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ABSTRACT We present a method that improves the accuracy of depth maps by combining albedo estimation
and implicit neural representations to the well-posed shape from shading. Because the estimation of depth
information from a single image is an under-constrained problem, we apply certain physical constrains to
convert the ill-posed shape from shading problem to a well-posed problem. Subsequently, we construct an
image irradiance equation wherein the surface parameter representing albedo is estimated using a learning-
based encoder-decoder network. By solving the equation using implicit neural representations, we can obtain
a depth map of the original image. The proposed method achieves an accuracy of depth estimation from a
single image with the mean absolute error (MAE) of 0.1510 and root mean square error (RMSE) of 0.1768,
indicating superior performance to that of existing methods. Both simulation and real experiments have been
carried out to verify the effectiveness of the proposed method.

INDEX TERMS Depth estimation, intrinsic image decomposition, implicit neural representations, shape
from shading.

I. INTRODUCTION
Scene depth estimation plays a significant role in computer
vision by enhancing the perception and understanding of
the surrounding environment. Consequently, a wide range
of applications, such as autonomous driving, virtual reality,
and robotic navigation require depth estimation [1]. Active
depth estimation techniques use lasers or structured light to
obtain point clouds and estimate depth maps [2]. Although
these depth maps are highly accurate, the required measuring
equipment is usually large, making these techniques incon-
venient to employ in narrow environments. To investigate
environments with collapsed bricks at disaster sites or to
inspect the internal conditions of a machine, the environ-
ment is usually dark and narrow. Usually, there is no light
source in these environments. As a result, a camera with a
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self-contained light source is suitable for dark and narrow
environments.

Given a single image, shape from shading (SfS) can
recover the depth map by analyzing the intrinsic components
of the image, such as albedo, surface normal, and light source.
This analysis is not simple owing to the concave or convex
ambiguity [3]. By employing physical constraints and certain
assumptions, the ill-posed SfS problem can be converted to
a well-posed problem [4], [5]. However, the surface param-
eter albedo cannot be obtained in advance and have to be
assigned arbitrarily, thereby degrading the accuracy of esti-
mated results.

In recent years, many learning-based SfS methods have
been developed and demonstrated high accuracy. Supervised
learning with a Convolutional Neural Network (CNN)-based
encoder-decoder has been used to train a network that jointly
predicts reflectance, depth, and light conditions [6]. Liu et al.
explore the independence between shading and reflectance
and propose an unsupervised intrinsic image decomposition
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framework to estimate intrinsic components [7]. Learning-
based methods can also achieve good accuracy and jointly
estimate multiple intrinsic components using a network.
However, these methods usually require a large amount of
ground truth training data to train the network.

In this study, depth estimation by implicit neural represen-
tations and albedo estimation for well-posed SfS is proposed.
We leverage the physical constrains to formulate the SfS
problem and utilize implicit representations to parameter-
ize the partial differential equation. Analyzing existing SfS
methods, we find two primary disadvantages that contribute
to suboptimal accuracy. Specifically, the surface parameter
albedo is not estimated in advance and methods for solving
the image irradiance equation do not perform sufficiently. The
objective of this study is therefore to improve the accuracy of
depth estimation using SfS.

Our methodology is summarized as follows. First, the
ill-posed SfS problem is converted to a well-posed problem
based on certain assumptions and constraints. This guarantees
the only solution to this problem. Because albedo is a vital yet
initially unknown parameter, it is estimated using a learning-
based method. Subsequently, the estimated albedo map is
combined with the well-posed SfS. Finally, the image irradi-
ance equation is solved using implicit neural representations.
This work is an extension of our previous work presented at a
conference, wherein the image irradiance equation is solved
using implicit neural representations, however, the albedo
parameter remains unknown [8].

The main contributions of this study are as follows.

• We estimate the albedo map of the original image, and
apply it to a well-posed shape from shading problem.

• We solve the well-posed shape from shading problem
using implicit neural representations.

This paper will proceed as follows: In Section I, we present
a background of our research and summarize the primary
methods and contributions of this article. In Section II,
we review prior studies as they relate to our own. In Sec-
tion III, we explain our proposedmethod in detail. We present
a series of simulation and real experiments in Section IV.
We compare our proposed method with existing approaches
in Section V. Finally, Section VI concludes our paper
and presents limitations and potential future directions of
research.

II. RELATED WORK
In this study, we convert the ill-posed SfS problem to a
well-posed problem and build a partial differential equa-
tion, wherein learning-based intrinsic image decomposi-
tion is introduced to estimate the albedo parameter. We
employ implicit neural representations and a gradient
descent-based method to solve the partial differential equa-
tion. In the following subsections, we review three lines
of work in SfS, intrinsic image decomposition, and gra-
dient descent-based methods to solve partial differential
equations.

A. SHAPE FROM SHADING
SfS reconstructs the shape of an original image from a gradual
variation of shading therein [9]. It is to recover the depth
map by analyzing the intrinsic components of a single image,
including albedo, surface normal, and light source from a
single image.

SfS is introduced by Horn who first derive an equation
describing the relationship between the shape of a surface and
its corresponding brightness [10]. Most SfS methods follow
two steps to solve the problem: first, proposing assumptions
and constructing an image irradiance equation; second, solv-
ing the equation using numerical methods [4].

Early SfS approaches are based on the following
assumptions:

• The object surface is a Lambertian surface
• The light source is located at infinity
• The camera model is orthographic

A Lambertian surface is a surface that emits the same
brightness irrespective of the observer’s perspective, thereby
representing an ideal diffuse surface. Based on the above
assumptions, the image irradiance equation can be built and
numerically solved. Although these assumptions simplify
the complex shading and imaging process, the reconstructed
results have poor accuracy because it is impossible for an
object surface to satisfy perfect diffuse reflection. Further-
more, most cameras employ the pinhole design, and the light
source is generally near the object, rather than at infinity.

To improve the accuracy of solutions to the SfS problem,
Lee and Kuo propose a more realistic imaging model, that
uses a perspective camera projection, as well as a light source
located at the optical center [5]. Using an endoscope camera,
Okatani and Deguchi propose a notion of an equal distance
contour and obtain the equation for this contour [11]. Ikeda
applies a linear approximation to a hybrid reflectance map
composed of Lambertian model and Phong model [12], [13].
Ahmed and Farag use a linear combination of the Lambertian
model and Ward model, which considers diffuse reflection
and specular reflection of the object surface, with the objec-
tive of attaining higher imaging precision [14]. Fan et al.
use the Cook-Torrance BRDF reflectance model to express
the hybrid surface, and introduce variational formulation to
solve the image irradiance equation [15]. Cao et al. applies
SfS in medical imaging by combining it with stereo vision to
reconstruct heart models [16].

In summary, the SfS problem exploits physical constraints
to express the relationship between the shape of a surface
and its corresponding brightness. Subsequent to building an
equation, various methods for solving the equation also affect
the accuracy of the estimated shape.

B. INTRINSIC IMAGE DECOMPOSITION
Intrinsic image decomposition (IID) is traditionally described
as the problem of decomposing an image into two layers:
albedo, invariant color of the material, and shading, produced
by the interaction between light and geometry [17]. The main
relationship between IID and SfS is the estimation of intrinsic
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properties by analyzing a single image. In recent years, deep
learning techniques have been broadly applied to improve
the accuracy of this process. According to learning strategy,
IID methods may be categorized as weakly, fully, or self-
supervised.

Weakly supervised methods require human observations
relating to perceptions of materials and illumination in an
image. Two datasets, IIW and SAW, have been generated
based on human observations, where regions corresponding
to similar albedo or assigned shading labels are respectively
contained [18], [19]. These judgments are expressed via
sparse sets of pairwise comparisons and accompanied by
confidence scores representing the weighted human disagree-
ment rate (WHDR) [20]. Kovacs et al. estimate the source of
shading gradient using a CNN with a classifier and subse-
quently apply the local prediction within a classical Retinex
formulation to estimate the intrinsic components [19].How-
ever, the human observations required by weakly supervised
methods may cause inaccuracies in the dataset. In addition,
human annotations alone are insufficient for training a direct
regression approach, likely because such annotations are
sparse and derived from a few thousand real images [21].

The fully supervised strategy entails learning from labeled
data. The use of a labeled dataset to train amodel is a common
strategy in machine learning. For each labeled image, the loss
function is penalized if the estimated intrinsic component
does not conform to the corresponding ground truth label.
Narihira et al. utilize the ground truth of the MPI Sintel
dataset, obtaining results for both synthetic and real images,
sourced from Sintel and the MIT intrinsic image dataset
respectively [22]. Their network is a CNN-based architecture
that takes an RGB image and directly predicts its albedo
and shading. Luo et al. apply surface normal estimation to
IID [23], whereas Ma et al. propose a cascaded network with
two sub-networks designed for reflectance estimation and
shading optimization [24]. Intrinsic image decomposition has
also jointly estimated with semantic segmentation [25].

In self-supervised works, image formation loss is calcu-
lated to guarantee that the target parameters of the network
effectively reconstruct the original image. Janner et al. pro-
pose a CNN-based encoder-decoder network, where a shared
encoder and three separate decoders for the estimation of
albedo, shape, and light conditions [6]. The shape and light
conditions are utilized to train a differential shading function
in another network architecture where the self-supervised
strategy is applied to reconstruct the original image. Yu and
Smith incorporate multiview stereo poses and depth maps
for cross projection [26]. Using a differential renderer and
an InverseRenderNet, which accepts an RGB image and
outputs the albedo and normal, this network learns via self-
supervision.

C. GRADIENT DESCENT-BASED PARTIAL DIFFERENTIAL
EQUATION SOLUTION
Deep learning has revolutionized fields such as images, text,
and speech recognition, which require statistical approaches

to model non-linear functions of high-dimensional inputs.
Using multi-layer neural networks, deep learning has proven
effective in practice for numerous tasks in the aforementioned
fields. One such task involves solving partial differential
equations (PDEs).

In general, a neural network requires an appropriately
designed loss function to solve an equation. By updating a set
of network parameters, the loss function can be minimized
and the solution to the equation can be obtained. The Deep
Galerkin method (DGM) calculates a high-dimensional PDE
using deep neural network [27]. By minimizing the squared
error, this method can solve the high-dimensional Hamilton-
Jacobi-Bellman PDE and Burger’s equation. The Deep Ritz
method (DRM) utilizes two residual connections in its net-
work, thereby avoiding the vanishing gradient problem [28].
SIREN applies a sinusoidal function to the activation func-
tion for a multi-layer perceptron, and solves the PDE using
implicit neural representations [29].

III. METHOD
In this study, depth estimation using a learning-based method
for a well-posed PDE is proposed. First, we convert the ill-
posed SfS problem to a well-posed problem by applying
certain assumptions and construct an image irradiance equa-
tion. The unknown parameter ρ representing albedo in the
equation is estimated by a learning-based method. Finally,
we solve the image irradiance equation using implicit neural
representations.

The main plan of this study can be divided into three
phases:

• Applying assumptions to convert the ill-posed SfS prob-
lem to a well-posed problem and constructing an image
irradiance PDE.

• Training a neural network to estimate albedo, and apply-
ing the learning results to the well-posed SfS problem.

• Utilizing implicit neural representations to solve the
PDE.

A. CONSTRUCTION OF IMAGE IRRADIANCE EQUATION
VIA WELL-POSED SHAPE FROM SHADING BASED ON
CERTAIN ASSUMPTIONS
1) PERSPECTIVE CAMERA MODEL AND LIGHT SOURCE AT
OPTICAL CENTER
We introduce a perspective camera model for the projection
model [30]. Figure 1 illustrates the camera model with per-
spective projection and a point light source at the optical cen-
ter is illustrated. The object’s surface is represented by S(x),
where f is the focal length of the camera. The intersection
of the light direction and image plane can be expressed as
(x, −f ), where x is a pixel on the image plane. The unit light
source vector L(x) can be represented as

L(x) =
1√

f 2 + ||x||2

(
−x
f

)
. (1)

Consider the surface S representing the object or scene of
interest in a given image domain �, parameterized with the
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FIGURE 1. Perspective camera model. Point light source is located at
optical center.

function S: � → R3 by

S(x) =
fu(x)√

f 2 + ||x||2

(
x

−f

)
, (2)

where

x =

(
x1
x2

)
∈ �. (3)

� denotes the image domain and u(x) represents the depth
in the projection direction. The normal vector of surface point
S(x) can be obtained by calculating the cross product of
tangent vectors in the x1 and x2 directions. As a result, the
normal vector n(x) for surface point S(x) is described as

n(x) =

( f∇u(x) −
f∇u(x)
f 2+||x||2 x

x · ∇u(x) +
f∇u(x)
f 2+||x||2 f

)
. (4)

The term cos θi is the dot product between L(x) and n(x)
using the change of variables v(x) = lnu(x),

θi = arccos
n(x)

||n(x)||
· L(x)

= arccos
Q(x)√

f 2||∇v(x)||2 + (x · ∇v(x))2 + Q2(x)
, (5)

where Q(x) =
f

√
f 2+||x||2

.

2) OREN-NAYAR REFLECTION MODEL
One of the simplest reflection models typically used in com-
puter vision and computer graphics is the Lambertian model,
which models a surface that scatters incident illumination
equally in all directions. Because this is an ideal diffuse
reflection model, it cannot precisely represent the surface of
a real object.

This section introduces a more realistic reflection model,
namely the Oren-Nayar reflection model [31]. This model is
more comprehensive than the Lambertian model because it

FIGURE 2. Reflection model.

fully considers geometric and radiometric phenomena includ-
ing inter-reflection, masking, and shadowing between points
on the surface. The surface is assumed to comprise a collec-
tion of small V-cavities based on the microsurface theory.

Figure 2 depicts the incident and reflected angles. (θi, φi) is
the incident direction, and (θr , φr ) is the reflected direction.

A simplified expression for reflected radiance can be sum-
marized as follows [31]:

Lr (θi, φi; θr , φr )

=
ρ

π
I0 cos θi × (A+ Bmax[0, cos (φr − φi)] sinα tanβ),

(6)

whereA = 1−0.5 σ 2

σ 2+0.33
,B = 0.45 σ 2

σ 2+0.09
, α = max[θi, θr ]

and β = min[θi, θr ].
The albedo ρ represents the fraction of incident energy

reflected by the surface, and I0 denotes the intensity of the
point light source. The parameter σ measures the surface
roughness.

Due to perspective camera model,

θi = θr = α = β, (7)

φi = φr . (8)

An attenuation term 1/r2 is considered to further guarantee
a well-posed SfS problem. r indicates depth along the projec-
tion, which is to be estimated.

As a result, the reflected radiance equation becomes

Lr =
ρ

π

I0
r2

(A cos θi + B sin2 θi). (9)

The relationship between image brightness and surface
radiance is

Ei = Lr
π

4

(
d
f

)2

cos4 χ, (10)

where Ei is the image irradiance, considered to be equal
to the image brightness. d is the diameter of the lens, and
f is the focal length. χ is the angle between the optical
axis and line of sight to a surface point of a corresponding
image point. Although the term cos4 χ implies nonuniform
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brightness even for uniform illumination, the actual optical
system is designed to correct it. As a result, we may consider
image brightness to be proportional to surface radiance:

Ei = λLr . (11)

If we denote I =
Ei
λI0

, the brightness equation becomes

I =
1
r2

ρ

π
(A cos θi + B sin2 θi). (12)

3) BUILD IMAGE IRRADIACE EQUATION
Based on the perspective camera model assumption and
Oren-Nayar reflection model, the image irradiance equation
can be constructed as follows:

−e−2v(x)
+

f 2I (x)
D(x, ∇v)

= 0, ∀x ∈ �, (13)

where

D(x, ∇v) =
ρ

π

[
A

Q(x)√
F(x, ∇v) + Q2(x)

+ B
F(x, ∇v)

F(x, ∇v) + Q2(x)

]
, (14)

F(x, ∇v) = f 2||∇v(x)||2 + (x · ∇v(x))2, (15)

r = fu(x) = fev(x). (16)

The conversion of an ill-posed SfS problem to a well-posed
problem and the subsequent construction of an image irradi-
ance equation are similar to the approach proposed by [4].
Our concept of feeding the estimated albedomap to the image
irradiance equation and using implicit neural representations
to solve the equation is introduced in the following subsec-
tion.

B. ALBEDO ESTIMATION USING LEARNING-BASED
METHOD
To train a neural network for albedo estimation, we require
a dataset that meets the following problem setting: the only
light source in the environment is the point light located at the
optical center of the camera. Because no such dataset exists,
we generated our own dataset.

1) DATASET GENERATION
We modified the work of [6] to place a point light source at
the optical center of the camera. The 3Dmodels in this dataset
were obtained from ShapeNet [33] and the dataset of intrin-
sic decomposition images was generated by Blender [34].
ShapeNet, which includes a subset called ShapeNetCore,
encompasses 55 common object categories with approxi-
mately 51,300 unique 3Dmodels. 3D object models provided
by ShapeNet vary across a wide range of shapes and materi-
als. The objective is to use a perspective camera to capture
photos of these 3D models and generate their corresponding
intrinsic images in Blender. Intrinsic decomposition images,
which include depth, albedo, shape, light source, and shading
attributes, are obtained from original images, where the light

source information is presented with the help of a sphere.
Although the point light source’s location is constant at the
optical center of the camera, its intensity is randomly gener-
ated.

2) SIMULATION RESULTS
Each category in the dataset includes two thousand sets for
training, eight hundred sets for testing and two hundred sets
for validation. We divided the datatset by 11-fold and used
k-fold cross-validation in the training phase.

Figure 3 depicts the sample results of data generation.

3) ARCHITECTURE OF NETWORK TO ESTIMATE ALBEDO
This section describes the network architecture for learning
albedo. The model in question has a convolutional encoder-
decoder architecture, wherein mirror-link connections are
employed to connect encoder and decoder of equal size [6].

The encoder comprises five convolutional layers with 16,
32, 64, 128, and 256 filters of size 3 × 3 and strides of 2.
Batch normalization and ReLU activation are performed after
each convolutional layer. The albedo decoder has the same
size as the encoder, but uses a three-channel output. Thus, the
network takes a three-channel original image as the input, and
outputs the corresponding albedo map.

C. SOLVING THE IMAGE IRRADIANCE EQUATION
1) APPLYING ESTIMATED ALBEDO TO IMAGE IRRADIANCE
EQUATION
The obtained albedo map corresponds to the parameter ρ in
Eq. (14). By substituting the albedo map into Eq. (14), the
PDE expressed in Eq. (13) can be solved with a higher accu-
racy than if the albedo were arbitrarily assigned. Comparison
results are presented in Section IV.

2) IMPLICIT NEURAL REPRESENTATIONS TO SOLVE PARTIAL
DIFFERENTIAL EQUATION
We introduce sinusoidal representation networks (SIREN)
to solve the complex PDE [29]. SIREN is a simple neural
network architecture that utilizes a sine function as a periodic
activation function for implicit neural representations. For an
equation that satisfies the form below

F(x, 8(x),∇8(x), . . .) = 0, 8 : x 7→ 8(x) (17)

a neural network that parameterizes 8(x) to map x while
satisfying the constraint in Eq. (17) can be obtained. This
implicit problem formulation takes the spatial coordinate x ∈

Rm as the input. 8(x) is implicitly defined by function F .
We parameterize 8θ as a fully-connected neural network

with parameters θ , and solve the optimization problem using
gradient descent. The neural network is a four-layer network
with one layer of input, three hidden layers, and one layer of
output. All layers are multi-layer perceptrons (MLPs) with a
sinusoidal function as the activation function.

For the pixel coordinates xi in Eq. (3) considering the
image irradiance equation in Eq. (13), the loss function is
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FIGURE 3. Example of dataset. One original image of a bottle and its corresponding albedo, shading, shape,
depth and lighting condition maps. The lighting condition map is presented with the help of a sphere.

FIGURE 4. Albedo estimation results for six simulation images.

defined as follows:

J (8) = || − e−28θ (xi) +
f 2I (xi)

D(xi, ∇8)
||
2
�. (18)

J (8) measures how well the function 8θ (x) satisfies the
PDE differential operator. If J (8) = 0, then 8θ (x) is a
solution to the PDE.

The objective is to determine a set of parameters θ so
that 8θ (x) minimizes the loss function J (8). If the loss
J (8) is small, then 8θ (x) closely satisfies the PDE. In the
proposed method, the parameters θ are updated using the
ADAM algorithm, which has proven to be a very effective
optimizer in machine learning [32]. ADAM yields fast and
robust convergence, and its hyper-parameters have intuitive
interpretations and typically require little tuning.
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FIGURE 5. Depth estimation of the simulation experiment.

IV. RESULTS
To evaluate our proposed method’s performance, we con-
ducted both simulation and real experiments.

In the simulation experiment, the original images were
obtained from Blender. All images were generated in an
environment where the point light source is situated at the
optical center of the perspective camera.

In the real experiment, images were captured in a
dark environment using both an endoscope camera and
a smartphone. The depth maps estimated by the pro-
posed method and several previous approaches are presented
explicitly.

A. SIMULATION EXPERIMENT
1) SIMULATION SETTING
In the simulation experiment, we conducted quantitative anal-
ysis to evaluate the performance of depth estimation using
simulated images. First, a neural network was trained to learn
albedo. In this step, the original images and albedo maps for
fully-supervised learning were obtained from Blender [34].
Subsequently, the original images and their albedomaps were
sent to SIREN to estimate the depth maps.

The network architecture was trained with dataset encom-
passing the bottle category. Data were allocated among
training, testing and validation subsets according to a
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FIGURE 6. Albedo estimation and depth estimation in real experiment. (a), (b), and (c) were captured
using a smartphone. (d) was captured with an endoscope camera.

2000:800:200 ratio, and k-fold cross-validation was applied
in the training phase. Two thousand original images with their
albedo ground truth images were used for training over fifty
epochs, and two hundred sets of original images with their
albedo ground truth images were utilized for validation. Six
different original images selected to represent the estimated
albedo maps are shown in Figure 4.
After an albedo map is obtained, it substitutes the param-

eter ρ in Eq. (14) and is sent to the SIREN network, which
directly outputs the depth map.

Albedo estimation results for the six selected bottles
are shown in Figure 4. To ensure evaluation accuracy,
we repeated the experiment over five rounds. The mean
absolute error (MAE) and root mean square error (RMSE)
were then calculated as quantitative metrics [35]. The MAE
is given by

MAE =
1
n

×

n∑
i=1

|D̂i − Di|, (19)

where D̂i is the estimated value and Di is the actual value.
The RMSE is given by

RMSE =

√∑T
t=1(D̂t − Dt )2

T
, (20)

where D̂t is the estimated value and Dt is the actual value.
A quantitative analysis of the albedo estimation is shown

in Table 1.
According to the estimated albedo maps and quantita-

tive analysis, the proposed method achieves highly accurate
albedo estimation.

TABLE 1. MAE and RMSE of estimated and ground truth albedo for six
images.

The depth estimation results obtained by the proposed and
previous methods are shown in Figure 5, which presents
the original images, depth ground truth, and estimated depth
maps. A corresponding quantitative comparison is presented
in Table 2, where DE represents depth estimation, and AE
denotes albedo estimation. According to the quantitative
comparison of MAE and RMSE in Table 2, depth maps
obtained by DE with AE exhibit higher accuracy than those
obtained by existing methods and DE without AE. This can
be especially observed in Fig. 5 (a) and Fig. 5 (e).

B. REAL EXPERIMENT
1) REAL EXPERIMENTAL SETTING
In the real experiment, the objects were settled in a dark
environment, where the self-contained light of the camera
was the only light source. Accordingly, the endoscope camera
used the point light sources surrounding the camera lens
as the light source. Additional images were captured via
smartphone.

2) REAL EXPERIMENT RESULTS
Figure 6 presents original images captured with the smart-
phone and endoscope camera, along with corresponding esti-
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FIGURE 7. Comparison of depth estimation.(a), (b), and (c) were captured using a smartphone.
(d) was captured with an endoscope camera. Depth estimation without albedo estimation, depth
estimation with albedo estimation and previous work are compared.

TABLE 2. MAE and RMSE comparison of the proposed method and previous work for six images.

mated albedo and depth maps. Figure 7 depicts a comparison
of experimental results between previous work and the pro-
posed method.

In Figure 7, it is apparent that the estimation results
obtained by the proposed method are more accurate than

those obtained by other methods. For the proposed depth
estimation method without albedo estimation, significant
amounts of noise appear in the surrounding pixels of the
objects. For pixels with an intensity near 0, this method
cannot calculate the solution of the PDE with high accuracy.
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V. DISCUSSION
In Wang’s method, the Newton method is employed for iter-
ation, yielding satisfactory performance for the surrounding
pixels of objects. Their method itself is based on the 2D
numerical Hamiltonian and fixed-point iterative sweeping
method. However, the approach depends on certain artifi-
cial viscosities that may influence the solution to the PDE.
Moreover, owing to the fixed-point iteration, every pixel’s
value is dependent upon those of its neighboring pixels, which
may explain why the edges of objects appear blurred in the
depth maps. Queau’s method handles on both orthographic
and perspective projection, and uses the ADMM algorithm
to solve the PDE. Because it focuses on natural illumination,
this method exhibits suboptimal results in dark environment.
GLPDepth uses a mix transformer as an encoder and with
a light-weight decoder to estimate monocular depth from a
single image. The model is trained on the NYU Depth V2
dataset [38]. This end-to-end method also performs well in
the dark environment.

In the method of depth estimation without albedo estima-
tion, a mask is not utilized to cover the pixels of surrounding
objects. For any surrounding pixels with an intensity near 0,
the use of SIREN to solve the PDE cannot yield a sufficiently
precise estimate. Consequently, significant amounts of noise
appear in the pixels surrounding the object. On the other hand,
the ADAM optimizer, which has proven to be a very effective
optimizer in machine learning [32], exhibited fast and robust
convergence in our study. This may explain why the method
of depth estimation without albedo estimation obtained a
higher accuracy in depth maps than Wang’s method.

For the proposed method of depth estimation with albedo
estimation, a mask is utilized to cover the surrounding pixels
of objects while minimizing the loss function. Moreover, the
albedo parameter ρ is estimated accurately prior to being
input to the SIREN network. Without albedo estimation, as is
also the case in Wang’s method, ρ is assigned arbitrarily.
According to the quantitative comparison in Table 2, the
depth maps estimated by the proposed method exhibit supe-
rior accuracy to those obtained by previous studies.

In terms of computation complexity, our proposed method
calculates 396.8k FLOPs, whereas GLPDepth [37] calculates
124M FLOPs. Queau’s et al. method [36] calculates approx-
imately 1k FLOPs per iteration per pixel, whereas Wang’s
and Cheng method [4] calculates 300 FLOPs. Although our
proposed method is inferior to certain existing methods in
terms of computational complexity, the runtime speed is not
an issue in practice due to GPU parallelization.

VI. CONCLUSION
In this study, a depth estimation approach that combines a
well-posed SfS problemwith albedo estimation has been pro-
posed and implemented. Specifically, the ill-posed problem
is converted to a well-posed problem, and learning-based
intrinsic image decomposition is conducted to estimate the
albedo. Finally, implicit neural representations are used to

solve the image irradiance equation. The experiments verify
the effectiveness of our proposed method.

Our model does exhibit some limitations. Although
materials that are diffuse reflection often yield reasonable
approximations, they may cause problems for objects with
specularities. Furthermore, our dark experimental environ-
ment was set up so that only the point light source of the cam-
era provided lighting. We ignore other possible illumination
issues, such as global illumination.

To address the two aforementioned issues, we plan to
leverage data-driven methods in future work.
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