considered an easy-to-classify negative sample
and is thresholded to 0 after the probability shift operation.
In BFL, the shift probability s is 0.2.
In summary, BFL makes the model pay more attention

to the hard-to-classify parts of negative samples according
to the sample distribution in the chest X-ray datasets and
dynamically adjusts the learning direction, thereby improving
the overall classification ability of the network.

IV. EXPERIMENTS
A. DATASET
In this section, we employ two publicly available datasets
as evaluation benchmarks: ChestX-Ray14 released by the
National Institutes of Health (NIH), and CheXpert released
by researchers at Stanford University. Detailed information
regarding dataset split criteria and the sample distribution for
both datasets are presented in Table 2 and Table 3, respec-
tively. It should be noted that only the training and validation
sets of CheXpert are shown in Table 2 as its test set has not
been made publicly available.

ChestX-Ray14 [29] contains 112,120 frontal-view X-ray
images with 14 pathologies. Except for the 60,361 images
labeled ‘‘No Finding’’, each image is assigned one or more of
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TABLE 2. Dataset split criteria for ChestX-Ray14 and CheXpert.

the 14 pathologies, and 880 images have been annotated with
984 labeled bounding boxes for eight types of pathologies.
We evaluate performance on all 14 labels. For fairness, the
dataset split in the comparative experiments strictly follows
the official splitting standards of the dataset published by
Wang et al. [29].

CheXpert [11] contains 224,316 X-ray scans of 65,240
patients, with 14 observations extracted from the medical
reports. Each observation is assigned a positive (1), negative
(0), or uncertain (−1). The validation set of CheXpert consists
of 200 chest radiographic studies manually annotated by
three board-certified radiologists. Same as Irvin et al. [11],
we evaluate performance with five observations: ‘‘Atelec-
tasis’’, ‘‘Cardiomegaly’’, ‘‘Consolidation’’, ‘‘Edema’’, and
‘‘Pleural Effusion’’ on the validation set. ‘‘U-Ones’’ and
‘‘U-Zeros’’ are policies to handle the uncertainty mentioned
in Irvin et al. [11]. Specifically, ‘‘U-Ones’’ treats the uncertain
labels as positive, while ‘‘U-Zeros’’ treats uncertain labels as
negative.

B. EVALUATION METRICS
The receiver operating characteristics (ROC) curve is used to
represent the algorithm’s ability to identify each pathology,
and the area under the ROC curve (AUC) value is calculated
for quantitative analysis and comparison in this paper. In the
ROC curve, FPR shows the percentage of negative classes
that were wrongly thought to be positive classes in all neg-
ative classes. TPR shows how many of the positive classes
were correctly identified out of all of the positive classes. FPR
and TPR are precisely calculated as follows:

TPR =
TP

TP+ FN
,

FPR =
FP

FP+ TN
. (5)

Meanwhile, the average Accuracy, Sensitivity, Specificity,
and F1-score are considered additional evaluation metrics,
which can be expressed as:

Accuracy =
TP+ TN

TP+ FP+ FN + TN
,

Sensitivity =
TP

TP+ FN
,

Specificity =
TN

FP+ TN
,

F1 − score =
2 × TP

2 × TP+ FP+ FN
, (6)

TABLE 3. The detailed sample distribution for pathologies in the
ChestX-Ray14 (Xray14) and CheXpert (Xpert) datasets. In this table, Pos.,
Neg., and Unc. represent the number of positive, negative, and uncertain
samples.

where FP, TN, TP, and FN represent false positives, true
negatives, true negatives, and false negatives, respectively.

Moreover, we also calculated the floating-point operations
(FLOPs) and testing time required for the model to process
a single CXR image during the testing phase to measure the
implementation cost.

C. IMPLEMENTATION DETAILS
A reasonable experimental setup and data augmentation strat-
egy can effectively improve the final classification perfor-
mance of the model. The implementation details during the
training process will be introduced in this part.

1) EXPERIMENTAL SETUP
As shown in Table 4, the experiment is implemented on
the Pytorch [43]. For training, we optimize the network by
Adam [44] optimizer with a batch size of 32 and train for
20 epochs. The initial learning rate is 0.0001, and the learning
rate is multiplied by 0.9 every two epochs. To improve the
convergence speed aswell as the learning ability of themodel,
the backbone networks in the experiments will be pre-trained
models on ImageNet. Training will be stopped when the loss
on the validation set no longer decreases or starts to increase.

2) DATA AUGMENTATION
During the data preprocessing stage, we perform data aug-
mentation on the input CXR images. The detailed methods
and steps are as follows:
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TABLE 4. Experimental setup details in training phrases.

FIGURE 6. Three-dimensional scatter plots of different λ combinations.
The depth of the color corresponds to the size of the AUC value,
representing the impact of different hyperparameter combinations on the
classification accuracy of the ChestX-Ray14 test set.

(1) Resizing the image to 256 × 256;
(2) Randomly crop the image to 224 × 224;
(3) Flip the image horizontally with a probability of 0.5;
(4) Randomly rotate the image within the range of [−5, 5]

degrees;
(5) Set the contrast, saturation, and hue of the image to vary

between 90% and 110%;
(6) Totensor and Normalization.

D. HYPER-PARAMETRIC ANALYSIS
In this section, we will analyze the hyperparameters from
two aspects: the impact of λ in MRFC on model classifi-
cation accuracy and the impact of different learning rates
during training on loss optimization. Since the ChestX-Ray14
dataset provides a complete and publicly available test set,
we conducted our hyper-parametric experiment on it.

1) EFFECTS OF λ COMBINATION
In the MRFC, the hyperparameter λ controls the weight of
residual features in the classification vector. The patholog-
ical information will vary with the resolution of the fea-
ture map. Therefore, the class-specific residual classification
block should set different λ according to the size of the
feature map. In order to verify the impact of the λ on the
classification results, we set different value combinations to

FIGURE 7. Relationship between learning rate and loss optimization in
the ChestX-Ray14 training set.

train the network while keeping the other settings unchanged.
The experimental results are shown in Fig. 6.
We selected 0.1, 0.3, and 0.5 as λ candidate values, and λ1,

λ2 and λ3 correspond to the three CSRA modules processing
feature maps of 28 × 28 × 512, 14 × 14 × 1024 and 7 ×

7 × 2048 sizes, respectively. As seen from Fig. 6, different
combinations of λ greatly impact the classification results.
Among them, the best classification results are achievedwhen
λ1 = 0.5, λ2 = 0.3, and λ3 = 0.1. We find that the
high-resolution feature map has some low-level semantic
information and the spatial location information of the lesion
is not lost due to continuous downsampling. A larger value
of λ ensures that more residual features are incorporated into
the output classification vector. These residual features have
a lot of information about where they are in spatial location,
which helps the network pay more attention to certain types
of diseases in the right places.

2) EFFECTS OF LEARNING RATE
The learning rate is a crucial hyperparameter that determines
the speed and outcome of model weight optimization. In our
training process, we experimented with initial learning rates
of 1× 10−3, 1× 10−4, and 1× 10−5 to observe the changes
in loss values over training epochs. As shown in Fig. 7, our
experimental results indicate that when the learning rate is
set to 1 × 10−3, the loss curve ceases to decline from the 9th
epoch and maintains a high loss value. Our analysis suggests
that this is due to an excessively large learning rate causing
the model to oscillate around a local optimum. On the other
hand, when the learning rate is set to 1 × 10−5, the model’s
loss curve steadily converges but at a relatively slow pace.
However, with a learning rate of 1 × 10−4, we observed
the fastest convergence of the model. As such, we ultimately
chose an initial learning rate of 1 × 10−4.

E. COMPARISON WITH SOTA METHODS
We compared the proposed MLRFNet classification net-
work with the current state of the arts on the ChestX-Ray14
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FIGURE 8. Illustration of the training and validation loss curves on the
ChestX-Ray14 (a) and CheXpert (b) datasets.

FIGURE 9. Illustration of the validation and test AUC curves on the
ChestX-Ray14 (a) and CheXpert (b) datasets.

and CheXpert datasets. The AUC score of each pathology
and the average AUC scores across all classes are com-
puted. Specifically, we selected the SOTA methods listed
in Section II as baseline models for comparison, includ-
ing (1) Network structure optimization, i.e. DCNN [29],
Ensemble [11], and MXT [14]. (2) Attention-guided meth-
ods, i.e. LLAGNet [15], A3Net [16], PCAN [17], ConsultNet
[18], and PCSANet [19]. (3) Correlation modeling meth-
ods, i.e. SSGE [21], CheXGCN [24], CheXGAT [23], and
F-PCAM [22].

1) RESULTS ON ChestX-Ray14
We first evaluated the performance of our model on the test
set of the ChestX-Ray14 dataset. The ROC curves for each
pathology are drawn in Fig. 10(a) to visually represent the
classification performance of the proposed method. Table 5
presents the comparative results obtained by our MLRFNet
and other SOTA baselines. Moreover, the loss and AUC
curves during training and validation are given in Fig. 8(a)
and Fig. 9(b), respectively.
Compared with these SOTA methods, the MLRFNet pro-

posed in this paper achieves better classification results: the
average AUC score is 0.853 across the 14 thoracic diseases.
The ROC curves for each pathology are located in the upper
left corner, which indicates that the overall classification
performance of MLRFNet is excellent. As can be seen from
Fig. 8(a), the training set loss has been decreasing, while the
validation set loss gradually stabilizes after the 10th epoch
and no longer optimizes. Fig. 9(a) shows that the AUC value
of the model on the test set reaches its maximum at the 10th
epoch.

Based on the comparison results in Table 5, we can draw
the following conclusions and analyses: (1) Our MLRFNet
achieves the most advanced level for 10 of the 14 thoracic
diseases in the classification experiments. The other two
diseases, ‘‘Emphysema’’ (0.941) and ‘‘Fibrosis’’ (0.821), are
also almost close to the best. It is worth mentioning that
the accuracy of the proposed method for identifying ‘‘Con-
solidation’’ (0.826), ‘‘Atelectasis’’ (0.833), and ‘‘Hernia’’
(0.963) exceeds that of the best results of the baseline models
above by 3.0%, 3.2%, and 2.1%, respectively, representing a
significant improvement. Compared to the baseline models,
our MLRFNet fully utilizes the residual features at different
sampling stages and enhances the pathological features of
diseases in spatial locations, thus achieving good results in
the identification of most diseases; (2) Like most methods,
our model’s ability to identify ‘‘Nodule’’ (0.799) and ‘‘Infil-
tration’’ (0.717) needs improvement. ‘‘Infiltration’’ appear
patchy with blurred edges on imaging and their diagnosis
relies on subtle texture changes. On the other hand, pul-
monary nodules are small lesions that are easily influenced
by irrelevant features. Therefore, the identification of both
can be relatively difficult; (3) Compared to attention-guided
methods, the correlation modeling methods, such as SSGE
and CheXGAT, demonstrate strong advantages in handling
dependencies between labels. In particular, SSGE achieves
the highest accuracy in identifying ‘‘Nodules’’ (0.812) and
‘‘Emphysema’’ (0.948). Among the network structure opti-
mization, MXT achieves the highest average AUC value
and demonstrates the best recognition accuracy for ‘‘Infiltra-
tions’’ (0.719) and ‘‘Fibrosis’’ (0.847), showcasing the pow-
erful modeling capabilities of the transformer architecture;
(4) Despite our work outperforming the compared methods,
our MLRFNet’s ability to handle label dependencies is sub-
optimal. This is a current limitation that our MLRFNet faces
and will be a focus of future work.

2) RESULTS ON CheXpert
We evaluated the performance of our model on the valida-
tion set of the CheXpert dataset. The ROC curves for each
pathology are drawn in Fig. 10(b), while the comparative
results obtained by our MLRFNet and other SOTA baselines
are presented in Table 6. Moreover, the loss and AUC curves
during training and validation are given in Fig. 8(b) and
Fig. 9(b), respectively.
In the comparison, we focus on the performance achieved

by a single architecture. We quote the ensemble result of
Irvine et al. [11] as the single checkpoint performance is not
given. We first verified the classification performance of the
model on the CheXpert validation set under the ‘‘U-Ones’’
and ‘‘U-Zeros’’ policies. Secondly, like Jung et al. [22],
we adopted a mixed policy ‘‘U-O&U-Z’’ to handle uncer-
tain labels. Specifically, ‘‘Atelectasis’’, and ‘‘Edema’’ were
trained with the ‘‘U-Ones’’ policy. ‘‘Cardiomegaly’’, ‘‘Con-
solidation’’, and ‘‘Pleural Effusion’’ were trained with the
‘‘U-Zeros’’ policy.
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FIGURE 10. ROC curves of thoracic diseases on the ChestX-Ray14 (a) and CheXpert (b) datasets, respectively. The
corresponding AUC scores are given in Table 5 and Table 6.

TABLE 5. Comparison results of previous SOTA methods on ChestX-Ray14 dataset measured by AUC score of the test set. In each column, the best result
is highlighted in bold.

TABLE 6. Comparison results of previous SOTA methods on the CheXpert
dataset measured by the AUC score of the validation set. The ‘‘U-Ones’’
and ‘‘U-Zeros’’ are different settings for uncertain labels. ‘‘U-O&U-Z’’ is a
mixed approach to handling uncertain labels using both policies. ‘‘CT’’
and ‘‘LSR’’ stands for conditional training and label smoothing in [45].
In each column, the best result is highlighted in bold.

The average AUC score for the five pathologies in the
validation set is 0.904 for the proposed MLRFNet when

adopting a mixed policy to handle uncertain labels. This is
better than the other SOTA methods. As can be seen from
Fig. 8(b), the training loss gradually decreases as the number
of training epochs increases, while the validation loss first
decreases and then begins to rise after the 9th epoch. This
is due to the small number of samples in the validation set
and the large difference in sample distribution between the
validation and training sets. Fig. 9(b) shows that the AUC
value of the model on the validation set reaches its maximum
at the 9th epoch.

Based on the comparison results in Table 5, we can draw
the following conclusions and analyses: (1) When handling
uncertain labels with the mixed policy ‘‘U-O&U-Z’’ or
‘‘U-Zeros’’, ourMLRFNet outperforms the baseline for com-
parison and achieves average AUC scores of 0.904 and
0.892, respectively; (2) Our method shows its superiority for
some diseases with different label policies. When treating the
uncertain labels as ‘‘Zero’’, the performance of ‘‘Atelectasis’’
(0.851) and ‘‘Cardiomegaly’’ (0.950) improved significantly
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TABLE 7. Comparison of other evaluation metrics on the ChestX-Ray14
dataset.

by 4.9% and 8.1%, respectively, compared to the best results
in the baselines. When using the ‘‘U-O&U-Z’’ policy, the
performance of ‘‘Cardiomegaly’’ (0.867) and ‘‘Consolida-
tion’’ (0.937) improved slightly by 1.6% and 1.4%, respec-
tively, compared to the best results in the baselines; (3) For
all methods in Table 6, the classification accuracy on the
validation set is higher when using the ‘‘U-Ones’’ policy
than when using the ‘‘U-Zeros’’ policy. This may be due to
the fact that setting uncertain labels to ‘‘Ones’’ allows the
model to learn more about the pathological features of the
five diseases present in the validation set; (4) Although our
MLRFNet outperforms the best results of baselines under
the ‘‘U-Zeros’’ and ‘‘U-O&U-Z’’ label policy, the ability to
recognize ‘‘Edema’’ still needs to be improved when using
either the ‘‘U-Ones’’ or ‘‘U-Zeros’’ policy. This is a limitation
of our method.

F. COMPARISON OF OTHER EVALUATION METRICS
In this section, we utilize the average Sensitivity, Specificity,
Accuracy, and F1-score to further measure the performance
of our MLRFNet on ChestX-Ray14. The comparative results
of the above evaluation metrics are summarized in Table 7.
Meanwhile, the FLOPs and test time consumed by a single
image during the test phase are illustrated in Table 8 to
measure the computational complexity of the model.

1) CLASSIFICATION METRICS ANALYSIS
Based on the comparison results in Table 7, we can draw
the following conclusions and analyses: (1) Our MLRFNet
shows improvements of 2.3%, 1.2%, 2.6%, and 2.2% respec-
tively over the best results of the baseline model in terms of
Accuracy, Sensitivity, Specificity, and F1-score. It indicates
that our model has significantly improved overall perfor-
mance. (2) Typically, the performance of medical diagnostic
systems is primarily measured by their Specificity and Sensi-
tivity. Improvements in both Sensitivity and Specificity mean
that our MLRFNet can diagnose more patients with thoracic
diseases while reducing the rate of misdiagnosis.

2) COMPUTATIONAL COMPLEXITY ANALYSIS
As can be seen from Table 8, our MLRFNet processes single
CXR images quickly during the testing phase. However, its
floating-point computation is relatively high compared to
the latest models, such as PCAN and PCSANet, which is a

limitation of our method. Nevertheless, considering the aver-
age AUC score, our model achieves a significant improve-
ment in classification accuracy with only a slight increase
in computation. It remains highly competitive in thoracic
disease diagnosis algorithms.

G. ABLATION STUDY
In this section, we will verify the effectiveness of the com-
ponents in MLRFNet and the optimized loss function BFL
through a series of ablation experiments on ChestX-Ray14
and CheXpert. It is worth noting that we utilize the previously
mentioned ‘‘U-O&U-Z’’ policy to handle uncertain labels in
the CheXpert dataset.

1) MODULE ABLATION EXPERIMENT
An ablation experiment was set up on the CheXpert and
ChestX-Ray14 to investigate the effectiveness of the ECA
attention module and multi-level residual feature classifier
(MRFC). MLRFNet is our baseline, and we remove the cor-
responding modules to explore their impact on classification
accuracy. Table 9 shows the results of the ablation experi-
ment. First, removing the ECA attention module reduces the
baseline by 0.4% and 0.6% on CheXpert and ChestX-Ray14,
respectively. Second, replacing the MRFC with the most
commonly used classifier (global average pooling with fully
connected layer), the AUC of the network dropped by approx-
imately 0.9% and 2.4% on the two datasets, respectively.
Experimental results show that the simultaneous use of the
ECA attention mechanism and MFRC is of great help in
enhancing features between channels as well as pathological
features at specific locations in space.

2) BACKBONE NETWORK ABLATION EXPERIMENT
The backbone network of the MLRFNet in this paper is
Res2Net50, and its 3 × 3 convolution adopts a hierarchi-
cal connection method, which has more robust multi-scale
extraction capabilities. To verify the influence of the back-
bone network on results, we replace Res2Net50 with
ResNet50 or DenseNet121 as the feature extractor while
keeping the other settings unchanged. To improve the con-
vergence speed and learning ability of the model, the back-
bone network in the experiment will use the pre-trained
model on the ImageNet dataset. The experimental results in
Table 10 show that Res2Net50 achieves the best classifica-
tion results on the CheXpert and ChestX-Ray14, which are
1.3% and 0.8% higher than the second-ranked DenseNet121,
respectively.

3) LOSS FUNCTIONS ABLATION EXPERIMENT
We conducted comparative experiments to explore the impact
of different loss functions on classification accuracy. The
experimental result is shown in Table 11. The average
AUC achieved by the MLRFNet using the biased focal
loss or the focal loss is better than that obtained using the
binary cross-entropy loss on the CheXpert andChestX-Ray14
datasets. The focus loss enhances the model’s attention to
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TABLE 8. Comparison of computational consumption by a single image during the test phase on the ChestX-Ray14 dataset.

TABLE 9. Ablation experiment on ECA and MRFC module.

TABLE 10. The influence of backbone networks on the results.

TABLE 11. The influence of loss function on the results.

hard-to-classify samples through the focus factor. However,
the dataset has more negative samples for most thoracic
diseases. The biased loss function further sets the probability
shift factor and weight factor to enhance the model’s ability
to identify the hard-to-classify parts of negative samples, thus
achieving the best classification results.

H. VISUALIZATION ANALYSIS
In this section, we generate some heatmaps of the focal
areas using Grad-CAM [46] in Fig. 11 and visualize clas-
sification scores in Fig. 12, respectively. Grad-CAM can
back-propagate the model and calculate the feature maps’
gradient information. Byweighting the featuremaps’ channel
with gradient information, a heat map is made to show the
area of interest for a category in the CXR image. To val-
idate the accuracy of model recognition, we compared the
generated heat map to the lesion-labeled maps provided by
professional doctors in the ChestX-Ray14.

As shown in Fig. 11, it can be seen that the lesion areas
of the corresponding diseases are activated, and the red
highlighted parts represent the most concerned parts of the
model, which are also the main parts of the diagnostic basis.

It can be seen visually that the activated regions in CXR
images are consistent with the regions labeled by professional
physicians, and the highlighted red areas are very concen-
trated, allowing the naked eye to locate the area where the
lesion occurs quickly. Even though the size of the lesion and
the abnormal areas look different, the network can still do
accurate identification. Fig. 12 shows that the network can
give a higher prediction score for most diseases, and the
top-scoring diseases are consistent with the labeled actual
value. Especially for ‘‘Hernia’’, the network prediction score
is quite higher than other diseases, indicating that the network
has a strong predictive ability for this disease.

V. DISCUSSION
When dealing with thoracic diseases that display concur-
rency and significant variations in lesion size, most existing
methods struggle to extract features at multiple scales and
accurately capture the spatial location of lesions. This makes
it difficult to increase classification accuracy due to uncertain
pathological features. Moreover, in the ChestX-Ray14 and
CheXpert datasets, there is an imbalance between the positive
and negative samples of some specific pathologies, leading to
serious classification difficulties with fewer positive samples.
To address the aforementioned issues, we proposeMLRFNet,
a thoracic disease classification network based on multi-level
residual feature fusion, and optimize the loss function during
training.

The difference between the previous works and our
approach for generating prediction vectors is that MLRFNet
fully uses the residual feature vectors of different downsam-
pling stages. Specifically, the MRFC module applies spatial
pooling to the feature maps to achieve pixel-level attention.
Based on the global average pooling, the residual feature
vector is used as an extra part to help make the prediction
scores. With the above method, the network can pay more
attention to specific disease-related locations without adding
more model parameters, which is a lightweight way to do it.

We conducted comprehensive experiments on the
ChestX-Ray14 and CheXpert datasets. The results in Table 5
and Table 6 show that MLRFNet achieves better performance
compared with the current SOTA methods. In the ablation
study, we remove the ECA attention module and the MRFC
module, respectively, resulting in a drop in overall classifi-
cation accuracy. During the training phase, we replace the
BFL with two other common loss functions for multi-label
classification while keeping the original network structure
unchanged, but the classification performance of the network
also degrades. In the visualization analysis, Fig. 11 shows
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FIGURE 11. Examples of heatmaps generated from MLRFNet. Manual annotations from professional doctors labeled with the ground truth
bounding boxes provided by [29]. Noting that the network is very accurate in identifying small lesions.

FIGURE 12. Examples of classification results on ChestX-Ray14. The top-7 predicted categories and corresponding probability scores are
presented. The ground-truth pathologies are highlighted in red. A higher prediction score indicates a higher probability of the disease
corresponding to that score. Noting that MLRFNet can accurately predict ground-truth pathologies in the single Chest X-ray image.

that MLRFNet can accurately locate lesions of different sizes
and has a good effect on identifying small lesions. This is
because Res2Net has excellent multi-scale feature extraction
capabilities. In addition, the red activation area in the heat
map is very concentrated so that the relevant lesion area can
be noticed intuitively. It is mainly because the spatial pooling
in MRFC enhances pathological features on feature maps
while features unrelated to the disease are suppressed.

Despite achieving high classification accuracy on the
ChestX-Ray14 and CheXpert datasets, the method proposed
in this paper still has some limitations. In particular, when
exploring potential relationships between labels, our model
relies solely on CNNs to learn the semantic information
contained in images and lacks explicit modeling of the rela-
tionships between different categories of labels. This is not
conducive to exploring the intrinsic connections of thoracic

diseases. Additionally, while our model is fast in inference
speed, it has a slight increase in floating-point computations
compared to the lightest comparison method. To address
these limitations, future work will introduce additional neu-
ral network structures to further explore the dependencies
between labels in CXR images and improve the classification
accuracy of the model. Additionally, using model compres-
sion methods such as knowledge distillation is also one of
the directions for future work. This will help the model
maintain its lightweight while achieving high classification
performance.

VI. CONCLUSION
In this paper, we propose the MLRFNet for multi-label chest
X-ray image classification. The proposed network can auto-
matically learn pathological features end-to-end to recognize
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common thoracic diseases. MLRFNet achieves the average
AUC of 0.853 and 0.904 for ChestX-Ray14 and CheXpert
datasets, respectively, which perform excellently in classi-
fying chest X-ray images. Our network has the following
advantages: (1) The network has solid multi-scale feature
extraction capability, which can quickly get receptive field
information on different lesion sizes. (2) The network adopts
a novel multi-level residual feature fusion method to generate
classification vectors so that the prediction of the network
considers the spatial location information of specific dis-
eases. (3) Benefiting from the biased focal loss function we
proposed, the network can learn more about the difficult-
to-classify parts of negative samples, improving the overall
classification accuracy. A single chest X-ray image often con-
tains multiple thoracic diseases, and related diseases appear
simultaneously. In future work, we will focus on exploring
the dependencies between labels and techniques for model
compression to further improve the overall performance of
the model.
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