
Received 23 March 2023, accepted 16 April 2023, date of publication 21 April 2023, date of current version 27 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3269018

Time-Based Moving Target Defense Using
Bayesian Attack Graph Analysis
HYEJIN KIM 1, EUISEOK HWANG 1, (Senior Member, IEEE), DONGSEONG KIM 2,
JIN-HEE CHO 3, (Senior Member, IEEE), TERRENCE J. MOORE 4, (Member, IEEE),
FREDERICA F. NELSON4, AND HYUK LIM 5, (Member, IEEE)
1Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
2The University of Queensland, Brisbane, QLD 4072, Australia
3Virginia Tech, Falls Church, VA 22043, USA
4U.S. Army Research Laboratory, Adelphi, MD 20783, USA
5Korea Institute of Energy Technology (KENTECH), Naju-si 58217, Republic of Korea

Corresponding author: Hyuk Lim (hlim@kentech.ac.kr)

This work was supported in part by the U.S. Army Combat Capabilities Development Command (CCDC) International Technology
Center—Pacific (ITC-PAC) and the CCDC Army Research Laboratory (CCDC-ARL) under Grant FA5209-19-P-A056, and in part by the
Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by the Korean Government [Ministry of
Science and ICT (MSIT)] through the Privacy Risk Analysis and Response Technology Development for Artificial Intelligence (AI)
Systems under Grant 2021-0-00379.

ABSTRACT The moving target defense (MTD) is a proactive cybersecurity defense technique that con-
stantly changes potentially vulnerable points to be attacked, to confuse the attackers, making it difficult
for attackers to infer the system configuration and nullify reconnaissance activities to a victim system.
We consider anMTD strategy for software-defined networking (SDN) environment where every SDN switch
is controlled by a central SDN controller. As the MTD may incur excessive usage of the network/system
resources for cybersecurity purposes, we propose to perform the MTD operations adaptively according to
the security risk assessment based on a Bayesian attack graph (BAG) analysis. For accurate BAG analysis,
we model random and weakest-first attack behaviors and incorporate the derived analytical models into the
BAG analysis. Using the BAG analysis result, we formulate a knapsack problem to determine the optimal set
of vulnerabilities to be reconfigured under a constraint of SDN reconfiguration overhead. The experiment
results prove that the proposed MTD strategy outperforms the full MTD and random MTD counterparts
in terms of the maximum/average of attack success probabilities and the number of SDN reconfiguration
updates.

INDEX TERMS Moving target defense, Bayesian attack graph, software-defined networking.

I. INTRODUCTION
Cybersecurity threats can be raised from various security
faults and vulnerabilities in operating systems (OSs), soft-
ware/hardware, or network applications/services. In recent
years, cybersecurity threats have rapidly evolved and
advanced significantly to bypass or nullify conventional secu-
rity defense systems, such as firewalls and intrusion detec-
tion systems (IDSs). For example, advanced persistent threat
(APT) is one of the significant threats accessing a targeted

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

network stealthily and performing malicious reconnaissance
for a long time until completing their goals [1].

To counter those advanced attacks, proactive defense tech-
niques have emerged as a promising direction of defense.
Moving target defense (MTD) is one of them and achieves the
proactive defense by constantly changing vulnerable attack
surfaces (i.e., potentially vulnerable points to be attacked) to
thwart malicious attacks, confuse the attackers, and invali-
date the information collected by the attackers (e.g., attack
paths) [2]. However, it is a non-trivial problem to effi-
ciently deploy MTD while maintaining its defense effective-
ness under resource-constrained environments. For example,
a shuffling-based MTD performs changing Internet protocol

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 40511

https://orcid.org/0000-0001-8448-0168
https://orcid.org/0000-0002-1718-7030
https://orcid.org/0000-0003-2605-187X
https://orcid.org/0000-0002-5908-4662
https://orcid.org/0000-0003-3279-2965
https://orcid.org/0000-0002-9926-3913
https://orcid.org/0000-0002-6921-7369


H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

(IP) and medium access control (MAC) addresses or routing
paths randomly, migrating VMs from one host to another,
and randomizing the data [3]. However, MTD techniques
may incur system reconfiguration overhead as well as per-
formance degradation such as service latency to legitimate
users. In addition, modern IP networks have the nature of high
dynamics that can change network states and their vulnerabil-
ities over time. Hence, it is highly challenging to dynamically
and adaptively identify an optimal setting that can optimally
deploy the MTD in terms of minimizing defense cost and risk
and maximizing the defense effectiveness (e.g., minimizing
attack success).

The common vulnerability scoring system (CVSS) has
been widely used as a metric of security risk assessment [4].
The CVSS evaluates the vulnerabilities of individual nodes
and provides scores on a scale of 10 by considering the
basic, temporal, and environmental metrics [4]. The CVSS
provides only the threat level of individual vulnerability, but
it is also important to perform a network-wide threat anal-
ysis of a given network with various components because
the vulnerabilities of individual network/system components
could interact with each other and make the system more
vulnerable [5]. Attack trees (ATs) and attack graphs (AGs)
have been commonly used to represent the relationships
between vulnerabilities in a given network [6]. One of the
promising AGs is directed acyclic AGs with probability met-
rics, called the Bayesian attack graph (BAG), which has
been used to analyze uncertain, stochastic attack behaviors.
BAGs have been employed to identify potential attack paths
and find the most vulnerable components or assets based
on the probabilistic properties of BAG analysis results. The
BAG analysis can be applied to identify potential attack
paths based on the level of priority. These BAG analysis
results make it possible to differentiate the use of defense
resources in the MTD strategy by handling more vulner-
able system components in the attack graph with high
priority.

In this paper, we aim to develop a time-basedMTD strategy
that determines an optimal set of hosts whose addresses are
to be shuffled to maximize the system’s security level while
limiting the usage of network resources for cybersecurity at
a certain level not to degrade network service quality for
legitimate users. To accurately assess the system’s security
risk, we model and analyze the attacker’s behavior using the
BAGs. We formulate the optimization problem for the MTD
strategy as a knapsack problem, which considers the vulnera-
ble levels of hosts identified byBAG analysis and the capacity
of the SDN controller to ensure acceptable network flow.
We solve the knapsack problem using dynamic programming
and perform the experiment simulations of conducting MTD.
To be specific, we make the following key contributions in
this work:
• We model the attackers’ behaviors for selecting the next
victim in a situation where attackers have a list of visible
victim candidates on the network, and derive a random
attack model that selects a victim randomly among the

visible candidates and a weakest-first attack model that
attacks the weakest victim first.

• Based on the attack behavior models, we compute
topology-aware attack success probabilities for vulner-
abilities on the network and incorporate the results into
the BAGs for accurate security risk assessment instead
of using a simple CVSS-based attack success probability
for individual vulnerability.

• We formulate a knapsack problem to determine an opti-
mal set of vulnerabilities to be reconfigured by MTD.
The optimization aims to proactively protect as many
vulnerable hosts as possible only if the MTD overhead
does not exceed a certain amount of resources allocated
for cybersecurity.

The remainder of this paper is organized as follows.
Section II briefly reviews the related works. In Sections III
and IV, a BAG analysis with the attacker’s behavior models
is described and evaluated. Section V describes the pro-
posed optimal MTD strategy, and in Section VI, the simu-
lation results are presented. The conclusion is presented in
Section VII.

II. RELATED WORK
A. ADDRESS SHUFFLING MTD
The MTD is a proactive defense technique, which constantly
changes the attack surface so that attackers cannot figure out
the network configuration. There are various types of MTD
techniques based on how the configuration is changed in the
network [2].

• Time-based MTD: The configuration is periodically
changed over time. The interval of the MTD reconfigu-
ration is a controllable/adjustable parameter that can be
determined by the security operator. The MTD interval
can be fixed regardless of the existence of attacks or
varied depending on a threat alert level. In general, under
a full MTD, the configurations of all the devices are
randomized at every MTD interval. While this reconfig-
uration is being performed, existing traffic flows can be
interfered with.

• Event-basedMTD:When an attack is detected, theMTD
operation is triggered to defend the system from the
following potential attacks. When event-based MTD is
triggered and performed, the information exposed to the
attacker is invalidated.

• Hybrid MTD: Time-based and event-based policies
can be combined in practice to balance the tradeoff
between security performance and system reconfigura-
tion overhead.

TheMTD can shuffle various properties of networked system
configuration such as source/destination addresses of IP data-
grams, port numbers of TCP/UDP segments, MAC addresses
of data-link layer frames, virtual machine IP addresses, and so
on. Address shuffling, called host/address mutation, is one of
the most popular MTD techniques, which maps and changes
the IP addresses in use to other IP addresses within a usable

40512 VOLUME 11, 2023



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

address space [7]. The address shuffling-based MTD can
be readily implemented using software-defined networking
(SDN) technology, which decouples the data and control
planes and supports the programmability of packet routing
and manipulation through the OpenFlow (OF) protocol [8],
[9]. Jafarian et al. proposed to randomly mutate (i.e. shuffle)
host IP addresses to make the address information unpre-
dictable [8]. They devised a weighted mutation method based
on the idea that an already scanned IP address is less likely to
be scanned again compared to those that are not scanned yet.
They set the weight of the IP address as the number of times
that the IP address has been scanned by other users including
attackers. The SDN controller chooses an unused IP address
randomly based on the weight (i.e. selection probability) and
changes the real IP address of a host as the chosen virtual
IP address. Using the Mininet emulator, they showed their
weighted mutation restrained the propagation of scanning
worms. As the centralized SDN controller can be attacked
or face system faults, Narantuya et al. proposed to use mul-
tiple SDN controllers for the IP shuffling-based MTD [10].
They showed that multiple controllers could shorten the IP
shuffling delay and achieve low attack success probabilities
via the experiment. Recently, Kim et al. proposed a deep rein-
forcement learning (DRL)-based traffic inspection and MTD
countermeasure [11]. They adopted the DRL for finding the
optimal traffic inspection points on a target network. Once the
traffic flows are sampled, they are forwarded to an IDS for
inspection. According to the inspection analysis of the IDS,
the MTD is performed for the weakest assets to proactively
protect them from attacks.

B. ATTACK GRAPH (AG)
Attack representation models such as ATs and AGs have been
proposed for the identification of network nodes or services
that intruders can easily access and exploit (i.e. attack paths).
In detail, ATs represent a series of attack processes consisting
of intermediate nodes required to achieve the ultimate goal of
an attack, providing advantages of finding the security hard-
ening methods [12], [13]. In ATs, the root node represents
the attack goal to be accomplished by an attacker, and leaf
nodes are various attack points to be exploited to compromise
the root. If the conditions of child nodes are satisfied, the
parent node is compromised. Each node in ATs is limited
to having only one parent node in the hierarchical structure.
On the other hand, AGs represent a series of attack paths
starting from a root node of an initial condition in the graph
to other nodes with various attributes such as system vulnera-
bilities, access privilege, or system/network properties [14],
[15]. Although AGs are useful for analyzing the security risk
using the causality of exploiting vulnerabilities, it also has a
limitation of scalability in terms of network size.

In the literature, there are several approaches to over-
coming this scalability problem in AGs. In [16], Noel and
Jajodia proposed hierarchical aggregation of AGs to achieve

scalability. They defined a set of aggregation rules for
each level of the hierarchy based on the attack subgraph
connectedness. Using their framework for AGs, both the com-
putational and cognitive aspects of scalability were improved.
In [17], Ou et al. proposed new logical AGs, which illustrate
the system configuration information and logical dependen-
cies of various attacks. In the logical AGs, the nodes represent
the logical statements and the edges represent the depen-
dency relation. They demonstrated that the logical AGs could
reduce the topology of AGs up to a polynomial size. In [18],
Yoon et al. proposed a three-tier AG (TAG), which consists of
a network connectivity layer, a remote vulnerability layer, and
a local vulnerability layer. By separating the layers depending
on network topology and vulnerability connectivity, the TAGs
provide a low complexity when generating AGs. In addition,
they proposed to eliminate the cycles in the TAG to obtain
a directed acyclic graph structure using the cycle handling
method and the d-separation algorithm. It is easier to find the
attack paths in a directed acyclic graph than in a graph with
cycles.

C. BAYESIAN ATTACK GRAPH (BAG)
BAGs are AGs with Bayesian networks, which are
directed acyclic attack graphs with probabilities assigned
to edges [19]. The BAGs can be used to prevent poten-
tial damages caused by attackers by exploiting the likeli-
hood that attacks occur at each node [20], [21]. In [22],
Frigault et al. defined probability-based metrics with the
CVSS scores of vulnerabilities and the dependencies of the
exploits and introduced AGs constructed with a Bayesian
network. Because the BAGs are grounded in probabilistic
analysis, the security countermeasure decisions based on
BAG are more reasonable than those based on the administra-
tor’s experience. Poolsappasit et al. modeled and utilized the
BAGs for security risk assessment and mitigation [20]. Using
the BAGs, they identified weak nodes in the network system
and computed the change of attack success probabilities after
attack incidents. In addition, they formulated an optimization
problem with BAG analysis and solved it with a genetic
algorithm, providing security mitigation plans. An example
of mitigation plans includes applying a firewall, establishing
an access control policy, patching the services, and disabling
services. Miehling et al. utilized the BAGs for determining
optimal countermeasure actions [21]. They introduced the
existing BAG model and focused on modeling the actions
of both attackers and defenders. They assumed that attackers
move randomly in the BAGs and that the defenders know
only the current status of the attackers. These assumptions
made it possible to model the attacker’s behavior as a proba-
bilistic spreading process and to formulate a security defense
problem as a partially observable Markov decision process
(POMDP). The authors solved the POMDP with dynamic
programming and presented the optimal security countermea-
sures consequently.

VOLUME 11, 2023 40513



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

TABLE 1. Comparative analysis of MTD strategies with AGs.

D. MTD STRATEGIES WITH AG
The AGs or BAGs would be used for deploying security
countermeasures such as MTD and adaptive cyber defense
(ACD) [23] techniques efficiently and appropriately. In [3],
Hong and Kim assessed the effectiveness of various MTD
techniques such as address shuffling, diversity, and redun-
dancy using a hierarchical attack representation model called
HARM, which consisted of the AG in the upper layer and
the AT in the lower layer [24]. For a given MTD deploy-
ment scenario, HARM was exploited to evaluate the level
of network hardening based on attack paths and to compute
the importance measure based on network centrality for risk
assessment. In [25], Hu et al. considered a reimaging-based
ACD that replaced the images known to be compromised
with clean ones. Because the defender was limitedly acces-
sible to a subset of machines and their statuses, it was mod-
eled as a POMDP. The interaction between the network and
the attacker was modeled as BAG. They proposed online
reinforcement learning-based algorithms to find effective
defense policies by solving the POMDP problem. In [26],
Jin et al. proposed the MTD strategies using the AGs in
the container-based cloud environment. They identified the
nodes frequently belonging to the attack paths in the AGs
and proposed deploying the MTD techniques to those nodes
to improve the effectiveness of the MTD technique. In [18],
Yoon et al. proposed to apply the MTD with different shuf-
fling intervals according to the hosts’ criticality. They devel-
oped an AG model and identified the critical hosts, which
are likely highly exploitable, by analyzing the AG. They
implemented the mechanism for the MTD shuffling for both
MAC and IP addresses and conducted the experiments in a
real SDN testbed. However, implementing MTDs on SDN
in existing work incurs message exchange overheads on
the control plane because the routing rules are exchanged
between the controller and switches to update the flow tables
in each switch. It is crucial to optimize the operations of
MTDs on SDN by using the BAG analysis results under
the consideration of SDN flow table updating overhead that
may affect the quality of service for legitimate traffic flows.
The comparative analysis of MTD strategies with AGs is
summarized in Table 1.

III. MODELING BAYESIAN ATTACK GRAPHS
A. RISK ASSESSMENT USING BAG
For security risk assessment, AGs can be generated using var-
ious attack graph generation tools [27] such as MulVAL [28]

TABLE 2. The parameters used for BAG modeling.

and CyGraph [29]. We consider a BAG for security risk
assessment. A BAG is represented by G = (V ,E) where
v ∈ V is the index for a vulnerability and e ∈ E is the
directed edge representing relationships between vulnerabil-
ities. Fig. 1 shows simple examples of BAG. The BAG in
Fig. 1(a) has five vertices, where V = {1, 2, 3, 4, 5} and
E = {1 → 3, 1 → 4, 1 → 5, 2 → 5}. In a BAG, each
vulnerability has the state of X , which has the value of one
if the vulnerability is compromised by an attacker and zero
if otherwise. Let X = (X1, · · · ,Xn) denote a set of random
variables for the states, where Xi is the random variable for
the state of the i-th vulnerability.Wemodel the states of nodes
as Bernoulli random variable; Xi is one with a probability of
pji and zero with a probability of (1 − pji), where pji is the
attack success probability for the i-th vulnerability with the
j-th parent vulnerability and is given by

pji = Pr(Xi = 1|Xj = 1) for ∃j ∈ pai, (1)

where pai is a set of parent nodes of the i-th vulnerability
in the BAG. The probability that the i-th vulnerability is
compromised by an attacker is given by the summation of
the joint probability function with Xi = 1 as follows:

PXi := Pr(Xi = 1) =
∑
{X|Xi=1}

Pr(X). (2)

In Bayesian networks, the joint probability for a set of random
variables X can be obtained from conditional probabilities
using the chain rule as follows:

Pr(X) =
n∏
i=1

Pr(Xi|pai). (3)

For simplicity, we assume that a child node can be compro-
mised when any of its parent nodes are compromised in the

40514 VOLUME 11, 2023



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

FIGURE 1. Examples of simple Bayesian attack graphs.

BAG. Under the assumption, Pr(Xi|pai) in (3) can be written
as follows:

Pr(Xi = 1|Xj = 1,∀j ∈ pai) = 1−
∏
j∈pai

(1− pji). (4)

Using (2) and (4), we can obtain PX ’s for all the vulnerabili-
ties in the BAG. The parameters used for BAG modeling are
summarized in Table 2.

B. VULNERABILITY-SPECIFIC ATTACK SUCCESS
PROBABILITIES
We consider how to obtain the attack success probabili-
ties for the vulnerabilities in the BAG. Let pvi denote a
vulnerability-specific attack success probability, which is
solely dependent on the type of vulnerability. To perform
risk assessment using BAG, the vulnerability-specific attack
success probabilities of vulnerabilities in BAG should be esti-
mated precisely [30]. Unfortunately, the estimation of attack
success probabilities of vulnerabilities is challenging, and
there is no exact way to determine the values yet. However,
one may obtain the attack success probabilities using CVSS
as follows:
• Frigault et al. [22] computed the attack success proba-
bility by dividing the CVSS’s Base Score of the vulner-
ability by the maximum value of 10.

• Poolsappasit et al. [20] computed the attack success
probability by dividing the Exploitability sub-score in
the CVSS’s Base Score by 10.

• Zhang et al. [31] computed the attack success probability
with the exponential function, which is given by pvi =
1−e−(exploitability score of ith vulnerability) using Exploitabil-
ity sub-score in the CVSS’s Base Score.

• Homer et al. [32] computed the attack success proba-
bility using the values of the access complexity metric
in the CVSS 2.0. The access complexity metric takes
one of the low, medium, or high values according to the
complexity of vulnerability exploits. Then, they mapped
the values of the low, medium, and high to the attack
success probabilities of 0.9, 0.6, and 0.2, respectively.

Alternatively, a measurement-based approach can be
adopted [33]. Leversage et al. proposed using the concept
of the number of attack trials until reaching attack success.
The time-to-compromise (TTC) values can be empirically
measured for each vulnerability and converted to the attack
success probability for the corresponding vulnerability [33].
Most existing modeling methods estimate the attack success

probability for a vulnerability simply by normalizing the
exploitability of the vulnerability. Among the aforementioned
approaches, we adopt the simplest one in [22], which uses
the CVSS’s Base Score. Thus, pvi is simply calculated as
(CVSS’s Base Score of vi)/10.
Given a vulnerability-specific attack success probability,

it is possible to compute the number of attempts for an
attacker to compromise the vulnerability. Assume that an
attack attempt for the i-th vulnerability is a Bernoulli trial
with the success probability of pvi and the failure probability
of (1−pvi ). Using the geometric distribution, we can calculate
the expected number of failures before the first success for the
i-th vulnerability as follows:

fvi =
1− pvi
pvi

. (5)

For example, in Fig. 1(a), suppose that v1 has been compro-
mised. Then, the attacker starts to attack v3, which has the
vulnerability-specific attack success probability pv3 = p13
in Fig. 1(a). By (5), it is expected that the attacker experi-
ences (1 − pv3 )/pv3 failures on average until it succeeds in
compromising v3. In other words, if the attacker has failed to
attack fv3 times, the next attack attempt is likely to succeed.
In Fig. 1(a), v1 has three reachable vulnerabilities, and it takes
(fv3 + fv4 + fv5 ) for the attacker to compromise all the child
nodes of v1.

C. MODELING ATTACKER’s BEHAVIORS
In general, AGs represent a series of attack paths from a root
node to the child nodes. On an attack path, it is assumed
that the attack is performed sequentially such that an attacker
finds the next victim among the child nodes of a compromised
parent node when it accomplishes an attack on the parent
node. Under the assumption, we model the attack success
probability in a generalized form of pji in (1), which is the
attack success probability of the i-th vulnerability when the
j-th vulnerability is its parent node in the BAG. Note that
pji is dependent on both the i-th and j-th vulnerabilities.
It is observed that pji can be affected by the degree of the
j-th vulnerability in the BAG. For example, consider simple
BAGs with the degree of four in Fig. 1(b) and that of six in
Fig. 1(c). Once the attacker has exploited vulnerability v1,
the attacker selects one of the child nodes of v1 as the next
victim and starts to attempt to compromise it. If the degree
of the parent node is higher, it takes a longer time on average
until a specific vulnerability is attacked as the victim node
because there are many other candidates to be selected as the

VOLUME 11, 2023 40515



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

FIGURE 2. An example of attacker’s behavior under the weakest-first
attack model in the BAG of Fig. 1(a) in case of fv3 < fv4 < fv5 .

next victim. In Fig. 1(b), as v1 has 4 child nodes, there is a
possibility that a child is not attacked until the other 3 nodes
are compromised. In Fig. 1(c), as v1 has 6 child nodes, it may
happen that a child is attacked after the other 5 child nodes
are compromised. It implies that the degree of a parent node
affects the time for a child node to be scanned and attacked in
the given topology. Hence, for computing the attack success
probability of a child vulnerability, it is essential to consider
how long it takes for an attacker to scan and start an attack on a
child node in the given topology. However, existing literature
does not consider topological properties such as the number
of other vulnerabilities that are reachable from a vulnerability
in BAG.

In addition to the degree of vulnerabilities, the scanning
behavior of attackers affects the attack success probabili-
ties of the vulnerabilities. In Fig. 1(b), suppose pvi > pvj
for all i and j such that i < j without loss of general-
ity. In this case, the attacker that has compromised v1 may
randomly select one of the child nodes of v1 as the next
victim. If the vulnerability-specific attack success probabil-
ities are exposed to the attacker through a scanning attack,
it may start to attack the weakest vulnerability with a higher
vulnerability-specific attack success probability. In Fig. 1(b),
the attacker in v1 is likely to compromise v2 first because pv2
is higher than others. Therefore, for an accurate security risk
assessment, it is necessary to consider the attacker’s behavior
and incorporate it into the BAG model.

We consider the most intuitive attacker behaviors of a
weakest-first attack and a random attack. According to the
cyber kill chain (CKC) [34], real-life attacks are performed
in seven stages: reconnaissance, weaponization, delivery,
exploitation, installation, command and control (C2), and
actions on objectives. In the stage of reconnaissance, attack-
ers scan the network and search for potential targets. Once
they secure a list of potential victims, they can randomly
choose one victim among the potential targets and move on
to the next stage of weaponization. The random selection is
modeled as random attack behavior. On the other hand,
the attackers could exploit the vulnerability information of
potential targets for selecting the next victim. The attack-
ers may have various preferences for the victim selection.
For example, if a specific malware tool is already ready in
the weaponization stage, the attacker may choose a victim
that is easily susceptible to the tool. In the CKC, after the
reconnaissance step, the attackers have the vulnerabilities of

potential targets and can decide to move on to the next stage
for the most vulnerable target. This preference is modeled
as weakest-first attack behavior. We derive the analyti-
cal models for the attack behaviors and use the results for
BAG-based security assessment analysis.

1) WEAKEST-FIRST ATTACK BEHAVIOR
Attack scenarios where attackers scan a victim network and
identify the vulnerabilities of the victim network are consid-
ered here. For the weakest-first attack behavior, the attackers
attempt to compromise the most vulnerable node at first
among the vulnerabilities of the victim network. Fig. 2 shows
an example of the weakest-first attack behavior for the BAG
in Fig. 1(a). In Fig. 2, each rectangle represents an attack trial
on the labeled vulnerability. Suppose that v3 is the most vul-
nerable and v5 is the least vulnerable among the child nodes of
v1 in the BAG in Fig. 1(a), (i.e. pv3 > pv4 > pv5 ). Then, the
attacker in the weakest-first attack model compromises the
child nodes in the order of v3, v4, and v5 as shown in Fig. 2.
The number of trials for each vulnerability is computed by (5)
for a given vulnerability-specific attack success probability.
It confirms that the topology of BAGs affects the average time
for attackers to compromise a specific node.
Proposition 1: Let p̃ji denote the topology-aware attack

success probability for the i-th vulnerability with the j-th
parent vulnerability. For the weakest-first attack behavior, p̃ji
is given by

p̃ji =
1

1+
∑

k∈child(j),pvk≥pvi
fvk

, (6)

where the child(j) represents the child nodes of the node vj in
the BAG.
Proof: For the weakest-first attack behavior, a child node

vi is attacked after the other child nodes with greater
vulnerability-specific probabilities than vi are compromised.
As a result, the number of attack trials that the attacker should
perform to compromise vi is given by

∑
k∈child(j),pvk≥pvi

fvk .
The equivalent attack success probability p̃ji is obtained by
1−p̃ji
p̃ji
=

∑
k∈child(j),pvk≥pvi

fvk using (5), and it can be written
in (6).

Suppose that the vulnerability-specific attack success
probabilities for nodes v3, v4, and v5 are 0.5, 0.25, and
0.2, respectively, in the example shown in Fig. 2. Then, the
expected number of attack failures for each node can be calcu-
lated as fv3 = 1, fv4 = 3, and fv5 = 4. Using (6), p̃13, p̃14, and
p̃15 become 0.5, 0.2, and 0.11, respectively. The topology-
aware attack success probability of the most vulnerable node
v3 does not change, but that of the least vulnerable node
v5 becomes much smaller because the attacker is assumed to
have the preference to attack the weakest node first under the
weakest-first attack model. It implies that the model reflects
the attacker’s preference that selects the weakest vulnerability
as its first victim. However, the attacker may not attempt to
compromise all the vulnerabilities exposed to the attacker one
by one. Once one or a few vulnerabilities are compromised,

40516 VOLUME 11, 2023



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

FIGURE 3. Topology of multi-tree structured BAGs, which have L layers, M
nodes per layer, and D edges per node.

it can attempt to compromise the next vulnerabilities that are
newly accessible through the compromised vulnerabilities.
In this case, the analytic result is expected to reside between
the result without attack behavior and that of the weakest-first
attack behavior. In addition, as the attacker would keep
searching every vulnerability until it succeeds in reaching its
final target, the model is derived under the assumption that
the attacker performs the searching of every vulnerability in
the ascending order of compromisation difficulty.

2) RANDOM ATTACK BEHAVIOR
Under the random attack behavior, an attacker randomly
selects a victim node and attempts to compromise it.
We assume that this victim selection procedure is repeated
until there are no more vulnerabilities left for an attack.
The random attack model is also suitable in situations where
the attackers cannot estimate the vulnerability-specific attack
success probabilities of the candidate nodes. Consider the
BAG in Fig. 1(a) under the assumption that an attacker has
compromised the node v1. It is observed that there are six
random cases of the victim sequences, i.e. v3–v4–v5, v3–v5–
v4, v4–v3–v5, v4–v5–v3, v5–v3–v4, and v5–v4–v3. The case
occurs with the same possibility of 1/6.
Proposition 2: Under the random attack model, the

topology-aware attack success probability p̂ji is given by

p̂ji =
1

1+ fvi +
1
2

∑
k∈child(j),k ̸=i fvk

, (7)

where the child(j) represents the child nodes of the node vj in
the BAG.
Proof: For the random attack behavior, a victim node is

randomly selected among the child nodes of a parent node.
For the i-th victim node, any sibling nodes can be randomly
selected before the i-th node and after the i-th node with the

FIGURE 4. The distribution of the OS-related vulnerability.

same probability of 1/2. If a sibling node precedes the i-th
node, the attack on the i-th node is postponed by the amount
of time required to compromise the sibling node. As a result,
the total expected time until the attacker starts to compromise
the i-th node is given by ( 12

∑
k∈child(j),k ̸=i fvk ) on average.

Using (5), the equivalent attack success probability p̂ji is

obtained by 1−p̂ji
p̂ji
= (fvi +

1
2

∑
k∈child(j),k ̸=i fvk ), and it can be

written in (7).

IV. ATTACK BEHAVIOR MODEL VALIDATION
EXPERIMENT
A. SIMULATION ENVIRONMENT
To validate our attack models, we have performed the exper-
imental simulations in simple and dense BAGs as shown
in Fig. 3 and measured the mean and maximum values of
unconditional attack success probabilities PXi for the nodes
in BAGs. We compared the results for the case with no
consideration of the attacker’s behavior, the random attack
behavior, and the weakest-first attack behavior while chang-
ing the number of nodes per layer M in the simple BAG
of Fig. 3(a) and the number of edges per node D in the
dense BAG of Fig. 3(b). In these BAGs, the root node v1 is
connected with every node in the second layer by default,
and the prior probability Pr(X1 = 1) for v1 is given as 0.5.
The probabilities pvi for the other vulnerabilities from v2 to
vn follow a distribution obtained from a real-life dataset.

B. REAL-LIFE DATASET FOR VULNERABILITY-SPECIFIC
ATTACK SUCCESS PROBABILITY
We exploit a CVSS score distribution of vulnerabili-
ties related to Windows 10 and Ubuntu to determine
the vulnerability-specific attack success probabilities. First,
we searched the CVE IDs of the OS-related vulnerabilities in
the CVE database. The CVE IDs were crawled from the CVE
website, which is accessible at ‘https://cve.mitre.org.’ Specif-
ically, we used the following URL for obtaining the vulner-
abilities related to MS Windows 10: ‘https://cve.mitre.org/
cgi-bin/cvekey.cgi?keyword=windows+10.’ Then, we obtai-
ned the score of vulnerabilities corresponding to these
CVE IDs in the CVSS database, which is accessible at

VOLUME 11, 2023 40517



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

FIGURE 5. Topology-aware attack success probability in the multi-tree structured BAG of Fig. 3(a) and (b).

‘https://nvd.nist.gov.’ For example, we obtained the vulner-
ability score for the CVE ID of CVE-2022-42973 at the
following URL: ‘https://nvd.nist.gov/vuln/detail/CVE-2022-
42973.’ For each score in the range of [1, 10], we counted the
vulnerabilities with the corresponding score value in the list
of CVE IDs and then normalized them by the total number
of vulnerabilities. Fig. 4 shows that most vulnerabilities of
both Windows 10 and Ubuntu are scored in the range of 5 to
9. Both cases have a similar distribution and it was observed
that there was a peak at the score of eight in the distribution.
Using the distribution obtained from the CVSS score, we gen-
erate the vulnerability-specific attack success probabilities
randomly for constructing BAGs in the experiments.

C. MEAN AND MAXIMUM ATTACK SUCCESS
PROBABILITIES
Fig. 5(a) and (b) show the mean and maximum attack success
probabilities in the simple BAG in Fig. 3. In the simple
topology,M varies from 1 to 100 while L = 2 and D = 0, and
thus the total number of edges in the BAG is given by M .
Here, M vulnerability-specific attack success probabilities
follow the distribution for Ubuntu vulnerabilities obtained in
Section IV-B. The results for the case with no consideration of
the attacker’s behavior (denoted by ‘no attack behavior’) are

plotted in red color in Fig. 5(a) and (b). In Fig. 5(a), it was
almost a constant of about 0.67 because the distribution for
Ubuntu has amean of about 6.7, and the vulnerability-specific
attack success probabilities are obtained by a normalization
factor of 1/10. In Fig. 5(b), it was about 0.67 for M=1 and
0.88 for the otherM ’s. Note that in the case ofM=1, the BAG
has one edge, and thus the mean and maximum values are the
same. For both random and weakest-first attack behaviors,
the mean and maximum attack success probabilities decrease
exponentially with respect to M . It is because each vulner-
ability node has more sibling nodes, and the attacker has
more chances to attack the other vulnerabilities. The weakest-
first attack behavior gives a larger mean and maximum of
attack success probabilities than the random attack behavior.
This result implies that the weakest-first attack strategy of
attackers is more effective to compromise the victim network.

Fig. 5(c) and (d) show the mean and maximum attack
success probabilities in the dense BAG in Fig. 3. In the dense
topology,D varies from 1 to 10 while L=5 andM=10, and the
total number of edges in the BAG is given byM (1+D(L−2)).
In Fig. 5(c), the mean attack success probabilities for the
random andweakest-first attack behaviors decrease gradually
with respect to D. If each node has more edges, the attacker
has more options to select the attack paths. As a result, each

40518 VOLUME 11, 2023



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

FIGURE 6. An example of the proposed time-based MTD system.

vulnerability would have a smaller attack success probability.
Fig. 5(d) shows the maximum attack success probabilities
in the dense BAG. Interestingly, the weakest-first attack
behavior gives the same value as that with the legend of ‘no
attack behavior’. It implies that the maximum values in both
cases do not change. This is because, under the weakest-first
behavior, the attacker starts to attack the weakest vulnerabil-
ity first, and thus the weakest vulnerability would have the
largest attack success probability. On the contrary, under the
random attack behavior, the attack success probability with
every node decreases as the number of edges increases. As a
result, the average of the maximum attack success probabil-
ity decreases with respect to D. In summary, the proposed
random and weakest-first attack models were developed to
describe the behaviors of attackers according to the attacker’s
strategies, and the models were validated by observing the
trend of topology-aware attack success probabilities with
respect to the BAG parameters in simple and dense BAG
topologies.

V. PROPOSED MOVING TARGET DEFENSE SYSTEM
We propose a time-based MTD system in the SDN environ-
ment. In the SDN environment, the address shuffling-based
MTD technique is conducted by exchanging flow table rules
between the SDN controller and all switches in the net-
work using OF protocol. The SDN controller can modify
the IP address information of packets using the modifica-
tion packet-handling action for the address shuffling and can
change a packet forwarding path for the packets with the
shuffled source/destination addresses using the forwarding
action on the SDN flow tables. We formulate an optimization
problem to determine a set of vulnerabilities for which the
addresses are shuffled. Based on the BAG-based analysis,
the optimization finds the solution to maximize the sum of
the attack success probabilities for the selected vulnerabilities
to focus on the protection of weak vulnerabilities with a
high attack success probability. Because the MTD operations
on SDN incur communication overhead between the SDN
controller and OF-enabled switches on the control plane,
and the flow tables for MTD may excessively occupy the
memory space of the switches, it is desirable to impose a
constraint on the number of the SDN flow table exchanges
in the optimization. This optimization is in the form of a
0/1 knapsack problem and can be solved by using dynamic
programming. Note that the knapsack problem is to determine

TABLE 3. The parameters used for the MTD algorithm and experiment.

a set of items to be included in a collection such that the total
value of the selected items is maximized while satisfying the
constraint of the collection weight. The set of items in the
knapsack problem corresponds to the set of vulnerabilities to
be reconfigured by the MTD operations, and the constraint
of the collection weight corresponds to the SDN overhead
constraint for flow table updating.

Fig. 6 shows a simple network in which the proposed
MTD technique is deployed. The network consists of three
hosts and four switches, and the red and blue lines represent
the current network flows toward host 1 with vulnerability
1 and host 3 with vulnerability 3, respectively. For the given
network, the BAG analysis is performed and PXi , which is
the unconditional probability for an attacker to compromise
the i-th vulnerability, is obtained for i ∈ V of the network.
Here, it is worth noting that the number of SDN flow table
exchanges required to perform the address shuffling for the
two vulnerabilities is different. To perform the MTD for
vulnerabilities 1 and 3, the flow tables of two and three
OF-enabled switches are to be updated by the SDN controller,
respectively. While the traditional full MTD technique shuf-
fles the addresses of all hosts in the network, the proposed
MTD shuffles the addresses of a subset of hosts that are
determined by solving an optimization problem under the
consideration of an unconditional attack success probability
of vulnerabilities and the SDN control overhead required to
perform MTD for security purposes.

A. OPTIMIZATION FORMULATION
The proposed MTD system aims to apply address shuffling
to as many vulnerable hosts as possible only if the MTD
overhead does not exceed a certain amount of SDN resources
allocated for cybersecurity. We formulate the following max-
imization optimization problem:

max
n∑
i=1

(PXi · xi),

subject to
n∑
i=1

Di · xi ≤ Q,

xi ∈ {0, 1}, 1 ≤ i ≤ n, (8)

where Di is the flow table updating overhead for OF-enabled
switches that the flows destined to a host with the i-th vulner-
ability go through, and Q is the flow table updating capacity
of the SDN controller within an MTD time interval. Here,

VOLUME 11, 2023 40519



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

Algorithm 1 Algorithm for Solving a 0/1 Knapsack Problem
Input: n,Q, [PX1 , · · · ,PXn ], [D1, · · · ,Dn]
Output: [x1, · · · , xn]
1: Make an array m[0..n, 0..Q].
2: for i← 1 to n do
3: xi← 0
4: end for
5: for i← 0 to n do
6: m[i, 0]← 0
7: end for
8: for j← 0 to Q do
9: m[0, j]← 0
10: end for
11: for i← 1 to n do
12: for j← 1 to Q do
13: if Di > j then
14: m[i, j]← m[i− 1, j]
15: else
16: m[i, j]← max{m[i− 1, j],m[i− 1, j− Di]+ PXi}
17: end if
18: end for
19: end for
20: Let i = n and j = Q
21: while i > 0 and j > 0 do
22: if m[i, j] ̸= m[i− 1, j] then
23: xi = 1 {mark the i-th vulnerability}
24: j← j− Di and i← i− 1
25: else
26: i← i− 1
27: end if
28: end while

Di is measured by the number of OF messages to be sent to
OF-enabled switches. For example,D1=2 andD3=3 in Fig. 6.
Q is the maximum amount of resources reserved for theMTD
operation, depending on the available resources of the SDN
controller. In (8), PXi is the unconditional probability for an
attacker to compromise the i-th vulnerability and is obtained
by the BAG analysis under the assumption that the attackers
use either the random or weakest-first attack strategy. The
simulation parameters are listed in Table 3.

B. DYNAMIC PROGRAMMING FOR SOLVING THE
PROBLEM
The optimization of (8) is a form of the 0/1 knapsack problem
where items to be put in the knapsack correspond to vul-
nerabilities that require MTD. This optimization problem is
solved using dynamic programming. Algorithm 1 shows the
pseudocode of the dynamic programming for solving the 0/1
knapsack problem. The inputs of the algorithm are n,Q,PXi ’s,
and Di’s for i ∈ V . Here, n is the total number of vulnerabili-
ties in the BAG, and Q is the maximum number of resources
of the SDN controller for MTD. PXi ’s are the unconditional
probabilities of vulnerabilities for i ∈ V . Di’s are the amount

FIGURE 7. An example of the operation of the proposed MTD in the
network of Fig. 6.

FIGURE 8. An example of network topology for MTD simulations (L = 4).

of overhead depending on the current network flow paths
when applying the MTD to a host with the i-th vulnerability
for i ∈ V . Note that PXi and Di correspond to the value and
weight of the i-th item in a knapsack problem, respectively.
The array xi’s for i ∈ V is the binary decision output vector
of the algorithm. In lines 2-8, we initialize the elements of
xi’s and m to zero. Then, we recursively calculate m by the
dynamic programming of a bottom-up approach in lines 9-17.
In lines 19-26, we inspect m[i, j] to find and mark xi’s for the
vulnerabilities that require MTD. According to xi’s, the SDN
controller identifies the intermediate OF switches forwarding
the network flows destined for the hosts with the marked
vulnerabilities and sends flow table modification rules to the
switches. In addition, the complexity of Algorithm 1 is given
by O(n ·Q) because it needs n ·Q iteration to update m. This
is more feasible than the complexityO(2n) of the brute force
method for solving the 0/1 knapsack problem.

C. OPERATION OF THE PROPOSED MTD
Fig. 7 shows an operation example of the proposed
time-based MTD in the network of Fig. 6. Here, tMTD is
the time interval of MTD and determines how frequently
the MTD operation is performed. At every tMTD time, the
time-based MTD operation is triggered. If an attack threat
level is high, theMTD interval needs to be set to a small value.
However, a small interval value causes the MTD operations
to be triggered too frequently. In this case, too much network
resource might be abused for network reconfiguration, and
thus the existing traffic flows can be interfered with.

40520 VOLUME 11, 2023



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

FIGURE 9. Unconditional attack success probability PXi
’s for the three MTD strategies.

In Fig. 7, the SDN controller sets up a timer for the MTD
interval, and when the timer expires, it performs the opera-
tions for collecting the traffic flow information, solving the
optimization, and updating flow tables over the OF protocol.
Algorithm 1 gives a binary decision vector of [x1, · · · , xn]. If
xi = 1, then the address of the host with the i-th vulnerability
is changed randomly, and the SDN flow tables for the traffic
flows destined to the i-th vulnerability are updated accord-
ingly by the SDN controller when the MTD is triggered. The
total number of flow table updates on the SDN is

∑n
i=1Di ·xi.

Thus, tMTD should be set large enough to perform collecting
the traffic flow information, solving the optimization, and
updating the SDN flow tables. If there is any change in
network and device configuration, vulnerability scanning and
BAG-based risk assessment should be reperformed. Unlike
existing MTD methods that change the configuration of all
the hosts on the network, the proposed MTD selects a subset
of hosts using the decision vector of (8) and changes their
configuration. Because the number of hosts whose configu-
rations are shuffled is smaller than the other MTDs, tMTD can
be set smaller.

As an example, in Fig. 7, the first binary decision vector
is [1, 0, 1]. Then the addresses of Host 1 and 3 are updated,
and the flow tables on Switch A and C for the flow destined

for Host 1 and Switch A, B, and D for the flow destined for
Host 3 are updated. For tMTD, the flow information collecting
and the optimization solving are performed. As the result,
the decision vector is [0, 1, 1], and the address shuffling is
performed again.

VI. PERFORMANCE EVALUATION
To evaluate the performance of the proposed MTD system,
we performed the simulation for random network topologies
with multiple layers. The random topology networks have
multiple layers from 2 to 10, each layer with a randomnumber
of nodes between 3 and 10, and each node has a random num-
ber of edges between 1 and 5. Fig. 8 shows an example of the
network topology generated by setting the number of layers
as 4. We assume that each host has only one vulnerability
related to Ubuntu OS and the attackers can access this net-
work externally with a probability of 0.5. Note that the attack
success probability of the top node in BAG is dependent
on the security level and policy of the gateway for external
network access. In addition, the attacker always starts to
attack the victim nodes from the top layer of the network
and can generate either one network flow passing through the
shortest path or multiple flows passing through all possible
paths. As a result, the number of flow tables Di to be updated

VOLUME 11, 2023 40521



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

FIGURE 10. Overhead comparison with the number of updated flow
tables.

for the i-th node is set as the random value between the hop
count of the shortest path to the i-th node and the number of
all nodes in the upper layer of the i-th node. The capacity Q
of the SDN controller for the flow table updating is set as 50.
We performed 1,000 simulations, and the average values for
the overhead and performance measurements were reported
for our MTD system. The performance of the proposed MTD
is compared with that of a full MTD and a randomMTDwith
a fixed selection ratio. The full MTD shuffles the addresses
of all hosts in the network like traditional MTD methods.
The random MTD with a fixed selection ratio shuffles the
addresses of hosts randomly chosen with the ratio.

Fig. 9 shows the mean and maximum of the uncondi-
tional probabilities PXi ’s for different MTD strategies under
the assumption that the attackers use either random or
weakest-first attack strategy. In Fig. 9(a) and (b), the full
MTD gives a much lower mean and maximum of uncondi-
tional attack success probabilities than the original network
without MTD. Under theMTD, the addresses of hosts change
randomly, but the attackers cannot distinguish whether the
hosts are new ones or the existing hosts just changed their
addresses. As a result, the MTD makes the attackers believe
that there exist more hosts with different addresses. This is
how the MTD can protect the network proactively against
cybersecurity threats. In Fig. 9(a), the mean of the prob-
abilities decreases with respect to L because the number
of nodes increases, and each node has a lower chance of
being attacked. On the contrary, in Fig. 9(b), the maximum
increases and levels off after L=5. If the shuffling rate is
reduced by half, the mean and maximum of the probabilities
increase accordingly. In comparison, the proposed MTD
achieves the same mean and maximum results as that of the
fullMTD. Fig. 9(c) and (d) show the performance result under
the weakest-first attack model. They show similar trends to
those in Fig. 9(a) and (b), respectively. The only difference
is that the magnitude of the mean and maximum results
is larger than that in Fig. 9(a) and (b). It implies that the

weakest-first attack strategy is more effective to compromise
the vulnerabilities in the same victim network. Fig. 10 shows
the box plot for the number of flow table updatings for
conducting MTD techniques under the weakest-first attack
behavior. It was observed that the MTD overhead for the
random attack behavior, which is the number of flow table
updatings, was almost the same as that for the weakest-first
attack behavior. The fullMTDhas the largestMTDoverheads
in terms of the number of updated flow tables in the entire
range of L because the full MTD changes the addresses of all
nodes in the network. For the random MTD, the overheads
are the smallest in the range of L from 2 to 5. However, when
the number of layers exceeds 6, the proposed MTD achieves
the smallest MTD overheads, which is lower than 50. Note
that the SDN capacity is set as 50 in this simulation. These
simulation results indicate that the proposedMTD has almost
the same MTD performance as the full MTD while the MTD
overhead is kept low.

VII. CONCLUSION
In this paper, we have proposed a time-based MTD strategy
for the SDN environment that considers the security risk level
and MTD performing overhead. The proposed MTD strategy
shuffles the addresses of an optimal set of vulnerable hosts
rather than the entire hosts on the network. To determine the
set of vulnerable hosts, we have proposed a BAG-based risk
analysis that considers the random and weakest-first attack
behaviors and solved the 0/1 knapsack problem for selecting
vulnerable hosts under an overhead constraint using dynamic
programming. The simulation results indicated that the pro-
posed BAG-basedMTD strategy can achieve almost the same
performance as the full MTD strategy while retaining low
MTD overhead.

REFERENCES
[1] E. Cole, Advanced Persistent Threat: Understanding the Danger and How

to Protect Your Organization. Waltham, MA, USA: Syngress, 2012.
[2] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-Asher,

T. J. Moore, D. S. Kim, H. Lim, and F. F. Nelson, ‘‘Toward proactive,
adaptive defense: A survey on moving target defense,’’ IEEE Commun.
Surveys Tuts., vol. 22, no. 1, pp. 709–745, 1st Quart., 2020.

[3] J. B. Hong and D. S. Kim, ‘‘Assessing the effectiveness of moving target
defenses using security models,’’ IEEE Trans. Depend. Secure Comput.,
vol. 13, no. 2, pp. 163–177, Mar. 2016.

[4] Common Vulnerability Scoring System (CVSS). Accessed: Jan. 13, 2022.
[Online]. Available: https://www.first.org/cvss/

[5] G.-Y. Shin, S.-S. Hong, J.-S. Lee, I.-S. Han, H.-K. Kim, and H.-R. Oh,
‘‘Network security node-edge scoring system using attack graph based on
vulnerability correlation,’’ Appl. Sci., vol. 12, no. 14, p. 6852, Jul. 2022.

[6] J. B. Hong and D.-S. Kim, ‘‘HARMs: Hierarchical attack representation
models for network security analysis,’’ in Proc. Austral. Inform. Secur.
Manage. Conf., 2012, pp. 74–81.

[7] T. E. Carroll, M. Crouse, E. W. Fulp, and K. S. Berenhaut, ‘‘Analysis of
network address shuffling as a moving target defense,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2014, pp. 701–706.

[8] J. H. Jafarian, E. Al-Shaer, andQ.Duan, ‘‘Openflow randomhostmutation:
Transparent moving target defense using software defined networking,’’ in
ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN),
2012, pp. 127–132.

[9] D. P. Sharma, D. S. Kim, S. Yoon, H. Lim, J. Cho, and T. J.Moore, ‘‘FRVM:
Flexible random virtual IP multiplexing in software-defined networks,’’
in Proc. IEEE Int. Conf. Trust, Secur. Privacy In Comput. Commun.
(TrustCom), Aug. 2018, pp. 579–587.

40522 VOLUME 11, 2023



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

[10] J. Narantuya, S. Yoon, H. Lim, J.-H. Cho, D. S. Kim, T. Moore, and
F. Nelson, ‘‘SDN-based IP shuffling moving target defense with multiple
SDN controllers,’’ in Proc. Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw.-Supplemental volume (DSN-S), Jun. 2019, pp. 15–16.

[11] S. Kim, S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-Nelson,
and H. Lim, ‘‘DIVERGENCE: Deep reinforcement learning-based adap-
tive traffic inspection and moving target defense countermeasure frame-
work,’’ IEEE Trans. Netw. Service Manage., vol. 19, no. 4, pp. 4834–4846,
Dec. 2022.

[12] S. Mauw and M. Oostdijk, ‘‘Foundations of attack trees,’’ in Proc. Int.
Conf. Inf. Secur. Cryptol., 2005, pp. 186–198.

[13] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley, ‘‘Optimal security
hardening using multi-objective optimization on attack tree models of
networks,’’ in Proc. 14th ACM Conf. Comput. Commun. Secur., Oct. 2007,
pp. 204–213.

[14] K. Ingols, R. Lippmann, and K. Piwowarski, ‘‘Practical attack graph
generation for network defense,’’ inProc. 22nd Annu. Comput. Secur. Appl.
Conf. (ACSAC), Dec. 2006, pp. 121–130.

[15] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, ‘‘Automated
generation and analysis of attack graphs,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2002, pp. 273–284.

[16] S. Noel and S. Jajodia, ‘‘Managing attack graph complexity through visual
hierarchical aggregation,’’ inProc. ACMworkshop Visualizat. DataMining
Comput. Secur., Oct. 2004, pp. 109–118.

[17] X. Ou, W. F. Boyer, and M. A. McQueen, ‘‘A scalable approach to attack
graph generation,’’ in Proc. 13th ACM Conf. Comput. Commun. Secur.,
Oct. 2006, pp. 336–345.

[18] S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-Nelson, and H. Lim,
‘‘Attack graph-based moving target defense in software-defined net-
works,’’ IEEETrans. Netw. ServiceManage., vol. 17, no. 3, pp. 1653–1668,
Sep. 2020.

[19] Y. Liu and H. Man, ‘‘Network vulnerability assessment using Bayesian
networks,’’ Proc. SPIE, vol. 5812, pp. 61–71, Mar. 2005.

[20] N. Poolsappasit, R. Dewri, and I. Ray, ‘‘Dynamic security riskmanagement
using Bayesian attack graphs,’’ IEEE Trans. Depend. Secure Comput.,
vol. 9, no. 1, pp. 61–74, Jan. 2012.

[21] E. Miehling, M. Rasouli, and D. Teneketzis, ‘‘Optimal defense policies for
partially observable spreading processes on Bayesian attack graphs,’’ in
Proc. 2nd ACM Workshop Moving Target Defense, Oct. 2015, pp. 67–76.

[22] M. Frigault, L. Wang, A. Singhal, and S. Jajodia, ‘‘Measuring network
security using dynamic Bayesian network,’’ in Proc. 4th ACM Workshop
Quality Protection, Oct. 2008, pp. 23–30.

[23] G. Cybenko, S. Jajodia, M. P.Wellman, and P. Liu, ‘‘Adversarial and uncer-
tain reasoning for adaptive cyber defense: Building the scientific foun-
dation,’’ in Information Systems Security. Cham, Switzerland: Springer,
2014, pp. 1–8.

[24] J. B. Hong and D. S. Kim, ‘‘Performance analysis of scalable attack
representation models,’’ in Proc. IFIP Int. Inform. Secur. Conf., 2013,
pp. 330–343.

[25] Z. Hu, M. Zhu, and P. Liu, ‘‘Online algorithms for adaptive cyber defense
on Bayesian attack graphs,’’ in Proc. Workshop Moving Target Defense,
Oct. 2017, pp. 99–109.

[26] H. Jin, Z. Li, D. Zou, and B. Yuan, ‘‘DSEOM: A framework for dynamic
security evaluation and optimization of MTD in container-based cloud,’’
IEEE Trans. Depend. Secure Comput., vol. 18, pp. 1125–1136, 2019.

[27] D. Tayouri, N. Baum, A. Shabtai, and R. Puzis, ‘‘A survey of MulVAL
extensions and their attack scenarios coverage,’’ IEEE Access, vol. 11,
pp. 27974–27991, 2023.

[28] X. Ou, S. Govindavajhala, and A. W. Appel, ‘‘Mulval: A logic-based
network security analyzer,’’ in Proc. 14th Conf. USENIX Secur. Symp.,
2005, pp. 113–128.

[29] S. Noel, E. Harley, K. Tam, M. Limiero, and M. Share, ‘‘CyGraph: Graph-
based analytics and visualization for cybersecurity,’’ inHandbook of Statis-
tics, vol. 35, V. N. Gudivada, V. V. Raghavan, V. Govindaraju, and C. Rao,
Eds. Amsterdam, The Netherlands: Elsevier, 2016, pp. 117–167.

[30] P. Johnson, R. Lagerstrom, M. Ekstedt, and U. Franke, ‘‘Can the com-
mon vulnerability scoring system be trusted? A Bayesian analysis,’’ IEEE
Trans. Depend. Secure Comput., vol. 15, no. 6, pp. 1002–1015, Nov. 2018.

[31] S. Zhang and S. Song, ‘‘A novel attack graph posterior inference model
based on Bayesian network,’’ J. Inf. Secur., vol. 2, no. 1, pp. 8–27, 2011.

[32] J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S. R. Rajagopalan,
and A. Singhal, ‘‘Aggregating vulnerability metrics in enterprise networks
using attack graphs,’’ J. Comput. Secur., vol. 21, no. 4, pp. 561–597,
Sep. 2013.

[33] D. J. Leversage and E. J. Byres, ‘‘Estimating a system’s mean
time-to-compromise,’’ IEEE Secur. Privacy, vol. 6, no. 1, pp. 52–60,
Jan./Feb. 2008.

[34] Cyber Kill Chain (CKC). Accessed: Mar. 22, 2023. [Online]. Available:
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-
chain.html

HYEJIN KIM received the B.S. degree in
electronic engineering from Dong-A Univer-
sity, Busan, Republic of Korea, in 2017. She
is currently pursuing the integrated M.S. and
Ph.D. degrees with the AI Graduate School,
Gwangju Institute of Science and Technol-
ogy (GIST), Gwangju, Republic of Korea. Her
research interests include cybersecurity and arti-
ficial intelligence.

EUISEOK HWANG (Senior Member, IEEE)
received the B.S. and M.S. degrees from
Seoul National University, in 1998 and 2000,
respectively, and the M.S. and Ph.D. degrees
in electrical and computer engineering from
Carnegie Mellon University (CMU), Pittsburgh,
PA, USA, in 2010 and 2011, respectively.
He was with the Digital Media Research Center,
Daewoo Electronics Company Ltd., South Korea,
from 2000 to 2006, and the Data Controller

Division, Channel Architecture Group, LSI (now Broadcom), San Jose,
CA, USA, from 2011 to 2014. Since 2015, he has been an Assistant
Professor/Associate Professor with the School of EECS, the AI Graduate
School, and the School of Mechatronics, GIST. In 2021 and 2022, he was a
Visiting Scholar with the Department of Computer Science and Engineering,
University of Michigan, Ann Arbor. He is currently an Associate Professor
with the School of Electrical Engineering and Computer Science (EECS),
Gwangju Institute of Science and Technology (GIST), South Korea. His
research interests include statistical signal processing, machine learning, and
channel coding for data storage and communication systems focused on the
physical layer and their emerging ICT applications, such as the Internet of
Things and smart grids.

DONGSEONG KIM received the Ph.D. degree
from Korea Aerospace University, in February
2008. From June 2008 to July 2011, he was a Post-
doctoral Researcher with Duke University. He was
a Senior Lecturer/Lecturer in cybersecurity with
the University of Canterbury, from August 2011 to
December 2018. He was a Visiting Scholar with
the University of Maryland, College Park, in 2007.
He has been an Associate Professor in cybersecu-
rity with The University of Queensland, Australia,

since January 2019. His research interests include automated cybersecurity
modeling and analysis for the Internet of Things, cloud computing, and
moving target defense. He was the General Co-Chair of ACISP2019 and
the General Chair of IEEE PRDC 2017. He served as the Program Co-Chair
for IEEE TrustCom2019, IEEE ICIOT2019, ATIS2017, GraMsec2015, and
IEEE DASC2015, and a Program Committee Member for international
conferences, including IFIP/IEEE DSN, ISSRE, SRDS, and ICC CISS,
respectively.

VOLUME 11, 2023 40523



H. Kim et al.: Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis

JIN-HEE CHO (Senior Member, IEEE) received
the M.S. and Ph.D. degrees in computer science
from Virginia Tech, in 2004 and 2008, respec-
tively. She has been an Associate Professor with
the Department of Computer Science, Virginia
Tech, since August 2018, and the Director of
the Trustworthy Cyberspace Laboratory. Prior to
joining Virginia Tech, she has been a Computer
Scientist with the U.S. Army Research Labora-
tory (USARL), Adelphi, Maryland, since 2009.

She has published over 120 peer-reviewed technical papers in leading
journals and conferences in the areas of trust management, cybersecurity,
metrics and measurements, network performance analysis, resource alloca-
tion, agent-based modeling, uncertainty reasoning and analysis, informa-
tion fusion/credibility, and social network analysis. She is a member of
the ACM. She received the best paper awards in IEEE TrustCom’2009,
BRIMS’2013, IEEE GLOBECOM’2017, 2017 ARL’s Publication Award,
and IEEECogSima 2018. She is aWinner of the 2015 IEEECommunications
Society William R. Bennett Prize in the Field of Communications Network-
ing. In 2016, she was selected for the 2013 Presidential Early Career Award
for Scientists and Engineers (PECASE), which is the highest honor bestowed
by the U.S. government on outstanding scientists and engineers in the early
stages of their independent research careers.

TERRENCE J. MOORE (Member, IEEE) received
the B.S. and M.A. degrees in mathematics from
American University, in 1998 and 2000, respec-
tively, and the Ph.D. degree in mathematics from
the University of Maryland, College Park, in 2010.
He is currently a Researcher with the U.S. Army
Research Laboratory, Network Science Division.
His research interests include sampling theory,
constrained statistical inference, stochastic opti-
mization, network security, geometric and topo-

logical applications in networks, and network science.

FREDERICA F. NELSON is currently a Researcher
and the Program Lead of the U.S. Army Research
Laboratory (ARL), Adelphi, MD, USA, where
she leads research on machine learning and intru-
sion detection methods and techniques to pro-
mote cyber resilience and foster research on
autonomous active cyber defense. She manages
and negotiates the research and project agreements
for ARL between the network security branch
and academia or international organizations. She

is also the Lead of the Robust Low-Level Cyber-Attack Resilience for
Military Defense (ROLLCAGE) Program working in collaboration with the
Army Tank Automotive Research, Development and Engineering Center
(TARDEC), Office of Naval Research (ONR), and the Air force Research
Laboratory (AFRL) to build a cohesive in-vehicular resilient system for
defense against sophisticated enemy malware that strives to blend in with
normal system activities. She has over 20 year’s combined experience in
cybersecurity research, software engineering, and program management
within the DoD and other federal services to include the Federal Bureau of
Investigation (FBI) and the Department of Justice. She has expertise in lead-
ing projects to success from conception to execution and delivery/transfer.
She currently serves as the Chairperson of the International Science Tech-
nology (IST-163) Panel—NATO Science & Technology Organization (STO)
on the topic of deep machine learning for military cyber defense. She is a
participant in the Army Education Outreach Program as an Ambassador and
a Virtual Judge for the e-Cybermission Program.

HYUK LIM (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the School of
Electrical Engineering and Computer Science,
Seoul National University, Seoul, Republic of
Korea, in 1996, 1998, and 2003, respectively.
From 2003 to 2006, he was a Postdoctoral
Research Associate with the Department of
Computer Science, University of Illinois at
Urbana–Champaign, Champaign, IL, USA.
From 2006 to 2021, he was a Professor with the

AI Graduate School and jointly with the School of Electrical Engineering
and Computer Science, Gwangju Institute of Science and Technology
(GIST), Gwangju, Republic of Korea. He was the Dean of the School
of Electrical Engineering and Computer Science and the Director of the
GIST Institute for AI. In 2022, he joined the Korea Institute of Energy
Technology (KENTECH), Naju-si, Republic of Korea, as a Full Professor.
His research interests include artificial intelligence, cyber-security, big data
privacy, software-defined networking, and wireless communication systems.
He is also conducting active research on AI applications for cybersecurity,
networks, and energy systems.

40524 VOLUME 11, 2023


