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ABSTRACT Product reuse and recovery is an efficient tool that helps companies to simultaneously
address economic and environmental dimensions of sustainability. This paper presents a novel problem for
stock management of reusable products in a single-vendor, multi-product, multi-retailer network. Several
constraints, such as the maximum budget, storage capacity, number of orders, etc., are considered in
their stochastic form to establish a more realistic problem. The presented problem is formulated using a
nonlinear programming mathematical model. The chance-constrained approach is suggested to deal with
the constraints’ uncertainty. Regarding the nonlinearity of the model, grey wolf optimizer (GWO) and whale
optimization algorithm (WOA) as two novel metaheuristics are presented as solution approaches, and the
sequential quadratic programming (SQP) exact algorithm validates their performance. The parameters of
algorithms are calibrated using the Taguchi method for the design of experiments. Extensive analysis is
established by solving several numerical results in different sizes and utilizing several comparison measures.
Also, the results are compared statistically using proper parametric and non-parametric tests. The analysis
of the results shows a significant difference between the algorithms, and GWO has a better performance for
solving the presented problem. In addition, both algorithms perform well in searching the solution space,
where the GWO and WOA differences with the optimal solution of the SQP algorithm are negligible.

INDEX TERMS Reuse and recovery, chance-constrained programming, grey wolf optimizer, whale opti-
mization algorithm, Taguchi method.

I. INTRODUCTION
Companies’ perspectives have changed from classic busi-
ness principles to contemporary ideas like the supply chain
in today’s competitive environment. More specifically, the
managers try to integrate the activities and processes of
their supply chain to improve the overall performance of
their companies [1]. This change is obvious in various sec-
tors e.g., manufacturing, retail, healthcare, etc [2], [3], [4].
Integration of the supply chain necessitates collaboration
across its entities, as well as coordination of information
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and material flows. Such coordination can play a significant
role in cost-cutting and improving value for customers [5].
Inventory planning and control is one of the highly important
problems in supply chains that need special coordination
between supply chain entities. Unpleasant or variable inven-
tory in a supply chain causes the Bullwhip effect and double
marginalization, which ultimately degrade the performance
of the supply chain and may even contribute to the demise of
businesses [6]. Therefore, operations research experts inves-
tigated the problem from several years ago. The history of
inventory management dates back to a century ago when
Harris [7] developed the classical economic order quantity
(EOQ) model. Afterward, this basic inventory model was
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extended for a wide variety of products by considering several
realistic assumptions, with the details that will be discussed
in the literature review section.

Despite the appearance of broad literature, the inventory
management of reusable products, as an important type of
items, remained unaddressed for several years. Reusable
products are products that have the potential for reuse and
recovery after consumption. Surgical tools, car parts, copiers,
and other products are a few examples of these items.
In addition to economic benefits, the recovery and reuse of
reusable products help companies address the environmen-
tal dimension of sustainability appropriately. Recently, the
single-product and multi-product EOQ models for inven-
tory management of reusable items were by Mokhtari [8],
and Fallahi et al. [9], respectively. In these works, one of
the main assumptions is that the system is single-level, and
both models ignore vendor costs in the decision-making
process. In other words, there is no coordination between
the upstream and downstream of the supply chain, and
it is assumed that the retailers are solely responsible for
decision-making. On the other hand, both works modeled
and optimized their problem by considering deterministic
parameters. However, several uncertainty sourcesmay impact
the parameters of inventory systems, and the determinis-
tic formulation of the problem may negatively impact the
performance [10], [11].

In this research, we try to bridge the research gap and
develop a single-vendor, multi-product, multi-retailer prob-
lem for inventory management of reusable items in a
two-level supply chain. Also, we try to establish a more
realistic problem by considering the system’s operational
constraints under uncertainty in the availability of resources.
A chance-constrained programming approach is suggested
to handle this uncertainty. Due to the nonlinearity and the
dimension of the developed constrained nonlinear model,
the grey wolf optimizer (GWO) and whale optimization
algorithm (WOA) are designed and implemented to solve
the problem. The exact sequential quadratic programming
approach is proposed (SQP) for the validation of the meta-
heuristics. The primary contributions of the current research
are as follows:

• Developing a problem for stockmanagement of reusable
items in a single-vendor multi-product multi-retailer
supply chain under uncertainty in operations constraints.

• Presenting a chance-constrained programming approach
to address the stochastic constraints.

• Designing GWO and WOA metaheuristic algorithms as
the solution approach.

• Presenting the SQP exact algorithm for performance
validation of metaheuristics.

The rest of this research is organized as follows. Sec-
tion II provides a review of the past works in the lit-
erature. Section III provides the problem definition and
the model formulation. Section IV describes the presented
solution methodologies to solve the developed model. Sec-

tion V provides the analysis of results to show the presented
model’s applicability and compare the algorithms’ perfor-
mance. Finally, Section VI provides a conclusion of the
research and suggestions for future works.

II. RELATED WORK
In this section, we will review the relevant papers in the
inventory management literature. As mentioned before, Har-
ris [7] introduced the first optimization model, EOQ, to deter-
mine the optimal ordering policy in an inventory system.
This model was developed for a single-level system and
included several other simple assumptions, such as infinite
replenishment rate, availability of resources such as budget
and space, etc. Therefore, the authors tried to extend EOQ
to bring the model into a real-world setting as much as
possible. A while after EOQ, Taft [12] developed the eco-
nomic production quantity (EPQ) and relaxed the infinite
replenishment rate assumption to determine the optimal pro-
duction quantity for inventory management of manufacturing
companies. After that, EOQ and EPQ models were extended
by considering several assumptions and features. For exam-
ple, previous authors developed EOQ and EPQ models for
special types of products such as deteriorating items [13],
substitutable items [14], [15], growing items [16], etc. Also,
researchers considered several realistic assumptions, such as
preventive maintenance [17], investment [18], trade cred-
its [19], [20], sustainability concerns [21], [22], discount,
process reliability [23], pricing decisions [24], marketing
policies [25], presence of imperfect items [26], inflation
and time-value of money [27], transportation policies [28],
inspection errors [29], etc.

However, all these models were single-level and did not
consider the vendors in the decision-making framework.
Managers understood the importance of coordination in the
supply chain and tried to provide integrated models for
decision-making the so that the entire supply chain perfor-
mance is optimized. For example, Pasandideh et al. [30] pre-
sented the formulation of EOQ for a two-level supply chain.
The backorder shortage was allowed, and several operational
constraints were incorporated. The complexity of the problem
prompted authors to use the genetic algorithm (GA) as the
solution approach. In a similar work, Pasandideh et al. [31]
extended the EPQ with shortage for a constrained single-
vendor single-retailer system and solved the problem via GA.
Also, Pasandideh et al. [32] also worked on a stochastic
inventory model for a single-vendor multi-retailer system.
The authors utilized an expected value approach to handle the
uncertainty. Taleizadeh et al. [33] investigated the inventory
management of a multi-vendor multi-retailer supply chain
with order size-dependent lead time and partial back. The
demand was assumed to be uniformly distributed, and the
harmony search (HS) metaheuristic was implemented to find
the solutions. Chen et al. [34] considered a delay in pay-
ments as a trade credit option in a two-level supply chain
and derived the optimal ordering policy of the system under
this option.
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In some other works, Cárdenas-Barrón & Sana [35] pro-
vided an EOQ model for a two-level supply chain in which
the demand depended on the promotional effort. Also, the
retailer’s delay in payment was possible in the considered
supply chain. Khan et al. [36] focused on developing an
EOQ model for a two-level supply chain with the produc-
tion of defective products. They assumed that the inspection
process is subjected to error and that the production time
depends on learning. Tiwari et al. [37] studied a supply chain
deteriorating items with pricing and inventory decisions.
It was assumed that there is a partial trade credit contract
for both levels of the network. Karimian et al. [38] employed
a geometric programming method for uncertainty inventory
management in a single-vendor multi-retailer supply chain.
The problem’s applicability was shown by solving the prob-
lem for a case study in the Iranian furniture supply chain.
Pourmohammad-Zia et al. [39] presented a new model for
coordinating vendor and retailer inventory in a growing prod-
ucts supply chain using (vendor-managed inventory) VMI
and a cost-sharing contract. Pourmohammad-Zia et al. [40]
also aimed to determine pricing and replenishment poli-
cies of the growing items supply chain in another work.
Recently, Asadkhani et al. [41] presented a sustainable supply
chain under some emission reduction regulations and the
VMI-consignment stock (VMI-CS) contract. They consid-
ered repair, salvage, and disposal as potential options to deal
with imperfect items.

The focus of this paper is on the inventory management
of reusable items. For the first time, Mokhtari [8] designed
a new single-product EOQ problem for stock management
of reusable products. The author assumed that the resources
are infinitely available and solved the unconstrained model
by determining the optimal order and recovery quantity
of reusable products through an analytical derivative-based
method. Recently, Fallahi et al. [9] pointed out that this model
is not practical for systems that deal with multiple products
and limitations of resources. Consequently, they presented a
multi-product extension of the previous work, and consid-
ered the limitations on the maximum budget and the storage
capacity for usable and recoverable items. They solved the
model using particle swarm optimization (PSO) and differ-
ential evolution (DE) algorithms, and also developed two
new versions of these algorithms using an intelligent machine
learning algorithm. Table 1 compares the novelties of our
research against the features of past papers in the literature.

To the best of our knowledge, no other research focuses on
the inventory management of reusable products in a two-level
supply chain under stochastic operational constraints. The
aim of this research is to address this problem and pro-
pose a new problem that helps the supply chain managers
of reusable items to coordinate the vendor with the retailer
through the determination of optimal inventory decisions for
the integrated systems. This problem is presented as a single-
vendor multi-product multi-retailer inventory system under
operational constraints. Also, several sources of uncertainty
may impact the constraints of inventory systems. In this

paper, we assume that the system’s constraints are stochas-
tic and handle it by the chance-constrained programming
method. Additionally, GWO and WOA novel metaheuristic
algorithms are designed and implemented as the solution
approach. The efficiency and effectiveness of these algo-
rithms are shown by validating the results using the SQP
algorithm as a powerful exact method.

III. PROBLEM PRESENTATION AND MATHEMATICAL
MODELING
In this section, we will present the new problem for inventory
management of reusable products in a single-vendor multi-
product multi-retailer system and formulate the mathematical
model.

A. NOTATIONS
Let us consider the following notations provided in Table 2.

B. ASSUMPTIONS
The main assumption of the presented problem can be
expressed as follows:
• There are one vendor, K item, and J retailer in the
system.

• The demand rate for products is constated and determin-
istic.

• The maximum storage capacity of usable products for
each retailer is less than an upper threshold with a prob-
ability equal to or greater than α.

• The maximum storage capacity of recoverable products
for each retailer is less than an upper threshold with a
probability equal to or greater than α.

• The maximum holding cost of usable products for each
retailer is less than an upper threshold with a probability
equal to or greater than α.

• The maximum holding cost of recoverable products for
each retailer is less than an upper threshold with a prob-
ability equal to or greater than α.

• The maximum budget for each retailer is less than an
upper threshold with a probability equal to or greater
than α.

• The total number of orders in the system is less than an
upper threshold with a probability equal to or greater
than α.

• There is no lead time in the system.
• Backorder and lost sale shortages are not allowed.

C. PROBLEM DEFINITION
Consider a two-level supply chain of reusable items, includ-
ing a vendor and j ∈ {1, . . . , J} retailers. In this system,
the usable term refers to the products ready to satisfy cus-
tomers’ demands. In addition, recoverable products are the
products that need a recovery process to become usable for
demand satisfaction. Each retailer needs to place orders for
k ∈ {1, . . . ,K } reusable items from the vendor. The retailer j
purchases the reusable item k from the vendor at the unit
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TABLE 2. Mathematical notations.

purchasing cost PCk . For each order, OCUjk is the ordering
cost of retailer j for reusable item k . In addition, OCSjk is the
imposed ordering cost to the vendor regarding the order of
retailer j for reusable item k . Retailer j uses the purchased
reusable item k to satisfy the demand of customers Djk .
As mentioned before, the products are reusable, and the used
products can be recovered and used again for a maximum
of mk times. The recovery cost of each unit of product k
for retailer j is RCjk . In addition, there is a fixed recovery
operational cost for the recovery of product k by retailer
j, which is OCRjk . The presence of usable and recoverable
product k in warehouses of retailer j imposes holding costs

on each retailer, which are specified by HCUjk and HCRjk ,
respectively. The stock level diagrams of usable and recov-
erable product k in the warehouses of retailer j are shown in
Figures 1 and 2.

A set of operational constraints are considered in the sys-
tem to bring it into the real-world environment. The con-
straints are stochastic, and it is assumed that the resources
are available with a probability equal to and greater than α.
The limitations on themaximum storage capacity, the holding
costs, the total available purchasing budget, and the total
number of orders are the stochastic constraints of the supply
chain.

D. MATHEMATICAL MODELING
Regarding the explained problem, the cost components of the
supply chain can be described as follows:
• The total purchasing cost of retailer j:

K∑
k=1

PCk
Djk

(mk + 1)
∀j ∈ J (1)

• The total fixed ordering cost of the vendor:

J∑
j=1

K∑
k=1

OCSjk
Djk

(mk + 1)pjkqjk
(2)

• The total fixed ordering cost of retailer j:

K∑
k=1

OCUjk
Djk

(mk + 1)pjkqjk
∀j ∈ J (3)

• The total fixed recovery cost of retailer j:

K∑
k=1

OCRjkDjk (
mk

mk + 1
) ∀j ∈ J (4)

• The total recovery operational cost of retailer j:

K∑
k=1

RCjk
Djk
qjk

(
mk

mk + 1
) ∀j ∈ J (5)

• The total holding cost of usable products of retailer j:

K∑
k=1

HCUjk (
pjkqjk
2

) ∀j ∈ J (6)

• The total holding cost of recoverable products of retailer
j:

K∑
k=1

HCRjk (
mk

mk + 1
)
qjk
2
∀j ∈ J (7)

Considering the above-described components, the total
cost objective of retailer j can be expressed as follows:

TCBj(pjk , qjk )

=

K∑
k=1

PCk
Djk

(mk + 1)
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FIGURE 1. The stock level of usable product k for retailer j .

FIGURE 2. The stock level of recoverable product k for retailer j .

+

K∑
k=1

OCUjk
Djk

(mk + 1)pjkqjk

+

K∑
k=1

OCRjkDjk (
mk

mk + 1
)+

K∑
k=1

RCjk
Djk
qjk

(
mk

mk + 1
)

+

K∑
k=1

HCUjk (
pjkqjk
2

)+
K∑
k=1

HCRjk (
mk

mk + 1
)
qjk
2

(8)

Also, the vendor bears the following cost:

TCS(pjk , qjk ) =
J∑
j=1

K∑
k=1

OCSjk
Djk

(mk + 1)pjkqjk
(9)

In the decentralized systems, each retailer places the order
regarding her cost function. Here, the total cost of other retail-
ers and the vendor do not play any role in the determination
of the replenishment decisions. As a consequence of such a
policy, a huge cost may impact the overall performance of
the system. In centralized decision-making, managers try to
determine the optimal decisions regarding the costs of all
entities. In this situation, a coordination mechanism should
be used to establish the integrated total cost function of the
supply chain. The presented mechanism by Hill [42] is one
of the well-known mechanisms managers tend to adapt to
coordinate such supply chains [41]. Therefore, we use this
coordination approach to integrate the cost components of the

vendor and retailer. The centralized total cost of the two-layer
network under the coordination mechanism of Hill [42] can
be expressed as follows:

TCE =
J∑
j=1

K∑
k=1

OCSjk
Djk

(mk + 1)pjkqjk
+

K∑
k=1

PCk
Djk

(mk + 1)

+

K∑
k=1

OCUjk
Djk

(mk + 1)pjkqjk

+

K∑
k=1

OCRjkDjk (
mk

mk + 1
)

+

K∑
k=1

RCjk
Djk
qjk

(
mk

mk + 1
)+

K∑
k=1

HCUjk (
pjkqjk
2

)

+

K∑
k=1

HCRjk (
mk

mk + 1
)
qjk
2

(10)

The integrated objective function is subjected to the fol-
lowing stochastic operational constraints:

Min TCE (11)

s.t. P

(
K∑
k=1

PCk .pjk .qjk ≤ Bj

)
≥ 1− α ∀j ∈ J (12)
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P

 J∑
j=1

K∑
k=1

fk .pjk .qjk ≤ WS

 ≥ 1− α (13)

P

(
K∑
k=1

fk .pjk .qjk ≤ WSUj

)
≥ 1− α ∀j ∈ J (14)

P

(
K∑
k=1

fk .qjk ≤ WSRj

)
≥ 1− α ∀j ∈ J (15)

P

(
K∑
k=1

HCUjk .(
pjk .qjk

2
) ≤ AHUj

)
≥ 1− α ∀j ∈ J

(16)

P

(
K∑
k=1

HCRjk .(
mk

mk+1
).
qjk
2
≤AHRj

)
≥1−α ∀j ∈ J

(17)

P

 J∑
j=1

K∑
k=1

Djk
(mk + 1).pjk .qjk

≤ N

 ≥ 1− α (18)

pjk , qjk ≥ 0 ∀j ∈ J , k ∈ K (19)

Constraints (12) to (18) are the chance constraints of the
system. Stochastic constraints (12) ensure that the total pur-
chasing cost of the products for each retailer does not exceed
the retailer’s maximum budget. Constraint (13) limits the
total available storage capacity for the vendor. Stochastic
constraints (14) and (15) specify the storage capacity of each
retailer for usable and recoverable products. The constraints
of the maximum holding cost of usable and recoverable for
each retailer is shown via stochastic constraints (16) and (17).
Stochastic constraints (18) limit the system’s total number
of orders. Constraints (19) determine the type of decision
variables.

We utilize the chance constraint programming approach
to deal with the uncertainty of the constraints. Considering
a normal probability distribution with mean µ and standard
deviation σ for the upper bound of each stochastic constraint,
the constraints can be rewritten as (20)-(28) [10]. In the
below equations, the upper α-percentile point of the normal
probability distribution (standard form) is shown by Zα .

Min TCE (20)

s.t.
K∑
k=1

µPC
k .pjk .qjk

+ Zα.

√√√√ K∑
k=1

(σPCk .pjk .qjk )2 + (σBj )
2 ≤ µB

j ∀j ∈ J

(21)
J∑
j=1

K∑
k=1

µ
f
k .pjk .qjk

+ Zα.

√√√√√ J∑
j=1

K∑
k=1

(σ fk .pjk .qjk )2 + (σWS )2 ≤ µWS (22)

K∑
k=1

µ
f
k .pjk .qjk

+ Zα.

√√√√ K∑
k=1

(σ fk .pjk .qjk )2 + (σWSUj )2 ≤ µWSU
j ∀j ∈ J

(23)
K∑
k=1

µ
f
k .qjk

+ Zα.

√√√√ K∑
k=1

(σ fk .qjk )2 + (σWSRj )2 ≤ µWSR
j ∀j ∈ J

(24)
K∑
k=1

µHCU
jk .(

pjk .qjk
2

)

+ Zα.

√√√√ K∑
k=1

(
σHCUjk .(

pjk .qjk
2

)
)2
+ (σAHUj )2 ≤ µAHU

j

∀j ∈ J (25)
K∑
k=1

µHCR
jk .(

mk
mk + 1

).
qjk
2

+ Zα.

√√√√ K∑
k=1

(
σHCRjk .(

mk
mk + 1

).
qjk
2

)2

+(σAHRj )2≤µAHR
j

∀j ∈ J (26)
J∑
j=1

K∑
k=1

µD
jk

(mk + 1).pjk .qjk

+ Zα.

√√√√√ J∑
j=1

K∑
k=1

(
σDjk )

(mk + 1).pjk .qjk

)2

+ (σN )2 ≤ µN

(27)

pjk , qjk ≥ 0 ∀j ∈ J , ∀k ∈ K (28)

The presented model is a constrained nonlinear program-
mingmodel, which can not easily be solved via exact classical
methods or commercial solvers. Therefore, we utilize the
metaheuristic algorithms as the solution methodology. The
algorithms will be presented in the next section.

IV. SOLUTION APPROACH
This section will discuss the proposed solution method-
ologies to solve the problem. The presented model is a
constrained nonlinear programming mathematical model.
Previous research pointed out that such inventory man-
agement problems are challenging to solve with classical
methods due to the nonlinearity of the model and several
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local optimum solutions [9], [43]. Therefore, metaheuris-
tic algorithms are widely used as a powerful solution for
multi-product inventory management in supply chains [9],
[30], [33]. This paper uses GWO and WAO as two recently
developed metaheuristics to solve the problem. In addition,
we use SQP as an exact approach to show the efficiency of the
metaheuristics.

A. GREY WOLF OPTIMIZER METAHEURISTIC ALGORITHM
GWO is a nature-inspired population-based metaheuristic
that was introduced by Mirjalili et al. [44], and extensively
used as the solution approach to optimization problems in
several fields [45], [46]. The GWOmetaheuristic is designed
to find the near global optimum of a given function for the
solution spaces with continuous variables. The algorithm is
inspired from the hunting behavior of grey wolves in a pack,
where each wolf plays a specific role in cooperating and com-
peting with each other to find the best prey. GWO is started
with a population of random solutions, and then it iteratively
updates the solutions by mimicking the interactions among
the wolves in the pack. The steps of the GWO metaheuristic
can be summarized are as below:

1) INITIALIZE PREY AND HUNTERS
The first step of the GWO metaheuristic is to initialize the
population of solutions X = {x1, x2, . . . , xn} where xi is a
solution vector in the search space. The population is initial-
ized with a set of random solutions. The solutions number,
also known as the population size, is a user-defined parameter
that can vary depending on the problem at hand. Larger
population size can increase the diversity of solutions but
also increases the computational cost. GWO also starts with
initializing the position and fitness of the alpha, beta, and
delta wolves, denoted by xα , xβ and xδ , respectively. These
wolves are used as reference points in the next steps of the
algorithm. The xα wolf is considered the leader of the pack
and has the best objective function in the population. The xβ
wolf is the second-best solution, and the xδ wolf is the solution
with the third-best objective function. After the initialization
of the population in the first iteration, there is a set of common
steps in the next iterations of GWO, which is the core of the
algorithm. These steps iteration process are executed until
a stopping criterion is met, such as the maximum iterations
or achieving a satisfactory solution. In each iteration, the
algorithm updates the position of the xα , xβ , and xδ wolves,
as well as the position of the other wolves in the population,
based on the details that are as follows.

2) HUNTING
GWO updates the position of the solutions with respect to the
hunting behavior of grey wolves, where the wolves cooperate
and compete to find the best prey. The position of the xα , xβ ,
and xδ wolves is updated using the following equations:

xα
t+1 = xα

t + αt (x
β
t − x

α
t )+ βt (xδ

t − x
α
t ) (29)

xβ

t+1 = xβ
t + αt (xα

t − x
β
t )+ βt (xδ

t − x
β
t ) (30)

xδ
t+1 = xδ

t + αt (xα
t − x

δ
t )+ βt (x

β
t − x

δ
t ) (31)

where αt and βt are linearly decreasing functions of the
iteration t , and are used to control the step size of the search.
In addition, the position of the other wolves is updated using
the following equation:

x(i)t+1=x
(i)
t +r .(x

α
t+1 − x

(i)
t )+r .(xβ

t+1−x
(i)
t )+r .(xδ

t+1−x
(i)
t )

(32)

where r ∈ (0, 1) is a random number generator. After updat-
ing the position of the solutions, the fitness of the xα , xβ , and
xδ wolves is re-evaluated, and the new xα , xβ , and xδ wolves
are selected from the population. The search process of the
algorithm is shown in Figure 3.

3) STOP CRITERIA
The stopping criterion is a pre-defined condition that is used
to determine when the search process should stop. The stop-
ping criterion is usually based on the number of iterations
or the quality. A common stopping criterion is to stop the
algorithm after a certain number of iterations, also known as
the maximum number of iterations. This criterion is used to
prevent the algorithm from running indefinitely, and it is typ-
ically set based on the computational resources available and
the complexity of the problem. Another stopping criterion is
to stop the algorithm when a satisfactory solution is found.
This criterion is used to stop the optimization process when
the solution quality reaches a certain level. We set the first
criterion as the stop criterion of GWO. Algorithm 1 presents
the pseudocode of the GWO.

B. WHALE OPTIMIZATION ALGORITHM
WOA is another population-based metaheuristic algorithm
inspired by humpback whales foraging behavior. The algo-
rithm was proposed by Mirjalili & Lewis [47], and it is used
to solve problems in several research areas [48], [49]. It is
known for its ability to find high-quality solutions, as well
as its ability to avoid getting stuck in local optima [50].
As pointed out, WOA is a population-based optimization
algorithm, where a group of candidate solutions, called a
population, is iteratively improved to converge towards a
near-optimal solution. The algorithm simulates the foraging
behavior of humpback whales, where each whale represents
a candidate solution, and the search space is divided into
subproblems. The main steps of WOA are:

1) INITIALIZE PREY
The first step of the WOA algorithm is to randomly ini-
tialize a population of solutions. The population is typically
a set of n solutions, where each solution is represented by
a vector of d variables, xTi = {x

(1)
i , x(2)i , . . . , x(d)i }. The

values of the variables should be chosen within the specified
bounds.
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FIGURE 3. The search process of the GWO metaheuristic algorithm.

2) HUNTING
In the WOA, the current best solution, also known as the
leader, is assumed to be close to the optimum, and the other
solutions in the population are guided towards it, similar to
how humpback whales encircle their prey. In other words, the
leader solution is used as a point of reference for the other
solutions to follow, guiding the search of the other solutions
toward better regions of the space. The other solutions are
updated simultaneously, based on their distance and fitness
difference from the leader solution. This behavior is repre-
sented by the mathematical equations (33) and (34) that are
used to update the positions of the solutions in the population.
These equations are designed to mimic the foraging behavior
of humpback whales.

D⃗ = |C⃗ .X⃗∗t − X⃗t | (33)

X⃗t+1 = X⃗∗t − A⃗.D⃗ (34)

where X⃗∗t is the best solution obtained in t
th iteration ofWOA.

The parameters A⃗ and C⃗ are as follows:

A⃗ = 2.a⃗.r⃗1 − a⃗ (35)

C⃗ = 2.r⃗ (36)

where a⃗ decreases linearly from 2 to 0 over the algorithm.
Also, r⃗ is a random number generated uniformly between
0 and 1. Two models are used to represent the attacking
behavior of humpback whales:

a: SHRINKING UPDATING POSITION
This behavior is accomplished by decreasing the value of a⃗ in
equation (35). The range of fluctuation is also decreased by A⃗.
Figure 4 illustrates the potential positions that can be reached
from (X ,Y ) to (X∗,Y ∗) when 0 ≤ A ≤ 1 in a 2-dimensional
space.

b: SPIRAL UPDATING POSITION
Another observation of Humpback whales’ hunting is swim-
ming in a helical path toward their prey [47]. To replicate this
behavior, a spiral function is defined to modify the position
of search as:

X⃗t+1 = D⃗′.ebt . cos (2π l)+ X⃗∗t (37)

where the distance of the ith whale to the prey (current ideal
solution) is represented by |X⃗∗t − X⃗t |, b is a constant for
shaping the logarithmic spiral, l ∈ (0, 1) is a random number.
The procedure is shown in Figure 5.
To simulate how humpback whales move around their prey

by swimming in a shrinking circle and along a spiral-shaped
path, the algorithm utilizes a probability of 50% to either use
the first or second method.

3) STOP CRITERIA
WOA is to repeat the process of evaluating the fitness, select-
ing the leader, and updating the positions of the solutions until
a stopping condition is met. We set the maximum number of
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FIGURE 4. The shrinking updating process of the WOA metaheuristic algorithm.

FIGURE 5. The spiral updating process of the WOA metaheuristic
algorithm.

iterations as the stopping criterion. Algorithm 2 shows the
pseudocode of the WOA.

C. SEQUENTIAL QUADRATIC PROGRAMMING
The SQP algorithm is a technique for solving nonlinear opti-
mization problems involving smooth and nonsmooth func-

tions. It is an iterative method that uses a combination of
gradient and Hessian information to determine the next iter-
ate. SQP is particularly well-suited for solving large-scale
NLP problems and has been shown to be effective in many
applications.

The algorithm is based on the theory of Quadratic Pro-
gramming (QP), and it’s a combination of gradient and Hes-
sian information to determine the next iterate [51], [52].
It uses the Karush-Kuhn-Tucker (KKT) conditions to manage
equality constraints in the same way that Newton’s technique
does when solving an unconstrained NLP optimization prob-
lem. [53]. The KKT conditions are a set of necessary and suf-
ficient conditions that a solution to a constrained optimization
problem must satisfy. In this algorithm, the solution of QP
sub-problem is typically utilized to establish a line search
direction. SQP is similar to the active-set algorithm and
has some advantages over other exact methodologies. One
advantage is that the SQPmethod guarantees exact feasibility
with respect to bounds. This means that the algorithm will
always find a feasible solution that satisfies all the bounds
constraints. Another advantage of SQP is that it is more robust
to problems with complex values [53], [54]. This is because
the SQP algorithm approximates the objective function and
constraints, which can help avoid getting stuck in poor local
solutions and help the algorithm converge to a global opti-
mum.

SQP is also used in the literature to determine the economic
order (production) quantity in constrained multi-product
inventory problems [10], [43], [55]. The SQP method is

VOLUME 11, 2023 40287



A. H. Sadeghi et al.: GWO and WOA for Stochastic Inventory Management of Reusable Products

Algorithm 1 GWO Algorithm
1: Input:Maximum iteration (tmax), Population size (Npop),
a, A, and C

2: Output: Best solution (X⃗α)
3: for i = 1 : Npop do
4: Initialize GWO solution X⃗0

i
5: Calculate the fitness f (X⃗0

i )
6: end for
7: X⃗α ← The first best wolve
8: X⃗β ← The second best wolve
9: X⃗δ ← The third best wolve
10: for t = 1 : tmax do
11: A⃗← 2a⃗.r⃗1 − a⃗
12: C⃗ ← 2r⃗2
13: D⃗α ← |C⃗1.X⃗α − X⃗ |, D⃗β ← |C⃗2.X⃗β − X⃗ |, D⃗δ ←

|C⃗3.X⃗δ − X⃗ |
14: X⃗ t1 ← X⃗α − A⃗1.(D⃗α), X⃗ t2 ← X⃗β − A⃗2.(D⃗β ), X⃗ t3 ←

X⃗δ − A⃗3.(D⃗δ)
15: A⃗← 2.a⃗.r⃗1 − a⃗
16: X⃗ t+1←

X⃗ t1+X⃗
t
2+X⃗

t
3

3 {Update the position of the wolve}

17: Update a, A, and C multipliers
18: Calculate the fitness f (X⃗ t+1)
19: Update xα , xβ , and xδ using equations (29) - (31)
20: t ← t + 1
21: end for
22: Return: X⃗α

particularly well-suited to solving this type of problem
because it can handle the nonlinear and nonconvex nature of
the objective function and constraints that arise in the EPQ
problem with stochastic constraints. In addition, studies have
shown that the SQP method can perform significantly better
than other approaches, such as the interior-point method.
This is because the SQP method can often converge to a
global optimum, whereas the interior-point method can get
stuck in poor local solutions. Also, the SQP method can
handle the nonlinear and nonconvex nature of the objective
function and constraints that arise in the EPQ problem with
stochastic constraints more effectively than the interior-point
exact approach [10], [43].

D. CONSTRAINT HANDLING
Metaheuristic algorithms aremainly designed to solve uncon-
strained optimization problems. Thus, when these algorithms
are applied to real-world optimization problems, one of the
most difficult challenges is handling the problem’s con-
straints. There are several methods for constraint handling in
the literature, including penalty-based techniques, separation
of objective and constraints techniques, repair algorithm-
based techniques, and boundary-based techniques. Among
these methods, penalty-based techniques have proven to be
particularly effective in increasing the feasibility of the solu-
tions obtained by metaheuristic algorithms.

Algorithm 2WOA Algorithm
1: Input:Maximum iteration (tmax), Population size (Npop),
a, b, A, C , p, and l

2: Output: Best solution (X⃗∗)
3: for i = 1 : Npop do
4: Initialize whale position X⃗0

i
5: Calculate the fitness f (X⃗0

i )
6: end for
7: for i = 1 : tmax do
8: for Eachsearchagent do
9: Update a, A, C , p, and l

10: if p < 0.5 then
11: A⃗← 2.a⃗.r⃗1 − a⃗
12: C⃗ ← 2.r⃗
13: if |A⃗| < 1 then
14: D⃗← |C⃗ .X⃗∗t − X⃗t |
15: X⃗t+1← X⃗∗t − A⃗.D⃗
16: else if |A⃗| ≥ 1 then
17: Select a random search agent (X⃗rand )
18: D⃗← |C⃗ .X⃗rand − X⃗t |
19: X⃗t+1← X⃗rand − A⃗.D⃗
20: end if
21: else if p ≥ 0.5 then
22: D⃗′← |X⃗∗ − X⃗ |
23: X⃗t+1← D⃗′.ebt . cos (2π l)+ X⃗∗t
24: end if
25: end for
26: Check and amend if any agent goes beyond the space
27: Calculate the fitness f (X⃗ t+1)
28: Update X⃗∗t if there is a better solution
29: t ← t + 1
30: end for
31: Return: X⃗∗

We choose the static penalty approach as a penalty-based
technique to handle the model’s constraints. Static constraint
handling is a straightforward and effective approach that
utilizes the knowledge gained from unfeasible solutions to
steer the solutions toward feasibility. The static penalty has
proven highly efficient in handling nonlinear constraints in
non-linear programming problems. Fallahi et al. [9] also used
this approach for constraint handling of the developed meta-
heuristics in solving their problem for inventory management
of reusable products. In this method, the user specifies dis-
tinct degrees of violation for each constraint, along with a
related penalty for each degree. As the degree of constraint
violation becomes more severe, the associated penalty coef-
ficient also increases.

V. COMPUTATIONAL EXPERIMENTS
In this section, wewill evaluate themodel’s andmetaheuristic
algorithms’ performance by solving the numerical exam-
ples. We use the data from the works by Mokhtari [8], and
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TABLE 3. The data of numerical examples.

FIGURE 6. Comparison between the value of objective functions using
different solution methods.

Fallahi et al. [9] to generate numerical examples. The details
of the data are presented in Table 3.

The algorithms are run on a personal laptop with 16 GB
Ram and an Intel Core i7 4.7 GHz CPU. We also provide the
SAS code for SQP solver in Appendix A.

First, we are going to validate the performance of meta-
heuristic algorithms by comparing the results of a small-size
numerical example. For this goal, we consider a numeri-
cal example with two retailers and one product in the sys-
tem. Figure 6 shows the calculated results of algorithms for
the numerical example. As obvious, there is no significant
difference between the performance of the metaheuristics.
The total costs of GWO and WOA are more than SQP by
about 14.78 and 15.90, respectively. Such difference con-
firms that the algorithms perform well in searching the
solution space. As obvious, GWO has a better performance
than WOA.

To provide better insight, the cost component by each
algorithm is also provided in Figure 7. As can be seen, a great
portion of the total cost is due to the fixed recovery cost.
In addition, the holding cost of recoverable products is less
than the other cost components of the system.

A. PARAMETER TUNING
The input parameters highly impact the performance of meta-
heuristic algorithms [56]. Various methods are employed in

TABLE 4. The considered levels for parameters of metaheuristics.

TABLE 5. The optimal input parameters of metaheuristic algorithms.

the literature to determine the input parameters ofmetaheuris-
tics. The trial-and-error methods are very time-consuming
and do not guarantee the quality of solutions. Therefore,
using a systematic approach for parameter tuning seems nec-
essary. Taguchi’s design [57] of experiments is one of the
widely used statistical methods for this goal. The Taguchi
method utilizes the concept of the orthogonal array to manage
the number of experiments. In this statistical approach, the
affecting factors are grouped into two categories of signal
(S) and noise (N ) factors. There is no direct control over the
noise factors, and they can not easily be changed or removed.
Therefore, Taguchi tries to find the optimum level of signal
factors in such as way that the effect of noise factors is mini-
mized. Taguchi defines the relative importance of individual
components in terms of their primary effects on the objective
function in order to determine the best parameter levels.
The repeated data is transformed by Taguchi into a different
value, which is the variation measure. This transformation is
signal-to-noise (S/N) ratio, which is calculated as below for
a minimization problem:

S/N = −10 log
1
m

m∑
j=1

z2j (38)

where m is the total replications and zj is the response in
jth replications. Three considered levels for each parameter
of algorithms are presented in Table 4. The L9 orthogonal
arrays are utilized for the parameter calibration of GWO and
WOA. Three levels are defined for each parameter based on
the details in Table 4. In addition, each orthogonal array is
run in five replications.

The optimal level of parameters are presented in Table 5.
In addition, Figures 8 and 9 are the main effects plots of

S/N ratios.

B. PERFORMANCE ANALYSIS
A detailed analysis of algorithms is provided in this section.
15 numerical examples with different dimensions (number
of products and retailers) are solved by the algorithms. Each
algorithm is run in 10 replications for each generated numer-
ical example. We consider four measures, including average
RPD, average RDI, average CPU time, and average standard
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FIGURE 7. The calculated cost components of GWO, WOA, and SQP algorithms.

FIGURE 8. The main effects plot for S/N of GWO.

deviation, to asses and compare the efficiency of metaheuris-
tics. The average RPD and RDI as two relative error indi-
cators are used to investigate the solution’s quality. These
measures are calculated based on the following equations:

RPD =
Cursol − Bestsol

Bestsol
(39)

RDI =
Cursol − Bestsol
Worstsol − Bestsol

(40)

where Cursol is the current obtained solution, Bestsol and
Worstsol are the best and worst calculated solutions, respec-
tively. Note that the lower values of these measures demon-
strate better performance. We utilized average CPU time to
demonstrate the required time of algorithms to solve the
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FIGURE 9. The main effects plot for S/N of WOA.

TABLE 6. The computational results of the metaheuristic algorithms.

FIGURE 10. The average RDI of metaheuristics for the test examples.

problem. In addition, the standard deviation measure is used
to evaluate the robustness of algorithms in different runs.
Table 6 summarizes the obtained results of the metaheuristic
algorithm.

Considering the RPD and RDI measures, the algorithms
are competitive. As can be seen, GWO reaches lower RPD
in most cases. On the other hand, the RDI values of WOA
are lower than GWO. The results express that GWO is more
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FIGURE 11. The average RPD of metaheuristics for the test examples.

FIGURE 12. The average CPU time of metaheuristics for the test examples.

TABLE 7. The results of statistical test for algorithms comparison.

robust than WOA. As can be seen, the variation of the calcu-
lated solutions by GWO is less thanWOA, and GWO has less
standard deviation for different numerical examples. Also, the
CPU time of the algorithms is very competitive. However,
GWO solves most problems in less amount of time. The
schematic comparisons of results are presented in Figures 10
to 13 to provide better insight.

In continuing, the performance of algorithms is com-
pared statistically. Here, we use statistical hypothesis test-
ing to see whether there is a significant difference between
the performance of metaheuristics. All tests and compar-
isons are performed in α = 0.05 significance level.

The paired-sample t-test and Wilcoxon signed-rank test
are parametric and non-parametric tests for the statistical
comparison of two populations. To select the proper test,
we need to evaluate the normality distribution of consid-
ered measures for the solution of algorithms. Therefore,
the normal probability plots are provided and presented in
Figure 14.

Based on the results, we use Wilcoxon signed-rank test
for average RPD and average standard deviation and test the
difference between average RDI and average CPU time by
paired-sample t-test. The results of these tests are provided in
Table 7.
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FIGURE 13. The average standard deviation of metaheuristics for the test examples.

FIGURE 14. The normal Q-Q plots for performance indicators.

In this table, the p-value of tests is less than 0.05. Conse-
quently, we can infer the significant difference of metaheuris-
tics at this significance level. Considering the results, GWO

is the superior algorithm regarding average RPD, CPU time,
and standard deviation. However, the WOA algorithm has
a significantly better performance in terms of average RDI.
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FIGURE 15. The boxplots for performance indicators.

In addition, the boxplot of each performance measure is also
presented in Figure 15.

As can be seen, the boxplots of GWO are lower than the
boxplots of WOA for all measures except the average RDI.

C. SENSITIVITY ANALYSIS
Sensitivity analysis is a systematic approach that aims to
provide more insights for managers into the system’s con-
sidering the variability of parameters [58]. As the last step,
sensitivity analysis is carried out to investigate the impact

of change in demand as one of the main parameters on the
cost components of the inventory system. Since the SQP
can calculate the optimal results, this is used to perform the
sensitivity analysis. For this goal, we consider the change in
parameters at −50% to +50% rates. In addition, we cate-
gorize the cost components to provide a better insight. The
fixed costs include the fixed ordering cost of the vendor
and retailers and the fixed recovery cost of retailers. Also,
the purchasing cost and holding cost of retailers are the
operational costs. Figure 16 shows the details of obtained
results.
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FIGURE 16. Sensitivity analysis for cost components by changing in demand rate.

As evident, the increasing demand negatively impacts the
total cost of the system. In fact, more demand satisfaction
requires more ordering, holding, and recovery of products.
Based on the results, the fixed cost parameters are more
sensitive than the operational cost parameters to changes in
demand. In addition, the purchasing cost is more impacted
than the holding cost, when the demand is violated. This
means managers should focus more on controlling and reduc-
ing fixed components to improve the system’s performance.
Various approaches, such as investment in the infrastructures
of the supply chain, can help the managers with this goal.

VI. CONCLUSION
The proposed multi-product model for inventory manage-
ment addresses the complex dynamics of reusable items in
a single-vendor multi-retailer two-level supply chain, which
involves significant uncertainties such as stochastic resource
constraints. The chance-constrained programming approach
was employed to handle these uncertainties and establish
the optimal ordering and recovery policies for each product
at each retailer. The objective of the model was to mini-
mize the overall cost of the supply chain while ensuring the
inventory level and service level requirements of each retailer
were met. The use of metaheuristic algorithms has gained
significant attention in recent years due to their ability to
effectively search the solution space of complex problems.
Given the nonlinearity of the constrained model, two novel
metaheuristic algorithms, GWO and WOA, were proposed
as solution approaches. These algorithms were chosen for
their ability to handle complex and nonlinear optimization
problems. In addition, the SQP exact algorithmwas employed
to evaluate the performance of GWO and WOA, and further
analysis was conducted. To ensure the optimal performance
of the metaheuristic algorithms, the parameters of GWO and
WOA were tuned using the Taguchi statistical method. This

method is known for its efficiency in optimizing parameters
for complex systems.

The numerical example mentioned in the statement high-
lights the potential of GWO and WOA algorithms in finding
solutions that are comparable to those obtained using exact
optimization techniques such as SQP. The study extended the
analysis to include 15 different sizes of numerical examples.
This allowed for a more comprehensive evaluation of the
algorithms under different problem sizes. The results showed
that the GWO algorithm outperformed theWOA algorithm in
terms of solution quality and computational time. Moreover,
the study evaluated the robustness of the GWO and WOA
algorithms by analyzing their performance variation in multi-
ple runs. The results showed that the GWO algorithm is more
robust and produces solutions with lower variation compared
to the WOA algorithm. Finally, the study also analyzed the
sensitivity of the problem to changes in the demand param-
eter. The results revealed that the fixed cost components of
the problem are more sensitive to changes in demand than
the operational cost components. This information can be
valuable to decision-makers in understanding the impact of
demand fluctuations on the cost structure of the problem.

For future research, it would be beneficial to explore the
potential impact of incorporating uncertainty in additional
parameters beyond those previously examined. This could
be accomplished through the application of stochastic or
fuzzy programming methods, which would allow for a more
comprehensive understanding of the problem at hand. Addi-
tionally, the use of multi-criteria decision-making techniques,
including ABC analysis, could help to classify products and
optimize system performance. To further enhance the effi-
cacy of the study, researchers may wish to employ other
heuristic and metaheuristic algorithms as potential solution
approaches, and conduct comparative analyses with both
GWO and WOA to assess their relative strengths and weak-
nesses in addressing the research question.
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APPENDIX A
SAS CODE FOR SQP SOLVER
The SAS code for the SQP solver used for this study may
be viewed at https://github.com/amir-sadeghi-kh/Reusable-
Supply-Chain
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