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ABSTRACT With the development of Internet technology, network platforms have gradually become a tool
for people to obtain hot news. How to filter out the current hot news from a large number of news collections
and push them to users has important application value. In supervised learning scenarios, each piece of news
needs to be labeled manually, which takes a lot of time and effort. From the perspective of semi-supervised
learning, on the basis of the non-negative Positive-Unlabeled (nnPU) learning, this paper proposes a novel
algorithm, called ‘Enhanced nnPU with Focal Loss’ (FLPU), for news headline classification, which uses
the Focal Loss to replace the way the classical nnPU calculates the empirical risk of positive and negative
samples. Then, by introducing the Virtual Adversarial Training (VAT) of the Adversarial training for large
neural LangUage Models (ALUM) into FLPU, another (and better) algorithm, called ‘FLPU+ALUM’,
is proposed for the same purpose, aiming to label only a small number of positive samples. The superiority of
both algorithms to the state-of-the-art PU algorithms considered is demonstrated by means of experiments,
conducted on two datasets for performance comparison. Moreover, through another set of experiments,
it is shown that, if enriched by the proposed algorithms, the ROBERTa-wwm-ext model can achieve better
classification performance than the state-of-the-art binary classification models included in the comparison.
In addition, a ‘Ratio Batch’ method is elaborated and proposed as more stable for use in scenarios involving
only a small number of labeled positive samples, which is also experimentally demonstrated.

INDEX TERMS Text classification, non-negative positive-unlabeled (nnPU) learning, focal loss, virtual
adversarial training (VAT), adversarial training for large neural language models (ALUM).

I. INTRODUCTION
Text classification is a key research task in the field of natural

[4], question answering tasks [5], [6], dialogue act recog-
nition [7]. Manually processing and classifying text data is

language processing (NLP). Due to the rapid development of
deep learning (DL) technology, NLP attracted the attention
of a large number of researchers in the past decade. Text clas-
sification refers to the process of predefining labels for text,
such as sentiment analysis [1], [2], topic classification [3],
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a very time-consuming task. In addition, the accuracy of
manual text classification is easily disturbed by human fac-
tors such as insufficient professional knowledge. Therefore,
by using machine learning (ML), and especially DL methods
for automatic text classification, more reliable and objective
classification results can be achieved.

The process of text classification is illustrated in Figure 1.
The first step requires preprocessing of text data. A traditional
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FIGURE 1. The text classification process.

classification method needs to manually extract the features
of the samples, and then use a classic machine learning
method for classification. Therefore, traditional methods are
largely limited by feature extraction. Different from tradi-
tional methods, DL methods automatically complete feature
extraction through a set of nonlinear transformations, inte-
grating feature engineering into the process of model fitting.
Therefore, most of the current text classification tasks are
based on deep neural networks (DNNs).

In supervised text classification tasks, it is necessary to
manually label a large amount of training data, which not
only takes a lot of time and effort, but also brings certain
difficulties to the classification at certain times due to the
characteristics of the negative samples, which themselves are
not easy to obtain and in addition are too diverse, dynami-
cally changing, etc. Therefore, researchers began focusing on
semi-supervised learning.

Positive and Unlabeled (PU) learning is a branch of the
semi-supervised learning, which trains a two-category clas-
sifier in a scene with only positive samples and unlabeled
samples. The goal of PU learning is the same as that of
traditional binary classification, i.e., to train a classifier and
then distinguish between positive and negative samples based
on the features [34]. However, in the learning phase, only
some sample cases are labeled in the PU data and there is
a large number of unlabeled samples, while negative samples
are not labeled at all.

One reason for the interest in PU learning is that PU
data naturally appear in many important applications. For
instance, in a financial risk evaluation scenario, only some
users are flagged as fraudulent, leaving a large number of
users unflagged. Although most of users have good credit
ratings, there is still a small number of possible fraudulent
users. In another example, personalized targeted ads use
information about the web pages visited by users and the
clicks they made on these as positive samples of pages and
ads of interest. However, other web pages or ads are not
necessarily of no interest to the users and therefore should
not be considered as counter samples, but rather as unlabeled
samples. As a third example, medical records typically only
document the illnesses that a patient has been diagnosed
with, and generally do not indicate the illnesses that a patient
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has not been diagnosed with. Nevertheless, the absence of a
diagnosis does not necessarily imply that a patient does not
have a disease; it is simply possible that a patient has chosen
not to seek medical attention [34].

In this paper, the PU learning is enhanced in a way, which
lessens the requirements for labeled data. Only a small num-
ber of news headlines of interest and a large amount of
unlabeled news headlines are needed to complete the model
training process, which greatly reduces the time and lessens
the manual effort required to label samples. The main contri-
butions of this paper can be summarized as follows:

1) On the basis of the non-negative PU (nnPU) learn-
ing [8], a novel ‘Enhanced nnPU with Focal Loss’
(FLPU) algorithm is elaborated and proposed for news
headline classification, which uses the Focal Loss [9]
to replace the way the classical nnPU calculates the
empirical risk of positive and negative samples;

2) For the first time, to the best of our knowledge, it is pro-
posed here to use the virtual adversarial training (VAT)
of the Adversarial training for large neural LangUage
Models (ALUM) [10] [11] with nnPU, and, as a result,
a second (better!) algorithm, called ‘FLPU+ALUM’,
is elaborated and proposed for news headline classifi-
cation;

3) The superiority of both proposed algorithms is demon-
strated by conducted experiments through a compar-
ison with state-of-the-art PU algorithms considered,
performed on two datasets. In addition, through another
set of experiments, it is shown that enriching the
RoBERTa-wwm-ext model [12] by the proposed algo-
rithms allows it to achieve better classification per-
formance than the state-of-the-art binary classification
models considered;

4) A ‘Ratio Batch’ method is elaborated and proposed as
more stable in scenarios involving only a small num-
ber of labeled positive samples, whereby when data
is loaded, a mini-batch is constructed according to a
certain ratio of the labelled positive samples.

Il. RELATED WORK

PU learning methods can be divided into three cat-
egories [34] two-step, biased learning, and class-prior
methods.

The two-step methods involve two steps: (1) identifying
reliable negative samples; and (2) performing ordinary binary
classification training based on positive samples and reliable
negative samples. The first two-step method was proposed
by Liu et al. [13], utilized by the S-EM algorithm for text
classification tasks. The algorithm first uses spy technology
to obtain a general understanding of the positive samples in
the unlabeled data, then obtains a threshold lower bound, and
finally obtains some negative samples.

The biased learning methods use unlabeled data as noisy
negative samples for training. Most of the biased learn-
ing methods are based on support vector machines (SVM).
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TABLE 1. A comparison of the PU learning algorithms.

Algorithm Summary points

Advantages Disadvantages

The concept of PU learning is The algorithm is simple and easy to A substantial number of labeled

proposed for the first time, and a implement. samples is required, otherwise the
S-EM two-step procedure is provided, spy set is too small, and the results

which established a theoretical are not reliable.

basis for the subsequent research.

The problem of data imbalance is It effectively alleviate the Due to the presence of noise in the

solved by assigning different misclassification problem of SVM negative samples, it makes more

penalty coefficients to positive and under a data imbalance scenario. difficult the training process.
biased-SVM negative samples, which makes it

easy for SVM to classify a small

number of classes in a data

imbalance scenario.

Many binary classifiers are trained When the number of positive samples ~ When the amount of data is small, the

by  bagging techniques to is limited and the proportion of improvement effect is not obvious,
bagei distinguish known positive negative samples in the unlabeled and the model may be under-fitted.
agging SVM . .

samples from random subsamples samples is small, it can run much

of the unlabeled set. faster, especially when the set of

unlabeled samples is large.

The robustness of the algorithm to In a semi-supervised environment, The number of hyperparameters is

label noise is improved using an RESVM is more robust when label large, which has a negative impact on
RESVM ensemble of SVM models trained noise introduced in positive the model training speed.

on bootstrap re-samples of the samples.

training data.

The use of convex functions as loss The class prior probability is The loss function needs to satisfy the

functions leads to  wrong introduced into PU learning to symmetry condition and it is
uPU [19] classification bounds, so concave simplify the PU learning problem. computationally intensive  when

loss functions are used, e.g., ramp
loss.

using non-convex loss.

The PU problem is transformed The PU classification using double The risk estimate of negative samples

into a convex optimization problem hinge losses is as accurate as the non- may be negative, causing a model
uPU [20] by applying different convex loss convex method but much less overfitting.

functions to positive and unlabeled expensive to compute.

samples.

The risk estimates for negative To a certain extent, the overfitting It is too late to make corrections

samples in uPU are corrected to problem in uPU is alleviated, and when the empirical risk of negative
nnPU ensure that the estimated empirical  better classification results than uPU  samples is negative.

risk for negative samples is always are achieved.

positive.

The overfitting problem in nnPU is  Stronger robustness to overfitting than  If the class prior probability is too
mitigated by controlling the previous PU learning algorithms given small, still situation is possible where

dynamic balance between the finite positive data. the empirical risk of a positive
cnPU empirical risk of positive samples sample tends to zero.

and the empirical risk of unlabeled

samples.

The biased-SVM [14] penalizes misclassified positive and
negative samples differently. Due to the noise in the negative
samples, the training process is more difficult, and people
may pay too much attention to the positive samples [15].
This problem can be solved by the bagging SVM [16] (i.e.,
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to learn multiple biased SVM classifiers) or by the least
squares SVM (LS-SVM) [17]. RESVM (Robust Ensem-
ble SVM) [18] is based on bagging SVM by resampling
the positive samples and using the bagging method for
training.
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The class-prior methods integrate the class-prior into the
training process under the Selected Completely At Random
(SCAR) assumption, which can greatly simplify the PU learn-
ing. In 2014, Plessis et al. [19] compared PU learning with the
binary classification, and estimated the loss of the binary clas-
sification sample under the condition of known class-prior
probability 7. In theory, their proposed algorithm, called uPU
(unbiased Positive Unlabeled) learning, allows to obtain the
same decision surface as the binary classification. Since, ini-
tially, the loss function in uPU needs to satisfy the symmetric
condition, Plessis et al. [20] continue to carry out research
work trying to apply a loss function that does not satisfy this
condition. In 2016, Plessis et al. [21] further compared the
PU learning algorithm with the binary classification, and ana-
lyzed the reasons why the PU learning algorithm performed
better in some cases. In 2017, Kiryo et al. [8] proposed the
nnPU (non-negative Positive Unlabeled) learning to solve the
problem of uPU being prone to overfitting. Based on the uPU,
the method of estimating the binary classification loss was
improved to ensure that the empirical risk of the estimated
negative samples is always a positive number, thus avoiding
the overfitting problem caused by the estimated risk being
negative. In 2021, Han et al. [22] supposed that if nnPU is
corrected in cases when the negative samples’ experience
risk is already negative, the model has already experienced
overfitting. In order to solve this problem, Han et al. improved
iton the basis of nnPU and proposed the Constraint NonNega-
tive Positive Unlabeled (cnPU) learning, which optimizes the
risks of unlabeled samples and positive samples at the same
time and ensures dynamic balance between them. A compar-
ison of the PU learning algorithms is provided in Table 1.

lIl. BACKGROUND

A. NON-NEGATIVE PU (nnPU) LEARNING

In the traditional binary classification model, sets X eR? and
Y € =1 represent the attributes and labels of samples,
respectively, p(x, y) is the joint probability density of (X, Y),
pp(x) = pkly = +1) and p, (x) = px|y = —1) are
the marginal distribution of positive and negative samples,
p(x) is the marginal distribution of unlabeled samples, and
7, = p(Y = +1)and m, = p(Y = —1) are the prior
probability of positive and negative samples, respectively,
where 7w, = 1-m),, supposing that 7, is known. Then, the
empirical risk of the positive samples is:

Ry (8) = Ex~p, [ (g (X), +1)], (1

where g is the decision function and / is the loss function.
The empirical risk of the negative samples is:

R, (&) = Ex~p, [l (g (X), =1)]. @
The overall empirical risk of g is:

R(g) = Ex y)y~px,y [l (§(X), V)] =7TpR;,r (g) +muR, (g).
3
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During the training process, R (g) needs to be calculated
using the following approximate formula:

Rpn (8) = 7o}y () + k), (2) &

where RF (9) = (I/mp) 37 18 (&) . +1D), Ry (9) =
(1/ny) > I(g (x1) , —1), np denotes the number of positive
samples, and n,, denotes the number of negative samples.
However, in PU scenarios, X, does not exist, so R; (o)
needs to be calculated in other ways because 7,R, (g) =
R, (&) — mpR, (), where R, (g) is the empirical risk of
unlabeled samples and R, (g) is the empirical risk of positive
samples in unlabeled samples. So, the approximate formula

of R (g) can be written as:
Rpu (9) = mpRY (9) = mpRy (@) + R, (), (5)

where Ry (¢) = (1/np) 37171 1(g (xf') . 1).

By definition, 7R, (g) = R, (8) — mpR, (8) = 0. But
the approximation of this formula i?; (8 — npi?lj (8)=0is
not guaranteed. This is also the reason why uPU will overfit.
In order to avoid the empirical risk of negative samples being
less than O during the training process, (5) can be further
optimized as follows:

Rou (9) = mplS (9 +max {0. R, (9) = mRy @)} . (©)

This is the so-called non-negative risk estimator which,
through the max operation, guarantees that the empirical risk
of negative samples will never be less than 0.

B. VIRTUAL ADVERSARIAL TRAINING (VAT)

Adversarial training can improve the robustness of the model,
but it often hurts the generalization performance [23], [24].
However, the existing NLP tasks usually focus more on
evaluating the generalization performance of the model [25],
[26], [27]. Adversarial training for large neural LangUage
Models (ALUM) [11] was the first one to conduct language
model research on adversarial training on large-scale corpora,
by proposing a general adversarial training algorithm. The
core of ALUM is the virtual adversarial training (VAT) [10].
In the current paper, to the best of our knowledge, VAT is
introduced for use in nnPU learning for the first time.

Since the text input in NLP is discrete, adversarial samples
are usually obtained by adding disturbances to the embed-
ding. Then, two outputs are obtained respectively through
the original input and adversarial examples — the original
output and adversarial output, respectively. Loss is obtained
by calculating the original output, and Adv Loss is obtained
by calculating the adversarial output and the original output.
The goal is to minimize Loss and maximize Adv Loss. The
training process is depicted in Figure 2.

The objective function of ALUM consists of two parts — a
supervised loss and a VAT loss, as follows:

mingEx yy~p [l (f (x;60),y)]
+ amaxsl (f (x +8;0),f (x;0)), @)
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FIGURE 2. The ALUM training process.

where ! denotes the loss function, f (x;0) denotes the deci-
sion function, 6 denotes the model parameters, § denotes
the against disturbance, and o denotes the regularization
coefficient.

IV. PROPOSALS

A. ‘RATIO BATCH’ METHOD

In the DL context, each time the data input to the model
is a mini-batch, the value of the mini-batch cannot be very
large due to the limitation of the GPU memory. In PU
learning, there is a large amount of unlabeled data, which
leads to no labeled positive samples in most of the mini-
batches when these are randomly constructed, making the
final classification performance of the model low. In order to
cope with this problem, this paper proposes the ‘Ratio Batch’
method, which guarantees a certain proportion of labeled
positive samples in each mini-batch when constructing the
mini-batches.

Let the size of each mini-batch be N, the number of
labeled positive samples in the training set be N, and the
number of unlabeled samples be N,. Then, the number of
labeled positive samples that need to be included in each
mini-batch is:

[1[ Ny N” ®)
n,=max{l,| ——— x ,
y Np+Ny "

and the number of unlabeled samples that need to be included
in each mini-batch is n, = Ny — n,.

If during the process of building a mini-batch, there
is an insufficient number of labeled positive samples, the
labeled data can be expanded through a data enhancement
method. In the experiments conducted on the public THUC-
News dataset, containing news documents written in Chinese,
described in the next section, the backtranslation algorithm
was used for data enhancement, as follows: the content of
the news headlines was first translated into English, and then
re-translated back to Chinese to complete the data expansion
process until all unlabeled samples are utilized.

B. FLPU ALGORITHM

In the PU learning, a data imbalance problem exists due to
the fact that only a small number of positive samples are
included in the unlabeled data. This is caused by the small
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class-prior probability (the loss function used is a sigmoid
function and the loss expectation is between 0 to 1). Due
to the imbalance of positive and negative samples, the class-
prior probability 7 is usually a relatively small value, so the
value of npii; (g) in (6) is close to zero. At this time, the
binary classification loss is estimated by the risk estima-
tor as dominated by the unlabeled data. Therefore, in the
case of data imbalance, a small class-prior probability will
make the model weak in identifying positive samples. The
dynamic weight of the Focal Loss divides all samples into
difficult-to-classify samples and easy-to-classify samples.
In nnPU unlabeled data, it is difficult to classify samples;
so, the risk estimator can be corrected through the use of the
Focal Loss.

Usually in the field of text classification, cross-entropy loss
is used, as follows:

—log(l1—p), y=0

where p denotes the model output and y denotes the sample
label.

In order to solve the sample imbalance problem, a weight
factor o needs to be added before the cross-entropy loss,
as follows:

CE — —alog(p),
—(1=a)log(1 — p),

Although the weight factor « alleviates the imbalance
problem of positive and negative samples to a certain extent,
it does not solve the problem related to difficult and easy dis-
tinction of samples. In a PU dataset, distinguishing positive
samples in the unlabeled data is difficult. In order to solve
this problem, the Focal Loss can be used, which introduces a
hyperparameter y in the cross-entropy loss, as follows:

o | e =pylogp). y=1
—(1—=a)p”log(1 —p), y=0

where (1—p)” and p” represent the dynamic weights of
the samples. The combination of @ and y not only solves
the sample imbalance problem but also solves the problem
of indistinguishable samples. For categories with too many
samples, o should be set to a lower value to reduce the
importance of these samples in (11). Hyperparameter y is
used to lower the weight of the easy-to-classify samples in
(11). Given a small value of (1 — p), (1 — p)¥ gets even a
smaller value, which reduces the importance of simple, easy-
to-classify samples.
Let

Ip,ifyzl [a,ify:l
Pr = ;0 =

y=1

y=0 (10)

(1D

1 — p, otherwise 1 — «, otherwise
Then, (11) can be written as:

FL (pr) = —a; (1 = p)" log (pr) . 12)
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In (12), when p; tends to 1, the sample is an easily distin-
guishable sample, and when the modulation factor (1—p;)?
tends to 0, the contribution to the loss is relatively small,
which reduces the loss proportion of the easily distinguish-
able sample. When p; tends to O (that is, a training sample is
classified as a positive sample, but the probability that the
sample is of a foreground class is particularly small, so it
is misclassified as a positive sample), the modulation factor
(1—p;)Y tends to 1, which has little effect on the loss.

Expanding &; (), R (¢) and fi; (g) in (6) leads to the
following:

Rou (8) = 7Ry (9) + max {0 Ry (9) = mpR; (9]

1 np
) 1)

ny

1
+ max{0, -~ D s().0)
| —
——> " ml(g(x). 0, (13)
np i=

where [ is the loss function.

Applying the Focal Loss for the calculation of the risk
estimate of positive and negative samples in the PU problem
converts (13) to the following:

Rou (8) = 7R (9) + max {0, Ry (9) = mpR; (9]
| —
=—> " —am, (1 —gx)) log (g (x))
np i=1
1 ny
Fmax{0. = > —a (g ()" log(l = g(x)

1 n
== 2~ (g () log (1 — g (¥))}:
72
(14)

The novel algorithm, proposed in this paper based on (14),
is called FLPU. During the training process, if a positive
sample is misidentified, there will be a gap of tens or even
hundreds of times between (g (x;))” and (1 — g (x;))?. This
dynamic weight can balance the class-prior probability 7.

The training process of FLPU is performed according to
Algorithm 1, by taking into account the following points:

Algorithm 1 FLPU Training Process

Input: P: Positive dataset, U: Unlabelled dataset, N: Iteration number, y; learning rate.
Output: Results of test set evaluation

1:  define a pre-training model: activation functions, epochs, learning rate, et al.

2:  weight initialization;

3: fork=1toW

4: forward propagation

5: calculate risk estimator kpu (FL)

6 update weight: Wilj‘.Jrl = WiIJ‘.Jrl - M%t(jm

7 if satisfied the early stopping conditions then

8: break

9: else

10: test with validation set and save the best model
11:  end for

12:  evaluate using the test set
13:  return evaluate result

VOLUME 11, 2023

1) When Focal Loss is used, the positive sample label is
1 and the unlabeled sample label is 0. The last layer of
the neural network is normalized by a sigmoid activa-
tion function;

2) The choice of the method of weight initialization
directly affects the convergence speed. The weight ini-
tialization method used consists of all-zero initializa-
tion and random initialization;

3) The most important way to optimize neural networks
is the weight updating. Stochastic gradient descent
(SGD), Adagrad, Adam, and AdamW are commonly
used optimization algorithms. Adaptive learning rate
is widely used in Adagrad, Adam, and AdamW to
constrain the learning rate during the iteration process
without human intervention. AdamW is the optimiza-
tion algorithm used for the FLPU training.

C. 'FLPU+ALUM’ ALGORITHM

Adversarial learning in the field of NLP allows to improve
the model robustness without impairing its generalization
performance. However, when traditional adversarial train-
ing methods (FGM, FGSM, etc.) calculate the disturbance
3, the direction of § is along the direction of the gradient
ascent. However, as the PU learning is a semi-supervised
problem, due to the existence of unlabeled data, one can-
not determine the direction of the gradient ascent. Fortu-
nately, the proposal of the virtual adversarial training (VAT)
of ALUM [10], [11] provides a method for the adversar-
ial training of PU learning. Unlike traditional adversarial
training methods, VAT looks for a virtual label that can
deviate the predicted output distribution from the current
state. Therefore, VAT is suitable for use in PU learning
scenarios.

By introducing VAT into the FLPU algorithm, another
algorithm, called ‘FLPU+ALUM’, was elaborated as
described below.

After obtaining the output logits and loss of the FLPU,
the ALUM needs to be trained twice. In the first train-
ing, the embedding representation of the input data is
first obtained and a small disturbance §1 is added to the
embedding to get the adversarial sample x1, which is then
inputted into FLPU to get the first training result adv_logitsI.
The adversarial loss adv_lossl is obtained by calculat-
ing the Kullback-Leibler (KL) divergence of logits and
adv_logits1.

In the second training, an L2 regularization is used based
on §1 and adv_lossI to generate a new disturbance 62, which
is added to the embedding to get the adversarial sample
x2, which is then inputted into the FLPU to get the second
training result adv_logits2. The adversarial loss adv_loss
is obtained by calculating the KL divergence of logits and
adv_logit2.

Therefore, the final loss of ‘FLPU+ALUM’ is loss+
adv_loss. Finally, model optimization is performed by back-
propagation.
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TABLE 2. The THUCNews dataset details.

Class Label Count
financial 0 20,000
real estate 1 20,000
stock 2 20,000
education 3 20,000
technology 4 20,000
society 5 20,000
politics 6 20,000
sports 7 20,000
game 8 20,000
entertainment 9 20,000

V. EXPERIMENTS

A. DATASETS

Two datasets were used in the conducted experiments. The
first one was the public THUCNews dataset (https://pan.baidu
.com/s/11TbaHMjwiR5zFt_jXLuvXw?pwd=8wak), gener-
ated based on the historical data of the Sina News RSS
subscription channel over the 2005-2011 period, includ-
ing 740,000 news documents, written in Chinese. Based
on the original Sina News classification system, we rein-
tegrated, cleaned, and screened out 10 classification cate-
gories (classes) shown in Table 2. The dataset, built this
way, includes 200,000 pieces of data. For conducting the
experiments, it was divided into a training set (180,000 pieces
of data), a validation set (10,000 pieces of data), and a test
set (10,000 pieces of data). Due to the substantial amount of
data, the Coordinate Descent method was used in the experi-
ments for tuning the hyperparameters of the proposed FLPU
and ‘FLPU+ALUM’ algorithms, such as the learning rate,
weight decay, dropout, and the Focal Loss’ hyperparameters
y and «.

Initially, five experiments were conducted with the classic
nnPU to determine the percentage of samples in the dataset,
randomly marked as labeled samples to work with. For this,
the data with an even number of the class label were used
as positive samples to represent the news that users are
interested in, and the data with an odd number of the class
label were used as negative samples to represent the news
that users are not interested in. This way, a binary dataset
was constructed and used for performance comparison of the
RoBERTa-wwm-ext model [12], enriched by the proposed
algorithms, with state-of-the-art binary classification models
(c.f., Table 10). In the dataset, which was formed this way,
X % of the positive samples were randomly marked as labeled
samples with class-prior probability # = 0.474, and the
remaining (100—X)% of the positive samples and all negative
samples were considered as unlabeled samples. The idea was
to use only X % of the positive samples to complete a classifi-
cation task for the purposes of performance comparison of the
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TABLE 3. Effect of different labeling ratios on recall.

Labeling ratio Recall
1% 0.9368
2% 0.9505
3% 0.9580
4% 0.9543
5% 0.9644
6% 0.9650
7% 0.9656

proposed algorithms with state-of-the-art PU algorithms (c.f.,
Tables 8 and 9). In contrast, the binary classification models
(whose performance results are shown in Table 10) require a
100%-1abeled dataset.

Table 3 shows the values of recall (averaged over the
five conducted experiments) achieved by classic nnPU for
different values of the labeling ratio X. It can be seen that
when X = 5 %, the recall value is 1.06% higher than that
corresponding to the labeling ratio X = 4%, but when more
samples are labeled (i.e., 6%, 7%, etc.), the improvement in
the recall value is limited. From the perspective of using the
smallest possible labeling ratio (i.e., the smallest number of
labeled positive samples in a dataset) while also achieving
good classification performance, it was decided to use in the
main experiments a labeling ratio of X = 5 % as the best
compromise.

The second dataset used in the experiments was
the AG’s news dataset (https://s3.amazonaws.com/fast-ai-
nlp/ag_news_csv.tgz), including more than one million news
articles written in English. Since the proposed algorithms
are based on binary classification, and in order to facilitate
the cross-validation, we constructed a two-category AG’s
news dataset, based on the four largest classes of the original
corpus, as follows: the “World’ and ‘Business’ categories of
the AG’s news dataset were divided into positive samples,
and the ‘Sports’ and ‘Sci/Tech’ categories were divided into
negative samples. In the AG’s news dataset, the training set
contains a total of 102,080 samples, and the test set and
validation set each contain 12,760 samples. In the AG’s
news dataset, which was constructed this way, we randomly
marked 5% of the positive samples in the training set. In the
experiments conducted on this dataset, we only used the
headline data of the corresponding news.

B. EVALUATION METRICS

In order to compare the performance of the proposed algo-
rithms to that of selected state-of-the-art algorithms, multiple
evaluation metrics were used in the experiments, such as
accuracy, precision, F1 score, and Area Under the receiver
operating characteristic (ROC) Curve (AUC).
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TABLE 4. lllustration of the meaning of TP, FN, FP, and TN counts.

Identified value

True value — -
Positive Negative

Positive P FN

Negative FP N

Accuracy measures the proportion of all correctly iden-
tified samples by a model to the total number of samples,
as follows:

TP + TN
TP+ FP+TN + FN’

accuracy = 15)
where TP (True Positive) refers to the count of correct class
assignments, FN (False Negative) refers to the count of incor-
rect assignments to other classes, FP (False Positive) refers
to the count of incorrect class assignments, and TN (True
Negative) refers to the count of correct assignments to other
classes, as illustrated in Table 4.

Precision measures the proportion of the number of posi-
tive samples that are correctly identified as such by a model
to all identified positive samples, as follows:

TP

e — 16
TP + FP (16)

precision =

Recall measures the proportion of the number of positive

samples that are correctly identified as such by a model to the
total number of the actual positive samples, as follows:

TP
recall = ————. (17)
TP + FN
Fl-score is the harmonic mean of precision and recall,
with values ranging from 0 to 1 (whereby 1 represents the
best output, and O represents the worst output of a model),
calculated as follows:

precision * recall
*

Fl=2 (18)

precision + recall”

AUC is the area under the ROC curve, drawn with the true

positive rate (TPR) as the ordinate and the false positive rate

(FPR) as the abscissa, where TPR and FPR are calculated as
follows:

TP
TPR = ——— (19)
TP + FN
FP
FPR= —— . (20)
FP + TN

The larger the AUC, the better the classification perfor-
mance of a model. The value range of AUC is generally
0.5~1. If the AUC of a model is less than 0.5, then the model
is considered meaningless.
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C. RESULTS

Experiments were conducted based on the PyTorch frame-
work, using the Automatic Mixed Precision (AMP), whereby
certain operations are performed faster using the half-
precision floating point (FP16) instead of the single-precision
floating point (FP32) without loss of accuracy (AMP auto-
matically decides which operation should be performed at
which precision). This way the model training was sped up
and the memory usage was reduced. During the training
process, GPUs were used to accelerate further the training.
In the performance comparison of the PU learning algorithms
(uPU, nnPU, cnPU, FLPU, ‘FLPU+ALUM’), the learning
rate was set to 1.e—>, the batch-size was set to 128, and
training was performed for 5 epochs.

The AdamW optimizer and multi-sample dropout technol-
ogy were used in the experiments. AdamW is based on Adam,
with added L2 regularization as a classic way to reduce
overfitting. The multi-sample dropout is also used to alleviate
the overfitting problem. The traditional dropout randomly
selects a set of samples from the input during each round
of training, while the multi-sample dropout creates multiple
dropout samples, and then averages the loss of all samples
to obtain the final loss. This method only needs to copy part
of the training network after the dropout layer and share the
weights between these copied fully connected layers, without
the need for new operators. In the conducted experiments,
the network parameters were updated through the loss of
5 dropout samples. The effect of this was similar to that of
each input in the mini-batch repeating the training 5 times.
Therefore, it greatly reduces the number of training iterations.

Through the conducted experiments, it was found that in
classic nnPU, when the number of labeled positive samples
is too small, the training results are often poor. The use of
the ‘Ratio Batch’ method, proposed in this paper, can effec-
tively improve this situation. Tables 5 and 6 show the nnPU
classification performance results for different numbers of
labeled positive samples, with randomly constructed mini-
batches and mini-batches constructed by using the proposed
‘Ratio Batch’ method, respectively.

Table 5 demonstrates that when the number of labeled
positive samples is less than 2000, the values of the eval-
uation metrics fluctuate greatly, and the nnPU performance
is very low. When the number of labeled positive samples
becomes greater than 2000, these values gradually stabilize.
This shows that the nnPU classification performance is not
ideal when the number of labeled positive samples is small.
As shown in Table 6, after applying the ‘Ratio Batch’ method,
proposed in this paper, the fluctuation of values for each
metric is very small, and nnPU achieves better classification
performance than when using randomly constructed mini-
batches.

Before the main experiments, we conducted an ablation
study through another set of experiments in which com-
ponents of the proposed algorithms were removed/replaced
and used in different combinations in order to measure
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TABLE 5. nnPU classification performance results with randomly
constructed mini-batches.

Labeled

positive F1 AUC Accuracy Precision

samples
500 5.83%  0.750 51.45% 91.87%
1000 13.33%  0.803 57.56% 95.40%
1500 5.44%  0.724 51.34% 95.89%
2000 85.66%  0.923 85.37% 83.99%
2500 92.71%  0.964 92.70% 92.63%
3000 94.26%  0.974 94.26% 94.51%
3500 93.92%  0.979 93.93% 94.01%
4000 9431% 0979 94.37% 95.38%

TABLE 6. nnPU classification performance results with mini-batches
constructed by using the ‘Ratio Batch’ method.

Labeled

positive F1 AUC Accuracy Precision

samples
500 93.58% 0.970 93.53%  93.42%
1000 91.43% 0.956 91.37%  90.91%
1500 93.62% 0.970 93.80%  93.08%
2000 92.48% 0.971 93.42%  92.85%
2500 92.71% 0.971 93.28%  93.44%
3000 94.47% 0.977 94.56%  96.03%
3500 93.53% 0.974 93.58%  94.27%
4000 94.54% 0.973 94.59%  95.40%

their impact on the algorithm performance. The results
of this study, performed with the secondly proposed
‘FLPU+ALUM’ algorithm, are shown in Table 7.

The results in Table 7 show that the three main components
of the ‘FLPU+ALUM’ algorithm bring different degrees of
improvement, whereby the highest F'/ score value is achieved
when all three components are used together. It is worth
noting that the ‘Ratio Batch’ method does not improve the
experimental results much, because the 5% marker ratio is
sufficient, and the training process already contains a certain
number of positive samples in most batches.

Based on these findings, it was decided to use the
‘Ratio Batch’ method in the subsequent experiments con-
ducted in order to compare the classification performance
of the proposed algorithms, FLPU (with hyperparameters
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TABLE 7. The F1 score values of ‘FLPU+ALUM’ on THUCNews dataset for
different combinations of the main components used.

Ratio Batch  Focal Loss VAT of ALUM F1
95.75%
vV 95.98%
v 96.30%
v 96.72%
v v 96.35%
v v 96.78%
N N 97.05%
v v v 97.12%

TABLE 8. THUCNews-based classification performance comparison of the
proposed algorithms, FLPU and ‘FLPU+ALUM;, with state-of-the-art PU
algorithms, utilized by the RoBERTa-wwm-ext classification model.

Algorithm  AUC F1 Accuracy  Precision
uPU 0.9821  95.50% 95.46% 96.23%
nnPU 0.9849  95.77% 95.74% 95.10%
cnPU 0.9841  95.76% 95.76% 95.82%
FLPU 0.9902  96.33% 96.33% 96.18%
ELLE}\I; 0.9930  97.02%  97.03%  97.44%

a = 025 and y = 2) and ‘FLPU+ALUM’, to that of
the existing state-of-the-art PU algorithms, namely nnPU,
uPU, and cnPU, based on the use of a common clas-
sification model (i.e., RoOBERTa-wwm-ext [12]). In addi-
tion, in another series of experiments, the classification
performance of the RoBERTa-wwm-ext model, enriched
by the algorithms proposed in this paper, was compared
to that of other state-of-the-art binary classification mod-
els, namely fastText [28], TextCNN* [29], TextRNN* [30],
TextRCNN* [31], DPCNN [32], and Transformer [33].

In order to reduce the contingency to the experimental
results caused by the specific division of datasets, a 10-fold
cross-validation was used in the experiments. The averaged
results obtained are shown in Tables 8 and 9 (the best value
achieved among the algorithms for a particular metric is
shown in bold).

Figures 3 and 4 show the ROC curves, used for the calcu-
lation of the AUC values in Tables 8 and 9, where the X-axis
represents FPR, and the Y-axis represents TPR.

The results, shown in Tables 8 and 9, demonstrate that
the proposed FLPU algorithm outperforms all state-of-

*This is a short name used here for this model.
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FIGURE 3. The ROC curves of the PU algorithms compared on the
THUCNews dataset: (a) uPU; (b) nnPU; (c) cnPU; (d) FLPU;
(e) ‘FLPU+ALUM..

(d) (e)

FIGURE 4. The ROC curves of the PU algorithms compared on the AG’s
news dataset: (a) uPU; (b) nnPU; (c) cnPU; (d) FLPU; (e) ‘FLPU+ALUM'.

the-art PU algorithms considered, based on all evaluation
metrics used. After the introduction of ALUM to FLPU,
even further improvement in classification performance is
achieved, according to AUC, F1 score, and accuracy on
both datasets, with only a slight drop in precision, compared
to FLPU, when using the AG’s news dataset. The overall
winner on both datasets, is the secondly proposed algo-
rithm, ‘FLPU+ALUM’, which outperforms the first runner-
up (i.e., the other proposed FLPU algorithm), by 0.0028 and
0.0002 points based on AUC, by 0.69 and 0.71 points based
on F1 score, and by 0.70 and 0.22 points based on accuracy,
on the THUCNews and AG’s news dataset, respectively. With
respect to precision, ‘FLPU+ALUM’ outperforms FLPU by
1.26 points on the THUCNews dataset, while on the AG’s
news dataset it gives the first place to FLPU by scoring
1.38 points less.

As the algorithm stability is an important evaluation indi-
cator, we conducted a mean square error (MSE) analysis
on the experimental results obtained by a 10-fold cross-
validation. The MSE of FLPU is equal to 0.20 and 0.18 on
the THUCNews dataset and AG’s news dataset, respectively,
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TABLE 9. AG’s news-based classification performance comparison of the
proposed algorithms, FLPU and ‘FLPU+ALUM;, with state-of-the-art PU
algorithms, utilized by the RoBERTa-wwm-ext classification model.

Algorithm AUC F1 Accuracy Precision
uPU 0.8037  78.16% 75.22% 69.87%
nnPU 0.8156  78.25% 76.83% 73.72%
cnPU 0.8163  78.23% 75.40% 70.16%
FLPU 0.8881  82.06% 81.65% 80.24%

ffll}g; 0.8883  82.77% 81.87% 78.86%

TABLE 10. THUCNews-based classification performance comparison of
the RoBERTa-wwm-ext model, enriched by the proposed algorithms, with
state-of-the-art binary classification models.

Model AUC F1 Accuracy  Precision

fastText  0.9941 96.37%  96.39% 96.64%
TextRCNN  0.9931  96.06%  96.07% 96.19%
TextCNN  0.9899  95.39%  95.40% 95.65%

DPCNN 09917 95.76%  96.07% 95.87%
TextRNN  0.9912  95.48%  95.50% 95.70%
Transformer 0.9860 94.37% 94.47% 94.38%
RoBERTa-

WWI-EX ) 9900 96.33%  96.33% 96.18%

enriched

by FLPU
RoBERTa-

wwm-ext

enrkl)‘;hed 0.9930 97.02%  97.03%  97.44%

'FLPU+

ALUM'

while the MSE of ‘FLPU+ALUM’ is equal to 0.23 and
0.21 on the THUCNews dataset and AG’s news dataset,
respectively. These results are an indication of the high sta-
bility of both proposed algorithms.

Then, in another set of experiments, the ROBERTa-wwm-
ext model, enriched by the proposed algorithms, was com-
pared to state-of-the-art binary classification models. In order
to reduce the contingency to the experimental results caused
by the specific division of datasets, a 10-fold cross-validation
was used again in these experiments. The averaged results
obtained are shown in Table 10 (the best value achieved
among the models for a particular metric is shown in bold).

Figure 5 shows the ROC curves, used for the calculation of
the AUC values in Table 10.

The results in Table 10 show that adding the proposed
‘FLPU+ALUM’ algorithm to the RoOBERTa-wwm-ext model
allows the latter to outperform all state-of-the-art binary clas-
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@ (h)

FIGURE 5. The ROC curves of the state-of-the-art binary classification
models compared on the THUCNews dataset: (a) fastText; (b) TextRCNN;
(c) TextCNN; (d) DPCNN; (e) TextRNN; (f) Transformer;

(g) RoBERTa-wwm-ext enriched by FLPU; (h) RoBERTa-wwm-ext enriched
by ‘FLPU+ ALUM.

sification models considered, according to F1 score, accu-
racy and precision, and to reach second place based on AUC
by closely following the leader there (i.e., fastText).

However, compared to the DL models included in that
group, the ROBERTa-wwm-ext model, enriched by the pro-
posed ‘FLPU+ALUM’ algorithm, does not require counter-
example data during the training process. In addition, the use
of ‘FLPU+ALUM’ allows it to work well even if only 5% of
the positive samples are labelled in the training data, while
the DL models need 100% labelling of positive samples,
which has negative effect on the time and labor needed to
achieve that for DL models. This shows that the addition of
‘FLPU+ALUM’ to RoBERTa-wwm-ext allows the latter to
classify better hot news headlines in scenarios involving only
positive and unlabeled data, and to achieve performance close
to that of DL binary classification models.

VI. CONCLUSION

This paper has introduced the use of the non-negative
Positive-Unlabeled (nnPU) learning in the news headline
classification task, by which better classification performance
can be achieved in case of having only positive samples
and unlabeled samples. For the small number of labeled
positive samples existing in the utilized datasets, the Focal
Loss was used for optimization as a replacement of the orig-
inal nnPU calculation of the empirical risk of positive and
negative samples. This resulted in a novel algorithm, called
‘Enhanced nnPU with Focal Loss’ (FLPU), which has been
proposed here to enrich the existing binary classifiers used
for news headline classification. Also, by applying the Virtual
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Adversarial Training (VAT) of the Adversarial training for
large neural LangUage Models (ALUM) to FLPU, a better
algorithm, called ‘FLPU+ALUM’, has been elaborated and
proposed for the same purpose, aiming to label only a small
number of positive samples. The superiority of both algo-
rithms to state-of-the-art PU algorithms considered has been
demonstrated by means of performance comparison experi-
ments. Moreover, through another set of experiments, it has
been shown that, if enriched by the proposed algorithms, the
RoBERTa-wwm-ext model can achieve better classification
performance than state-of-the-art binary classification mod-
els considered. In addition, a ‘Ratio Batch’ method has been
proposed as more stable for use in scenarios involving only
a small number of labeled positive samples, which has been
demonstrated through other experiments.

However, as the class-prior probability w of unlabeled
data, which is utilized by the proposed algorithms, cannot be
directly obtained and, in addition, it is difficult to be estimated
for text, in the future we plan to undertake further research on
the basis of the existing class-prior estimation algorithms in
order to come up with a more accurate algorithm for use with
the nnPU learning.
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