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ABSTRACT It is necessary to perform condition monitoring and fault identification on ship-borne antennae
to ensure navigation safety. However, timely fault identification of key parts in a complicated drivetrain of
the ship-borne antenna is still a challenging task since fault features are usually modulated and inevitably
submerged by heavy noise. Therefore, a new adaptive feature extraction method based on Feature Mode
Decomposition (FMD) is proposed in this paper for diagnostic purpose. First, scale transform is applied
on the spectrum of the monitoring signal to determine the parameters of FMD, including the number of
FIR filters, the location of each filter and the order of the filter bank. Second, a modified feature mode
decomposition (MFMD) algorithm is proposed to adaptively extract mono-component modes and combine
similar modes for weak feature enhancement. Finally, the combined modes are analyzed for mechanical fault
identification based on Hilbert demodulation. Two application cases show that the proposed method owns
superior performance during feature extraction, compared with the traditional methods.

INDEX TERMS Mechanical fault diagnosis, feature extraction, feature mode decomposition, ship-borne
antenna transmission system.

I. INTRODUCTION
Due to severe marine environment, complex load and long-
term operation, key mechanical parts of ship-borne antennae
inevitably degenerate and malfunction in different forms.
Mechanical faults of key components may cause various
serious accidents, causing operation accident eventually.
Therefore, fault location and identification are of reasonable
significance for navigation safety [1], [2], [3].

Feature extraction, which extract the hidden fault-related
information from the raw monitoring signal, is one of the
most important steps in the antenna fault diagnosis [4],
[5], [6]. When a fault exists in one rotating machine, the
vibration signal is mixed with periodic repetitive sharp peaks
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and further modulated by inherent multiples. The aim of
feature extraction is to refine the periodic impulses from the
complicated signal by filtering, demodulating and matching
[7], [8]. However, conventional methods, such as deconvo-
lution, Spectrum Kurtosis (SK) and Wavelet Packet (WT),
are confronting incremental challenges, because complex
structure and composition of ship-borne antennae seriously
decrease the signal-to-noise ratio (SNR) of condition moni-
toring signals [9], [10], [11].

Recent years have witnessed a rapid development of signal
decomposition methods. Decomposition methods can divide
the original signal into simple parts, and each single part
is far more easily analysed than the original signal [12].
Among them, Empirical Mode Decomposition (EMD), pro-
posed by Huang, is the most classic and famous adaptive
decomposition method. It can divide the signal into several
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orthogonal modes, which are so-called ‘‘Intrinsic Mode
Function (IMF)’’, by utilizing the local time-scales decompo-
sition criterion [13]. Since EMD appears, it has shown huge
potential in the mechanical fault diagnosis and has achieved
great success [14], [15], [16], [17], [18]. However, the result
of EMD highly depends on the extremum seeking algorithm
and the ending criterion. Inevitable end effects and the mode
mixing problem will restrict the application of EMD [19].

To enhance the performance of EMD and solve the mode
mixing problem, substantial numbers of improved meth-
ods, such as Ensemble Empirical Mode Decomposition
(EEMD) and Local Mean Decomposition (LMD), are pro-
posed. EEMD, a modified EMD method, reduces the influ-
ence of background noise by harmonic test and population
average [20]. In 2018, Mohammad et al. achieved quan-
titative bearing fault diagnosis by using improved ensem-
ble empirical mode decomposition [21]. In 2019, Li et al.
combined EEMD and frequency band entropy for bearing
fault feature extraction and validated the effectiveness of
the proposed method through an experimental data set [22].
In 2021, Li et al. proposed an improved EEMD based on
the improved adaptive resonance technology (IART), and it
can select the optimal IMF(s) according to the resonance
frequency of IART [23].

As for LMD, it is an adaptive decomposition method based
on the local extremum moving average theory [24]. In 2018,
Zhao et al. proposed a compound interpolation envelope
LMD method for fault diagnosis of reciprocating compres-
sors and validated the effectiveness of the proposed approach
through practical vibration signals [25]. In 2021, Sharma
combined multi-scale-fluctuation-based dispersion entropy
and LMD to analysis the bearing faults, and the result shows
that the proposed method has potential for gaining further
insights into the dynamics of rotary machines [26]. Although
a series of effective improvements have been implemented
to solve problems caused by incomplete decomposition the-
ories, EMD, EEMD and LMD are essentially recursive, and
never consider the form of fault feature.

Encouragingly, two non-recursive methods, empirical
wavelet transform (EWT) and variational mode decomposi-
tion (VMD) were proposed and introduced into the mechan-
ical fault diagnosis. EWT is a non-recursive decomposition
method, which decomposes the signal into adaptive sub-
band signals and constructs corresponding basis functions
for wavelet transform. Pan proposed an improved data-driven
EWT method and used the proposed approach to extract
weak bearing fault features [27]. Saeed used EWT to denoise
vibration monitoring signals and the comparison shows a bet-
ter result than the EMD-denoising technique [28]. Although
EWT evades the accumulative error problem, the binary band
segmentation strategy may mislead EWT to divide the char-
acteristic signal into different modes.

VMD, which is proposed by Konstantin and Dominique,
can design a group of Wiener filters, and then divide the raw
signal into several modes with different centre frequencies

through the Wiener filter bank [29]. Wang firstly discussed
the relative merits of VMD and applied it to identify the
rub-impact fault of the rotating machinery [30]. Further-
more, he found a perfect VMD result depends on appropri-
ate choices of VMD parameters, including the number of
modes, the balance parameter and the initial centre frequen-
cies (ICFs). Therefore, various criteria, such as correlation
coefficient [31] and Teager energy operator [32], are used
to select optimal parameters. Meanwhile, intelligence opti-
mization algorithms are also introduced and researched, such
as genetic algorithm [33] and grasshopper optimization algo-
rithm [34]. Typically, Miao chose grasshopper optimization
algorithm to search the optimal parameters for VMD and
verify its effectiveness through practical cases [35]. Although
lots of parameter selection methods are proposed, it is still a
hard challenge to use VMD without any prior knowledge.

Inspire by these mode decomposition methods, a novel
adaptive decomposition algorithm, called Feature Mode
Decomposition (FMD), is proposed by Miao recently [36].
FMD uses an adaptive FIR filter bank to decompose the raw
signal into different modes, and a new criterion, correlated
Kurtosis (CK), is built as the objective function to update
the filter bank iteratively. However, the performance of FMD
highly depends on the initial number of FIR filters [37].
Ref [37] solve this problem by designing a new index to
optimize the parameters of FMD. But FMD also eliminates
some meaningful modes during iteration, which is ignored in
Ref [37].

In this paper, a modified FMD method aiming at ship-
borne antenna drive-train fault identification is proposed.
As an effective method to extract partition information in
frequency spectrum, scale-space representation is used to
determine the number of FIR filters and the location of them,
as well as the order of the filter bank. With optimal param-
eters, the raw signal is decomposed into a series of mono-
componentmodes potentially containing fault characteristics.
Then empirical modes can be obtained by adaptively com-
bining mono-components based on their similarity. Finally,
the empirical mode with the largest correlated Kurtosis (CK)
value is selected for demodulation analysis.

The rest of this paper is organized as follows: Section II dis-
cusses the structure of the diagnosis system for the ship-borne
antenna; Section III and IV introduce the modified method
and the simulation respectively; Two cases are introduced in
Section V to prove the effectiveness of the proposed method;
Finally, the conclusion is drawn in Section VI.

II. HEALTH MANAGEMENT SYSTEM FOR
SHIP-BORNE ANTENNAE
A typical ship-borne satellite communication antenna is
shown in Fig. 1. Usually, a ship-borne communication
antenna contains three drive subsystems, which control cross-
ing moving, pitching moving and rotating moving respec-
tively. Furthermore, one drive subsystem usually consists of
two identical transmission chains for anti-backlash, and each
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transmission chain contains three key components: motor,
planetary reducer, and transmission gear box. For condition
monitoring and fault diagnosis, some accelerometer sensors
are attached on the drive subsystems. For example, key com-
ponents of the azimuth drivetrain with attached accelerometer
sensors are shown in Fig. 2.

FIGURE 1. The ship-borne communication antenna on the ocean vessel.

FIGURE 2. Key components of the azimuth drive-train with attached
accelerometer sensors.

A health management system is also developed for condi-
tion monitoring and fault warning of the ship-borne antenna
drive-train. The system is composed of accelerometer sen-
sors, a data acquisition device, a signal processor, and diag-
nosis software, as Fig. 3 shows. When the system is working,
vibration signals are collected and recorded first. Then, col-
lected vibration signals are uploaded to the upper computer
and the embedded diagnosis software extracts possible fault
characteristics form the vibration signals. Finally, the health
management system sounds the alarm according to the fault
characteristics and fault degree.

The embedded health management software, which is
designed based on LabVIEW, Matlab, and SQL Server, is the
core of the system. It can work in two modes: condition
monitoring mode and advanced diagnosis mode. The moni-
toring mode contains basic signal processing methods such
as time domain analysis and statistical analysis, which are
reliable to observe the longstanding behavioural trend of
drivetrains. The diagnosis mode is used to identify mechan-
ical faults based on signal decomposition methods such as
wavelet transform, EMD and so on. The flowchart of the
diagnosis procedure is shown in Fig. 4. Because of multi-
modulation and heavy noise, more effective signal processing
methods should be developed to improve the capacity of fault
detection.

FIGURE 3. (a) The framework of the data acquisition device. (b) the data
acquisition device.

FIGURE 4. The flowchart of the diagnosis procedure.

III. THE PROPOSED METHOD
A. FEATURE MODE DECOMPOSITION THEORY
Inspired by VMD, FMD is also a non-recursive decomposi-
tion method, and designed to divide the raw signal into differ-
ent modes adaptively by designing an FIR filter bank. Since
the decomposition result highly depends on filter coefficients,
FMD iteratively updates filter coefficients tomake the filtered
signal infinitely approach the deconvolution objective func-
tion. Therefore, the mode decomposition algorithm of FMD
is finally regard as a solution of a constrained problem and
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can be presented as:

argmax
{fk (l)}

CKM (uk) =

∑N
n=1

(∏M
m=0 uk (n− mTs)

)2
(∑N

n=1 uk (n)2
)M+1


s.t.uk (n) =

∑L

l=1
fk (l) x (n− l + 1) (1)

Correlated Kurtosis (CK), which can evaluate the impulsive-
ness and periodicity of the signal, is chosen to be the objective
function [38]. uk (n) is the kth decomposed mode, fk (l) is
the kth FIR filter with length L, Ts is the input period and M
denotes the order of shift.

Eq. (1) can be solved with an iterative eigenvalue decom-
position algorithm. First, we rewrite the decomposition mode
as a matrix form:

uk =

 uk (1)
· · ·

uk (N − L + 1)

 = Xfk

=

 x (1) · · · x (L)
...

. . .
...

x (N − L + 1) · · · x (N )


 fk (1)

· · ·

fk (L)

 (2)

Then, the CK of each mode can be defined as:

CKM (uk) =
uHk WMuk
uHk uk

(3)

where H is the conjugate transpose operation, WM is an
intermediate variable for the weighted correlation matrix and
as in (4), shown at the bottom of the page.

Combining (2) and (3), we gain the final expression of the
objective function:

CKM (uk) =
f Hk XHWMXfk
f Hk XHXfk

=
f Hk RXWX fk
f Hk RXX fk

(5)

where RXWX and RXX are the weighted correlation matrix and
the correlation matrix, respectively. Until now, we gain the
updating method of the kth filter coefficients according to the
solution of (5), and mono-component modes can be obtained
by using the optimized FIR filter bank.

However, these mono-component modes might contain
the same fault feature because of multi-modulation and
some modes are meaningless noise components. To elim-
inate the redundant modes and reduce computation, FMD
designs an iterative algorithm. After each decomposition, two
modes with the biggest similarity are firstly selected and
subsequently the one with less CK is abandoned from the

two modes. Therefore, the new input signal is reconstructed
by the remaining modes.

The flowchart of FMD algorithm is shown in Fig 5.

FIGURE 5. The flow chart of FMD algorithm.

B. MFMD
It is obvious that there are still two problems existing: First,
the number of filters and the order of the filter bank highly
influence the performance of the decomposition, but they are
casually determined in the original FMD method. Second,
FMD selected a complex and iterative mode selection algo-
rithm, which not only eliminates some meaningful modes
containing fault information, but also brings huge computa-
tional burden. Aiming at two problems above, we introduce
an adaptive parameter selection method based on scale space
expression and a non-recursive mode selection method based
on the principle of similarity, proposing a modified FMD
method. Unlike the original FMD algorithm, the decompo-
sition is implemented only once in MFMD, which reduces a
great deal of computation time.

1) SCALE SPACE EXPRESSION
Considering a discrete time signal s (t), its frequency spec-
trum S (f ) is also discrete and can be defined as:

S (f ) =

∑+∞

−∞
s (t) e−2jπ ft (6)

WM =



(∏M
m=0 uk [1 − mTs]

)2
0 · · · 0

0
(∏M

m=0 uk [2 − mTs]
)2

· · · 0
...

...
. . .

...

0 0 · · ·

(∏M
m=0 uk [N − L + 1 − mTs]

)2


1∑N−L+1

n=1 uk [n]M−1
(4)
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The scale space expression of a certain discrete signal in
frequency domain can be defined as a convolution between
its frequency spectrum and a kernel function [39]:

X (f , δ) = g (f , δ) ∗ S (f ) =

∑+∞

−∞
g (τ, δ)S (f − τ) (7)

As (7) shows, X (f , δ) can be explained as a non-local trend
of the signal under a certain scale parameter δ. It removes
detailed local characteristics and represents a macroscopic
observation result of the frequency spectrum.

The Gaussian kernel function is selected as the optimal
kernel function, because it has a similar shape to mono-
component of the raw signal in the frequency domain:

g (f , δ) =
1

√
2πδ

e−
f 2
2δ (8)

where δ is the scale factor. Substituting (8) in (7), the scale
space expression of a discrete time signal can be obtained:

X (f , δ) = g (f , δ) ∗ S (f ) =

∑+M

−M

1
√
2πδ

e−
τ2
2δ · S (f − τ)

(9)

Since a truncated narrow neighbourhood can just satisfy the
accuracy of the convolution, M is set to be 6

√
δ + 1 in (9).

Therefore, once a particular scale parameter δ is determined,
we can naturally obtain a specific scale space expression of
the raw vibration signal.

Unlike calculating all the scale space curves in different
scale parameters, we can calculate only one scale domain
curve with an optimal scale parameter δ when partitioning
mono-components for fault diagnosis. Considering that each
decomposed mono-component should contain fault infor-
mation, the scale parameter should be larger than the fault
characteristic frequency, which means

√
δ ≥ λ fr (fr is the

rotating frequency). Furthermore, mechanical fault character-
istics, such as bearing faults, are usually 3fr ∼6fr , so the scale
parameter is set to be

√
δ = 6fr in this paper.

2) FMD PARAMETER DETERMINATION
Once the scale parameter δ is set and the scale space expres-
sion X (f , δ) is obtained, each local maximum in X (f , δ)
is regarded as a symbol of a FIR filter and each filter can
be partitioned by adjacent local minima. In other words,
the number of filters can be determined as the number of
local maxima. The upper and lower passing frequencies of
each filter are assigned by the frequencies of adjacent local
minima, while the upper and lower cut-off frequencies of each
filter are determined according to the adjacent local maxima.

The order of the filter bank can be determined as fol-
low: when designing a FIR filter using the window function
method, we determine the order of the filter N as (10) shows:

1f =
dω

N
(10)

where 1f = min
[∣∣fpl − fcl

∣∣ , ∣∣fpu − fcu
∣∣] is the actual width

of the transition band, and dω
N is decided by the type of the

window function. Since the Hanning window is chosen in
FMD, we have (11):

min
[∣∣fpl − fcl

∣∣ , ∣∣fpu − fcu
∣∣] =

6.6π
N

(11)

Meanwhile, because we use a fixed order N to design the
filter bank, this order N has to satisfy all filters in the bank.
Therefore, N is computed by eq. (12):

N =
6.6π

min
[∣∣∣f kpl − f kcl

∣∣∣ , ∣∣∣f kpu − f kcu
∣∣∣] (12)

where k means the kth band. Eq (12) means that we choose
the shortest transition band to compute the order N of the
filter bank in fact.

3) MODE MERGING AND SELECTING
By using scale space expression, we detect spectrum bound-
aries and then decompose the signal into a set of modes
via FMD with an optimal FIR filter bank. Each mode
may potentially carry fault feature, and even some of them
carries similar fault-related information because of multi-
modulation. Therefore, mode merging and selecting based on
similarity is necessary.

First, the similarity between any two modes can be defined
according to Pearson’s correlation coefficient (CC):

γi,j =

∣∣∣∣∣∣∣
∑T

t=o (fi (t) − ai)
(
fj (t) − aj

)√∑T
t=o (fi (t) − ai)2

√∑T
t=o

(
fj (t) − aj

)2
∣∣∣∣∣∣∣ (13)

where ai =
1
T

∑T
t=0 fi (t) and aj =

1
T

∑T
t=0 fj (t). Second,

we set the threshold value of CC to be 0.2 in this paper.
In other words, if the value of CC between two mono-
component modes is larger than 0.2, they are considered to
be similar and should be combined. After combining, we
obtain several empirical modes and then select the empirical
mode which satisfies following conditions for fault feature
extraction:

1. It must contain the mode with the largest CK;
2. Among all empirical modes which contains the mode

with the largest CK, it must consist of the most raw modes.

4) PROCEDURE OF MFMD
Until now, the procedure of MFMD can be summarized and
the flow chart is shown in Fig. 6:

(1). Obtain the Fourier spectrum of the raw signal.
(2). Compute the scale space expression of the Fourier

spectrum and determine the parameters of FMD.
(3). Decompose the raw signal into a series of mono-

component modes.
(4). Calculate the envelope spectrum of each mode and

compute the correlation coefficients between any two modes.
(5). Combine modes according to the corresponding corre-

lation coefficients.
(6). Select the empirical mode based on CK and extract

fault features.
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FIGURE 6. The flow chart of MFMD.

FIGURE 7. (a) The impulse response. (b) the noisy signal. (c) the spectrum
of the noisy signal. (d) the envelope spectrum of the noisy signal.

IV. SIMULATION EXPERIMENT
For clear discussion of the proposed method, a periodical
impulse response simulation signal is formulated first. White
Gaussian noise with the signal-to-noise ratio (SNR) per sam-
ple in −10 dB is also added to the simulated signal, and the
noisy testing signal is expressed as:

x (t) =

∑
i
Ae−2π fiβ(t−ti) cos (2π fi (t − ti)) + n (t) (14)

where ti =
i
fr
, A stands for the amplitude, and β = 0.035

denotes the damping characteristic of the system. The occur-
rence rate of the repetitive impulses fr is set to be 10 Hz.
The sampling rate of the testing signal is 5000 Hz and the
sampling interval is 1s. The impulse response is displayed in
Fig. 7(a), while the noisy signal is shown in Fig. 7(b). The
frequency spectrum and the envelope spectrum of the noisy
signal are displayed in Fig. 7(c) and Fig. 7(d) respectively,
in which the characteristic frequency 10 Hz is buried.

FIGURE 8. The scale expression of the frequency spectrum.

TABLE 1. Correlation coefficients.

Subsequently, MFMD is applied to this simulated signal.
First, the frequency spectrum is represented in the scale
domain as Fig. 8 shows. In Fig. 8, the blue line represents
the Fourier spectrum of the raw signal; The orange line is
the scale space expression of the Fourier spectrum; The red
dotted lines represent the location of the local maximum
points in the orange line. Therefore, the number of filters is
set to be 9 according to the number of red dotted lines.

Meanwhile, the band with the narrowest transition band in
Fig. 8 is the second band, so we select it to determine the
order of the filter bank, and the result is 80. Then, the signal
is decomposed into 9 modes based on the determined param-
eters, and the full results are shown in Fig. 9. The correlation
coefficients between any twomodes are calculated and shown
in Table 1. According to table 1, mode 3, mode 7 and mode 8
are merged.

Figure 10 shows the envelop spectrum of mode 3, 7 and 8,
while Fig. 11 shows the envelope spectrum of the combined
mode. Compared with the original modes, the characteristic
frequency and multiples in the combined mode are extraordi-
narily distinct, which proves the availability of MFMD.

As a comparison, the same signal is also analyzed by the
original FMD method and VMD. First, the simulation signal
is decomposed by FMD. The number of filters is set to be
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FIGURE 9. The full results of MFMD.

FIGURE 10. (a) The envelop spectrum of mode 3, (b) the envelop
spectrum of mode 7, (c) the envelop spectrum of mode 8.

FIGURE 11. The envelop spectrum of the empirical mode.

FIGURE 12. The envelop spectrum of the mode extracted by FMD.

10 and the order of the filter bank is set to be 30. The anal-
ysis result is displayed in Fig. 12, and only the modulation
frequency and the second harmonic can be reluctantly found
in the envelop spectrum. Therefore, FMD cannot buck the
influence of strong noise hardly, because of its unreasonable
parameters.

Traditional VMD is also applied, and it decomposes the
simulation signal into 10 modes, which are displayed in
Fig. 13. Considering that the modulation frequencies in the
simulation are 800 Hz and 1800 Hz respectively, we choose
mode 4 and 7 for demodulation analysis. The envelope spec-
tra of mode 4 and 7 are shown in Fig. 14. Despite our
selection, the characteristic frequency and its multiples are
not clear, which means VMD is also unable to identify the
characteristic frequency.

FIGURE 13. The result of VMD.

FIGURE 14. (a) The envelop spectrum of mode 4, (b) the envelop
spectrum of mode 7.

V. EXPERIMENTAL VERIFICATION AND CASE ANALYSIS
A. WEAK FAULT IDENTIFICATION OF A MACHINERY
FAULT SIMULATOR
A typical motor-drive-brake-type machinery fault simulator,
which consists of a motor, a load and a shafting with a
coupling, is built to test the influence of different mechani-
cal faults of the ship-borne antenna drivetrain. A single-row
cylindrical roller bearing with an artificial slight outer race
scratch is manufactured and installed into the test rig. The
test rig with the faulty bearing is displayed in Fig. 15, and the
characteristic frequency of the outer race fault can be obtained
as (15):

froller =
1
2
fr

[
1 −

(
d
D

)
cosα

]
n (15)

where fr is the rotation frequency, n is the number of rolling
elements, d is the diameter of the rolling element, D is
the pitch diameter, and α is the contact angle. In the fault
simulation experiment, the rotating speed is 503 rpm and
the sampling frequency is set to be 12.8 kHz. Hence, the
characteristic frequency of the outer race fault is calculated
to be 60.85 Hz.

The original signal with its frequency spectrum and
envelop spectrum are shown in Fig. 16. Due to complexity
of the test rig and inevitable heavy noise, the fault features
are hardly identified in the envelop spectrum. The proposed
MFMD method is applied to analyze the raw signal. After
scale expression, the number of the local maxima is set to
be 12. Therefore, a total of 12 modes are extracted based on
MFMD, and the time waveforms of all modes are illustrated
in Fig. 17. Then, similar modes are merged according to
their correlation coefficient. Among all merged modes, the
representative one which satisfies the merged mode selection
condition proposed in section III is chosen for demodula-
tion analysis. The characteristic frequency of the outer race
fault can be clearly noticed, as the envelop spectrum shows
in Fig. 18.
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FIGURE 15. (a) The machinery fault simulator, (b) the faulty cylindrical
roller bearing.

FIGURE 16. (a) The raw signal, (b) the spectrum of the raw signal, (c) the
envelope spectrum of the raw signal.

FIGURE 17. The time waveforms of all decomposed modes.

We also use EEMD [23] and Spectral Kurtosis [40] (SK)
to analyze the same signal for comparison. The signal is
decomposed into 14 modes by EEMD, and subsequently
the envelope spectra of the first six modes are displayed in
Fig. 19, for IMF 7-13 are low-frequency narrow-band signals

FIGURE 18. The envelope spectrum of the selected empirical mode.

without modulated fault feature. Unfortunately, there are no
clear outer-race fault features found in Fig. 19, because weak
fault features are totally submerged by heavy noise in the
time domain. Results gained from a 3-layer Spectral Kurtosis
method is displayed in Fig. 20. The sub-signal with the
highest Kurtosis is located between 4800 Hz and 5600 Hz,
and no fault characteristic frequency is clearly identified in
its envelop spectrum as well. Therefore, a definite conclu-
sion can be drawn that MFMD owns superior performance
compared with the traditional methods.

FIGURE 19. The envelope spectrum of the first six modes.

B. FAULT DETECTION FOR THE TRANSMISSION SYSTEM
OF A REAL SHIP-BORNE ANTENNA
In this case, we proved that the proposed MFMD method
is effective for early fault identification of the ship-borne
antenna through a bearing holder fault. Generally, a transmis-
sion system of the ship-borne antennae, as shown in Fig. 21,
consists of an azimuth-drive chain, a pitch-drive chain and a
cross-drive chain. During a routine check before a new mis-
sion of the research ship, the engineer heard a squealing noise
from the planetary reducer of the ship-borne antenna and
subsequently the antenna malfunctioned. Therefore, he disas-
sembled the planetary reducer and found that rolling elements
appeared in the reducer, which means a severe bearing holder
fracture. Fig. 22 shows the faulty reducer, and we can notice
that the shafting slopes because the faulty bearing cannot
support the weight the shafting.

However, the ship-borne antenna seemed to work properly
and no abnormal phenomena, such as noise and violent vibra-
tion, were found during the previous mission. A routine spec-
trum analysis on board also proves that no significant fault-
relative phenomena appear. The sampling rate of the health
management system is 2048 Hz and signals are acquired
under 1350 rpm rotating speed. Given the reduction ratio of
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FIGURE 20. The result of SK and the envelop spectrum of the chosen
sub-signal.

FIGURE 21. The Schematic diagram of the transmission system of a large
ship-borne antenna: 1. azimuth drive chain; 2. pitch drive chain; 3. cross
drive chain; 4. motor; 5. reducer; 6. gearbox.

FIGURE 22. The fault caused by the bearing holder fracture.

FIGURE 23. (a) The time waveform of the selected condition monitoring
signal; (b) the envelop spectrum of the signal.

the planetary reducer, the fault characteristic frequency of
the bearing holder is calculated to be 9.0 Hz. One of the
condition monitoring signals is displayed in Fig. 23(a), with
its envelope spectrum in Fig. 23(b). We can scarcely find
any characteristic frequencies in the envelop spectrum, which
means that the holder fault is still in the beginning stage.

Since the health management system has failed to detect
the early bearing holder fault, advanced signal processing
methods should be integrated into the system. As a perfor-
mance test before being integrated, the proposed method is

applied to extract weak fault features from condition moni-
toring signals. The number of the filters is set to be 9 and the
order of the filter bank is 45 according to the scale expression
of the frequency spectrum of the raw signal. After decompo-
sition and combination, the most significant empirical mode
is selected for demodulation analysis, as Fig. 24 shows.

FIGURE 24. The envelop spectrum of the selected empirical mode.

Amazingly, the characteristic frequency of the holder fault
9.0 Hz with its harmonics, is found in the envelop spectrum of
the selected empirical mode. Hence we can draw a conclusion
that the holder of the bearing had been abraded gradually until
it could not restrain the rolling elements. More importantly,
the captain of the research ship allow that the proposed
method is an effective feature extraction method with great
potential and should be integrated on board.

We also compare the proposed MFMD method with other
representative methods, especially EEMD and parameter-
optimized VMD [41]. EEMD decomposes the raw signal
into 14 modes, and we also selected the first 6 modes for
demodulation analysis. The envelop spectra of these modes
are displayed in Fig. 25, and no clear characteristic spectral
lines can be found. Since the early holder fault is so weak that
the periodic oscillation caused by the fault seldom appears
in the time domain, EEMD cannot separate a mode which
exactly contains all time-domain features of the fault, elimi-
nating other interference and background noise.

FIGURE 25. The envelop spectra of the first six modes.

Subsequently, the parameter-optimized VMD in Ref. [41]
is applied for comparison. According to Ref. [41], when the
optimal number of modes is 6 and the optimal bandwidth is
600, the envelope signal Kurtosis value takes the maximum
of 18.17. Therefore, the raw signal is decomposed by VMD
with the optimal mode number 6 and bandwidth 600, the
decomposition result is shown in Fig. 26. Then we select
mode 3 for demodulation analysis, because the Kurtosis value
of mode 3 is the largest among all 6 modes. Fig. 3 shows the
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envelop spectrum of mode 3, and in Fig. 27, we notice that
the fault characteristic frequency 9.0 Hz and its harmonics
disappear.

FIGURE 26. The location of each mode in frequency domain.

FIGURE 27. The envelop spectrum of mode 3.

VI. CONCLUSION
This paper has presented a novel fault diagnosis method for
mechanical drivetrain of ship-borne antennae based on the
decomposition of vibration signals using the modified FMD
with adaptive parameter selection and mode combination.
In the proposed method, scale-domain spectrum segmenta-
tion is employed to determine the number of filters and the
order of filter bank adaptively, eliminating the effect of heavy
noise caused by ship engines and obtain more meaningful
modes. Since FMD tends to excessively decompose the raw
signal for fault feature extraction, similar modes should be
merged to enhance the expression of the weak fault feature.
To this end, an effective merging method based on Pear-
son’s correlation coefficient was proposed to form empirical
modes, and we also provide an empirical mode selection
norm based on CK to select the most representative one
among all empirical modes.

MFMD has been applied to process a simulated signal as
well as vibration signals acquired from two real cases, and
comparisons between the proposed method and traditional
signal decomposition methods have proved a superior per-
formance of the proposed method. Therefore, MFMD has
been integrated into the health management system on board.
In general, the proposed method provides the following out-
standing advantages:

1. As a concise and non-recursive method, there is no
need to consider the complicated solution of the constrained
variational problem and the influence of cumulative error in
FMD.

2. The scale-domain expression and spectrum segmen-
tation are applied for accurate parameter determination of
FMD, reducing the influence of noise.

3. A mode merging algorithm is developed to eliminate
meaningless modes and enhance fault features, ensuring
effective fault identification.

4. The proposed method is self-organized so that the staff
on board can easily detect mechanical faults of antennae in
early stage.

However, the performances of the proposed method and
original FMD highly depend on CK, which is probably influ-
enced by other periodic interference in the mode during the
iteration. In the future, a new feature-driven criterion for
MFMD should be built. We also intend to develop a novel
signal pre-denoising method, benefiting successive scale-
domain expression and parameter optimization.
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