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ABSTRACT Imaging satellite mission planning has received more and more attention as one of the core
problems in the field of imaging satellite applications. In this paper, a hybrid discrete artificial bee colony
(HDABC) algorithm is proposed to address this problem. The HDABC algorithm improves the three search
phases of the basic artificial bee colony (ABC) algorithm to make them applicable to the discrete satellite
mission planning problem. In the employed bee search phase, the population is divided and a multi-strategy
search equation mechanism is used to balance the exploration and development of the algorithm. In the
following bee search phase, two kinds of neighborhood search operators are designed based on the problem
characteristics to further improve the fitness values of the better solutions. In the scout bee search phase,
a migration operator and an immigration operator are introduced to improve the fitness values of the worse
solutions and promote the exchange of different subpopulations to achieve co-evolution. In the experimental
part, orthogonal experimental design is used to determine the appropriate algorithm parameters. Simulation
experiments are carried out to test problems of different sizes. The experimental results show that the

proposed HDABC algorithm shows good performance.

INDEX TERMS Artificial bee colony algorithm, imaging satellite, mission planning.

I. INTRODUCTION

Imaging satellites usually operate in specific orbits, and when
they transit over the observation target, they image the target
by carrying spaceborne remote sensors such as visible light,
hyperspectral, synthetic aperture radar, and infrared, and store
the acquired target image information temporarily in the
spaceborne memory. When they transit the ground station, the
data will be transmitted down at a selected time, and the data
will be processed by relevant departments and then sent to
users. Due to its special geographical position, the imaging
satellite has the advantages of being free from the restriction
of national region and wide observation range, which make it
widely used in military, civil and commercial fields. In recent
years, with the continuous development of the application of
satellite earth observation, on the one hand, the number and
types of orbiting imaging satellites are increasing gradually;
on the other hand, the demands of users in various fields are
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constantly increasing, showing complex and diverse charac-
teristics. Therefore, it is necessary to make overall arrange-
ments for imaging satellite resources to meet the needs of
users to the maximum extent and improve the utilization rate
of satellite resources. As a key supporting technology in the
field of satellite application control, imaging satellite mission
planning has become an important research direction in space
applications. The research on imaging satellite mission plan-
ning can provide technical support for engineering practice
and has high practical application value.

The imaging satellite mission planning is a typical non-
deterministic polynomial hard (NP-Hard) problem [1]. With
the increase of the scale of missions and resources, the com-
plexity of solving the problem also rises sharply. At present,
the algorithms to solve the problem can be divided into three
categories: exact algorithm, heuristic algorithm and intelli-
gent optimization algorithm.

1) Exact algorithm. Han et al. [2] proposed a solution
framework based on column generation, whose basic idea
is to obtain the optimal solution of relaxation problem by
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using column generation algorithm. Hu et al. [3] established
a mixed integer planning model for the multi-satellite col-
laborative mission planning problem and proposed a branch
pricing solution algorithm, in which dynamic planning and
heuristic algorithms are designed separately for subproblem
solving to accelerate the solution speed. Liu et al. [4] used a
multilevel path reduction dynamic planning method to deal
with the satellite mission planning problem and obtained
optimal solutions in small and medium-sized problems. The
exact algorithm can obtain the optimal mission planning
scheme by means of mathematical analysis. However, due to
its computational complexity, the solution efficiency is low.
Especially for large-scale task planning problems, Lagrange
relaxation, column generation and branch pricing are needed
to disassemble the search space to improve the solution
efficiency.

2) Heuristic algorithms. Wang et al. [5] designed a task
flexibility factor based on time window length, task duration
and task weight, and proposed a heuristic algorithm based
on priority and conflict avoidance, supplemented by priority
backtracking. Xu et al. [6] designed two types of heuristic
factors, priority system benefit and priority opportunity cost,
to guide the solution construction. Chen et al. [7] designed
a conflict degree heuristic factor with the number and length
of time window overlapping periods and task weights, and
designed a solution generation algorithm based on time greed
and weight greed. The heuristic algorithm is mainly based
on the domain knowledge of satellite mission planning to
design heuristic factors to guide the construction of solutions.
Compared with the exact algorithm, the heuristic algorithm is
easy to implement and has high solving efficiency.

3) Intelligent optimization algorithms. Intelligent opti-
mization algorithm, generated by simulating the operation
mechanism of natural phenomena, has the characteristics of
simple, effective and strong universality. It is one of the
most commonly used solving algorithms, such as genetic
algorithm [8], [9], tabu search algorithm [10], [11], simulated
annealing algorithm [12], [13]and ant colony algorithm [14],
[15], which have been widely used in the field of satellite
mission planning. Zheng et al. [16] designed iterative rules
based on termination algebra and jump conditions by refer-
ring to the advantages of dynamic mutation strategy and
adaptive mutation strategy, so as to overcome the shortcom-
ings of traditional genetic algorithms, such as easy to fall
into local optimization and long solving time. Gao et al.
[17] introduced the tabu search method and Metropolis rule
into the mutation operation of genetic algorithm to accel-
erate the convergence speed of the algorithm and improve
the probability of finding the optimal solution. Habet et al.
[10] mapped the satellite mission planning problem into a
constraint satisfaction optimization problem and performed
the construction of the taboo search neighborhood by partial
enumeration based on insertion trial. Ding et al. [18] proposed
a multi-objective variable neighborhood simulated anneal-
ing algorithm, designed coding and decoding rules, variable
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neighborhood search methods, and selection and elimination
mechanisms to achieve sliding optimization of the imaging
moments of the observation mission, which improves both
the completion of the observation mission and the imaging
quality. Yu et al. [19] established a satellite mission plan-
ning model considering the mission synthesis mechanism
and used an improved ant colony algorithm to solve the
problem. By inserting Insert search operators into the ant
colony algorithm, local optimization was carried out in the
optimal solutions of each generation to improve the quality
of the solutions.

In general, at present, researchers mostly use intelligent
optimization algorithms to solve the problem of satellite
mission planning. Classical algorithms such as genetic algo-
rithm, tabu search algorithm and simulated annealing algo-
rithm have been widely used in the field of satellite mission
planning, and related researches mainly focus on population
structure, neighborhood structure, and escape mode structure
[20]. In fact, the above algorithms have natural advantages in
solving satellite mission planning problems. Satellite mission
planning problem is a kind of typical discrete optimization
problem whose solution space is discrete. The main oper-
ators of genetic algorithm, tabu search algorithm and sim-
ulated annealing algorithm can directly operate on discrete
coded solutions to generate new neighborhood solutions. But
it should also be noted that the above algorithm also has
some limitations. A good intelligent optimization algorithm
should have two characteristics: exploration and develop-
ment. Exploration means that the algorithm jumps out of the
local area to search for optimization in the whole solution
space to enhance the diversity of solutions. Development
refers to optimizing a local area in order to find the best
solution. The global optimization ability of genetic algorithm
is strong, but the local optimization ability is insufficient.
Tabu search algorithm, on the contrary, has strong local opti-
mization ability and weak global optimization ability. As a
very effective means to solve optimization problems, intel-
ligent optimization algorithm has been widely concerned by
researchers. At present, many advanced intelligent optimiza-
tion algorithms have been produced, and scholars have tried
to apply them to their own research fields and made some ben-
eficial explorations, such as: brain storm optimization [21],
differential evolution algorithm [22], biogeography algorithm
[23], multi-verse optimizer [24], grey wolf optimizer [25]
and Seagull optimization algorithm [26], etc. At the same
time, it should be noted that most of the current intelligent
algorithms were first proposed for continuous optimization
problems, which need to be discretized before they can be
applied to discrete optimization problems such as satellite
mission planning.

Artificial bee colony (ABC) algorithm is a relatively novel
swarm intelligence algorithm, which simulates the intelli-
gent foraging behavior of bee colonies in nature, and has
the characteristics of high searching performance and easy
implementation. The ABC algorithm is optimized through
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the employed bee phase, following bee phase and scout
bee phase. The employed bees conduct global optimization,
and the following bees further develop the better solutions,
while the scout bees timely stop the development of the
worse solutions. The three phases are interrelated, taking into
account the exploration and development of the algorithm.
This unique optimization mechanism is widely concerned
by researchers. In recent years, many improved versions
have been proposed, most of which focus on designing
new solution search equations [27], [28], [29], [30], [31],
[32]. Peng et al. [27] proposed a solution search strategy
guided by the best neighbor to enhance the development
ability of ABC algorithm. Zhou et al. [28] proposed an
improved ABC algorithm based on multi-elite guidance to
achieve a better balance between exploration and develop-
ment. Inspired by particle swarm optimization algorithm, Zhu
and Kwong [29] incorporated the global optimal solution
into the solution search equation, with the purpose of uti-
lizing valuable information in the global optimal solution to
enhance development.

In order to further expand the application range of arti-
ficial bee colony algorithm, researchers improved the basic
artificial bee colony algorithm and proposed the discrete
artificial bee colony algorithm to successfully apply it to
discrete optimization problems, such as multi-sensor resource
scheduling problem [33], secondary allocation problem [34],
single machine scheduling problem [35], flow shop schedul-
ing problem [36], etc. The calculation results show that com-
pared with other existing intelligent optimization algorithms,
the improved discrete ABC algorithm can produce good
results in discrete optimization problems. At present, there
are not many literatures that use the discrete ABC algorithm
to solve the satellite mission planning problem. Therefore,
this paper intends to apply the discrete ABC algorithm to
solve the imaging satellite mission planning problem.

In this paper, a hybrid discrete artificial bee colony
(HDABC) algorithm is proposed for the imaging satellite
mission planning problem. HDABC algorithm improves the
three search phases of ABC algorithm and discretizes them
to make them applicable to the satellite mission planning
problem. In the employed bee search phase, the population
is divided and a multi-strategy search equation mechanism is
used to balance the exploration and development of the algo-
rithm. In the following bee search phase, two kinds of neigh-
borhood search operators are designed based on the problem
characteristics to further improve the fitness values of the bet-
ter solutions. In the scout bee search phase, a migration oper-
ator and an immigration operator are introduced to improve
the fitness values of the worse solutions and promote the
exchange of different subpopulations to achieve co-evolution.

Il. MODELING OF IMAGING SATELLITE MISSION
PLANNING PROBLEMS

A. SYMBOL DEFINITION

In order to facilitate the description of the problem, the rele-
vant symbol definitions are first given, as shown in table 1.
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TABLE 1. Symbols and their meanings.

Symbol Meaning
Planning time period, 7, is the
Tecneaue =[T>T.] planning start time , 7, is the
planning end time.
S= {Sl,Sz "‘SM} Set of imaging satellites, a total of M

satellites.
Mission = {ml N m\} Set of imaging tasks, N tasks in total.
The kth visible time window of
satellite j for mission i, twsl./f ; isthe
‘ /,twe,.’f /] start time of the time window and
tweﬁ ; is the end time of the time

window.
The actual observation time of
satellite j for mission i at the kth

visible time window, s, ; 1s the start
time and e/ ; is the end time.

v, Observation benefit for mission i.

dur, Observation duration of mission i.

Adjustment time of remote sensors
during continuous satellite missions.

. Storage capacity occupied by
! mission i.
e Available power-on time of satellite j
J in the current orbital lap.
Dl Available storage capacity of satellite
J

j in the current orbital lap.
Decision variable, if satellite j

] observes mission i, the value is 1;
otherwise, it is 0.

B. PROBLEM DESCRIPTION AND BASIC ASSUMPTIONS
The multi-imaging satellite mission planning problem can
be described as the cooperative imaging of N missions by
M satellites within a certain planning period. By finding
reasonable values of decision variables, the earth observation
scheme of the satellite can maximize the earth observation
benefits on the premise that all constraints can be satisfied.

In order to facilitate the modeling of the problem, the
following reasonable simplifications and basic assumptions
are made in this paper based on the consideration of actual
satellite systems.

1) The imaging satellites can all work normally during the
mission planning cycle.

2) The satellites involved in the planning carry only one
on-board remote sensor and have the ability of side swing.

3) The imaging targets are all point targets after processing.

4) Regardless of data transmission mission planning, it is
assumed that data transmission resources are sufficient and
the satellite has the opportunity to transmit data down and
release memory within each orbital lap.

C. CONSTRAINTS ON THE PROBLEM
1) Each mission can be executed at most once.
M .
> xl <1, Vie Mission )

j=1
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2) The actual execution time window of the mission must be
within the satellite’s visible time window to the target.

tsl.‘ . > twsk

Lj = ij’

k k
ij = wej @)

te
3) The same satellite must satisfy the attitude adjustment time
constraint for two consecutive missions.

k k

teil,j + sti1in < teiZ,j 3)
4) Energy constraint. The duration of mission observation
cannot exceed the available power-on time of satellite in the
current orbital lap.

i {O, dur; > ij

X =
! 1, dur; < T]free

“

5) Data storage constraints. The storage capacity occupied by
the mission cannot exceed the storage capacity available for
satellite’s current lap.

[0 wspe o
i 1, ;< D;ree

D. OBJECTIVE FUNCTION

The imaging satellite mission planning problem is a typi-
cal multi-objective optimization problem with different opti-
mization objectives for different application scenarios. In this
paper, the objective function is designed by considering the
mission benefit and the mission completion rate comprehen-
sively as follows.

N M ) N
f=C D x> v (6)
i i

N M )
H=0.> N )
i

f=axfi+(I—-a)xfr (®)

Equation (6) represents the first planning objective: the mis-
sion benefit, which is the ratio between the benefit of com-
pleted missions and the benefit of total missions. Equation (7)
represents the second planning objective: mission completion
rate, which is the ratio of the number of completed missions
to the total mission number. Equation (8) is the objective
function of this paper, which takes the mission benefit and
mission completion rate into comprehensive consideration,
where o denotes the weight of the first planning objective
and satisfies 0 < o < 1.

lll. THE BASIC ABC ALGORITHM

The ABC algorithm is a colony intelligence algorithm that
simulates the intelligent foraging behavior of a bee colony.
In this algorithm, each honey source represents a feasi-
ble solution to the problem, and the bees are divided into
employed bees, following bees and scout bees according
to their division of labor, corresponding to the three search
phases of the algorithm. The bees perform different activities
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according to their respective division of labor and share infor-
mation to complete the problem search process. The basic
phases are as follows.

A. INITIALIZATION

Assuming that the problem dimension is D, any solution
can be represented by a D-dimensional array, e.g., X; =
(xl.l, xl.z, .- ~xiD ). Each dimension of the solution is generated
randomly in the search space according to the following
equation.

x,{ = )Cllnin + r(xfnax - x/min) 9
where x]min and xlax represent the minimum and maximum
values of the jth dimension of the solution, j = 1,2---D,
i = 1,2---N, N is the population size, and r is a random
number and r € (—1, 1).

B. EMPLOYED BEE PHASE

All employed bees generate a new candidate solution around
the current solution according to the following equation.

vl =x + 0] — ) (10)
where V; = (vl.l, vl.z, e le ) is the newly generated candidate
solution, ¢ is a random number and ¢ € (—1, 1), and X =
(x,l,x,f, . -x,?) is a randomly selected individual from the
population that is different from the current solution. When a
new candidate solution is generated, the employed bee eval-
uates it and updates the current solution if the new solution is

better than the current solution, otherwise the current solution
is retained.

C. FOLLOWING BEES PHASE
The employed bee shares the information of the nectar source
with the following bee after completing the search, and the
following bee uses a roulette strategy to select a suitable
solution for its exploitation according to the quality of the
solution. The selection probability of any solution is calcu-
lated according to the following equation.

Pi= (an

Zn:lﬁt"

where fit; is the fitness value of the i th solution. The following
bee mines the selected solution by using (10). If the new
solution is better than the current one, the current one will
be updated; otherwise, the current one will be retained.

D. SCOUT BEE PHASE

The algorithm records the iterations of each solution. when
a solution reaches a certain number of iterations and its
quality still cannot be improved, the employed bee will be
transformed into the scout bee, which will generate a new
solution to replace the original individual by using (9).

40009



IEEE Access

Y. Yang, D. Liu: Hybrid Discrete ABC Algorithm for Imaging Satellite Mission Planning

Satellite 1 Satellite 2 Satellite M

{ \\ I \
N - O - - [

FIGURE 1. Encoding schematic.

IV. HYBRID DISCRETE ARTTIFICIAL BEE COLONY
ALGORITHM

The basic ABC algorithm, with its simple structure, easy
implementation and fast convergence, has been widely used
in optimization problems, but it is still challenged in solving
some complex optimization problems. On the one hand, the
basic ABC algorithm is stronger than exploration and weaker
than development. Intelligent optimization algorithms gen-
erally have common characteristics, namely exploration and
development. Equation (9) and (10) are the search equations
used in the basic ABC algorithm. Equation (10) is to search
the current solution neighborhood based on the randomly
selected solution, which makes the search blind. Equation (9)
is to randomly generate feasible solutions in the solution
space, which is a pure exploration behavior. On the other
hand, the basic ABC algorithm belongs to numerical opti-
mization algorithm, which is mostly used for solving continu-
ous domain optimization problems. However, in reality, there
are a large number of discrete domain optimization problems
similar to satellite mission planning. If the search equation in
the standard algorithm is directly applied, a large number of
illegal solutions will be generated, and it takes a lot of time
to legalize the solutions.

Based on the above analysis, this paper proposes the
HDABC algorithm to solve the satellite mission planning
problem. The HDABC algorithm improves the three search
phases of the basic ABC algorithm and discretizes it to make
it applicable to the satellite mission planning problem.

A. ENCODING AND DECODING

The integer encoding mechanism of satellite-mission, which
is more intuitive to the solution expression, is used to solve
the satellite mission planning problem. For a satellite mission
planning problem with M satellites and T imaging missions,
the encoding of one of the feasible solutions is shown in
Fig. 1. The whole code is composed of different satellite
segments. A certain satellite segment is the imaging missions
undertaken by the satellite. The number O is used to distin-
guish different satellite segments.

The coding mode of satellite-mission does not directly
specify a specific observation window for a specific mission,
but the actual observation window is specified during decod-
ing. The specific operation mode is as follows:

Take out the number of the current mission and the number
of the satellite executing the mission, traverse all observation
windows of the current mission on the current satellite, and
conduct constraint detection in turn. If an observation win-
dow meets all constraints, specify the corresponding window
for the mission and set its decision variable as 1, and then
arrange the next mission. If all windows fail to pass the
constraint detection, then the mission cannot be completed
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and its decision variable is set to 0. After traversing all the
missions on the current solution, the fitness value of the
solution is calculated according to the decision variables of
each mission, namely the objective function value.

B. INITIALIZATION

A sequence containing T task numbers is randomly gener-
ated, and a random balanced allocation strategy is adopted to
determine the satellite segment to which the task belongs, that
is, each satellite segment performs at least (7'//M) missions,
and then (T — M(T//M)) satellite segment is randomly
selected, and the number of missions performed by these
satellite segments is ((T'//M) + 1).

C. IMPROVED EMPLOYED BEE SEARCH PHASE

The multi-strategy search equation mechanism is used to
improve the employed bee search phase of the basic ABC
algorithm, taking into account the exploration and develop-
ment of the algorithm.

1) MULTI-STRATEGY SEARCH EQUATION MECHANISM

The basic ABC algorithm uses (10) to search around the
current solution in the employed bee phase. Equation (10)
modifies the current solution by randomly selecting an indi-
vidual in the population. Therefore, searching by (10) has
randomness, which is suitable for exploration but not con-
ducive to development. In fact, the information of elite solu-
tions in the population can often provide some guidance for
the search of the current solution. For example, in parti-
cle swarm optimization algorithm, particles can effectively
improve their own fitness value by tracking the best solution
of individual history and the best solution of the population.
Many researchers have modified the search equation of the
basic ABC algorithm based on this point, mainly emphasizing
the use of population optimal and elite solutions to enhance
the exploitation capability of the algorithm. It should be
noted that although the use of optimal and elite solutions
can improve the search efficiency and facilitate exploitation,
it can also weaken the diversity of the population and lead
to premature convergence of the algorithm. To balance the
exploration and development of the algorithm, the multi-
strategy search equation mechanism is used in the employed
bee search phase.

(1) Random search mechanism. The random search strat-
egy should make the algorithm explore the whole search
space, and the search equation should have strong exploration
ability. In this paper, the search equation of the basic ABC
algorithm is modified by using (12) [37].

vé:xil +‘/’(x£1 _xiz) (12)

where X,; = (xrll,xrzl, .- -xf)l) and X, = (xrlz,xrzz, .- 'erz)
are two different individuals randomly selected from the
population and both different from the current solution X;, ¢ is
the guiding factor, and ¢ € (0, 1), and V; = (vil, v?, cee v?) is
the updated individual. Thus the equation has the opportunity
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to be explored in any direction, which is beneficial to the
diversity of the population.

(2) Search mechanism based on the maximum access level.
In this search mechanism, a memory function is introduced
for the employed bees. The employed bees no longer ran-
domly select the solution in the population to update the
current solution. Each employed bee sets the access level for
nectar sources other than its own. The longer a source has not
been visited, the higher its access level, and the more likely
the employed bee will choose that source to update the current
source. If there are nectar sources with the same access level,
the source with the higher fitness value will be chosen. The
search equation is modified as follows.

Vo=l + o — ) (13)
where X; = (x!,x2,---xP) is the solution with the high-

est access level and the highest fitness value, and the other
parameters have the same meaning as in (12).

(3) Search mechanism based on optimal solution guidance.
Inspired by the idea of individual tracking the extremum
of the swarm in particle swarm optimization algorithm, the
employed bee has the ability to find the global optimal solu-
tion and update the current solution under the guidance of the
optimal solution. The search equation is modified as follows.

=+ 0 — D (14)
where Xposr = (xliext’xl%est’ - -bem) is the global optimal

solution and the other parameters have the same meaning as
in (12).

In order to solve the drawback that single search equation
exploration and exploitation could not be combined, a multi-
strategy search equation mechanism is introduced. Accord-
ingly, in order to apply the above search mechanism, the
island model is adopted, and the population is divided into
class I, class II, and class III islands according to the individ-
ual fitness values, with a ratio of 3:4:3. For class I island, the
search mechanism based on optimal solution guidance is used
to focus on exploitation and improve the convergence speed
and accuracy. For class Il island, the search mechanism based
on the maximum access level is used to give consideration to
exploration and development, which has a good convergence
effect and a certain ability to jump out of the local optimal.
For class III island, random search mechanism is adopted
to explore emphatically and maintain the diversity of the
population.

2) SEARCH EQUATION DISCRETIZATION

The above search equations are mainly used in continuous
space optimization problems. If they are directly applied to
discrete optimization problems such as satellite mission plan-
ning, a large number of illegal solutions will be generated.
Therefore, this paper redefines the operators in the equation
to discretize the search equation [38]. The search equations
all have the structure of v{ = x; + <p(yf. — x{ ), and the relevant
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operators are redefined as follows.

m=90)—x) ¥j=1...D (15)
mﬁ _ I m_utation(xf) lf ¢ < rand (16)
v if ¢ > rand

Vi: = multi_point_crossover(xf, mf) Vi=1...D (17)

where mutation(xl’.) is a variation operation, which means
the current mission randomly exchanges its position with
another task, ¢ is a bootstrap factor, and ¢ € (0, 1),
and multi _point_crossover(xf , mf) is a multi-point crossover
operation. mﬁ and v{ are generated involving the replacement
of some elements in x{ . The mission number in this paper
is unique, and directly performing the above operation will
result in the same mission number in the solution. Therefore,
when executing the replacement operation, we first examine
whether the replaced task a is the same as the replaced task b
in x,’ If not, we find the location of task a in x{ and copy task
b to that location, and then execute the replacement operation
afterwards.

D. IMPROVED FOLLOWING BEE SEARCH PHASE

After the employed bee search phase, the following bee uses
a roulette to select the solutions for secondary development.
In this paper, two kinds of neighborhood search operators are
designed based on the characteristics of the problem, namely
mission insertion/replacement within the satellite segment
and mission replacement between the satellite segments.
These two neighborhood search operators are executed suc-
cessively for the selected solutions.

1) MISSION INSERTION/REPLACEMENT WITHIN SATELLITE
SEGMENT

The satellite segments of the current solution are traversed.
In a certain satellite segment, the uncompleted missions
whose value of the decision variable is 0 are found, and
the missions are sorted from largest to smallest according
to the observation benefit. Take out missions successively.
If the mission has no observation window on the satellite,
the position of the mission will not be changed. If there
are observation windows, the windows will be investigated
in turn. If the mission can be inserted into an observation
window without conflict, that is, the insertion of the mission
does not affect the execution of its adjacent missions, then
the observation window is assigned to it and it is placed
in the corresponding position. If none of the windows can
insert the mission without conflict, then the arranged missions
affected by the mission in each observation window will be
evaluated. Assuming that the benefit of the mission is v;
and the benefit of the missions that cannot be executed in a
certain window due to the insertion of the mission is v;, then
the observation window with the maximum positive value of
v1 — 2 is designated for the task and the task is placed in the
corresponding position. If neither of the above is possible, the
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position of the mission within the current satellite segment is
not changed.

2) MISSION REPLACEMENT BETWEEN SATELLITE SEGMENTS
After the current solution has undergone the neighbor-
hood search operator based on mission insertion/replacement
within the satellite segment, the fitness value of the solution
will be further improved. At this time, there are two kinds
of missions that have not been executed in each satellite seg-
ment. The mission has no observation window on the current
satellite, or there is a large overlap between the observation
window of the mission and the observation window of the cur-
rently executed missions. In these two cases, it is difficult for
the unexecuted missions to be executed in the current satel-
lite segment, and the mission replacement operator between
satellite segments is executed. The specific operation is to
take out the unexecuted missions in each satellite segment
to form a mission pool, and each satellite segment in turn
randomly selects the unexecuted missions from other satellite
segments.

E. IMPROVED SCOUT BEE SEARCH PHASE

In the basic ABC algorithm, the solutions that reach a certain
number of iterations and the quality cannot be improved are
removed in the scout bee search phase, and new solutions
are randomly generated in the solution space by using (9).
Although this is beneficial to exploration, the quality of the
new solution cannot be guaranteed because it is randomly
generated. For complex high-dimensional discrete optimiza-
tion problems, the quality of the new solution generated
randomly at the late stage of evolution is also difficult to
be improved in a short time. Therefore, the scout bee search
phase is redesigned by introducing the migration operator and
the immigration operator. By carrying out the migration oper-
ation and the immigration operator after every G iteration,
on the one hand, the low-quality solution is improved, and
on the other hand, the communication between the islands is
promoted to achieve co-evolution.

The migration operator is one of the main operators of
the biogeography-based optimization (BBO) algorithm. It is
carried out among all solutions, so that different solutions can
share information. Different from the BBO algorithm, this
paper has divided the population into three types of islands.
Different from the biogeography optimization algorithm, this
paper has divided the population into three types of islands.
Since the purpose of migration operation is to improve the
quality of inferior solutions through high-quality solutions,
the migration operation between islands in this paper is unidi-
rectional, that is, class I island migrates to class II island, and
class II island migrates to class III island. When performing
the migration operation, it is necessary to first calculate the
immigration rate A; and emigration rate w; of individuals.
It should be noted that the migration operation defined in
this paper takes place between different types of islands,
so the calculation of the immigration rate and emigration rate
are relative to a certain type of island. In this paper, In this
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paper, a hyperbolic tangential deformation mobility model
[39] which matches the migration law of species in nature
is adopted to calculate the immigration rate and emigration
rate. The calculation method is as follows.
I ok=n/2) _ J(—k+n/2)
7’ (= ek=n/2) 1 o(—k+n/2)
E e(k—n/2) _ e(—k+n/2)
Mk = = (= -

2 Nek=n/2) I (—k+n/2)

A = + 1 (18)

+1) (19)

where, I and E are the defined maximum immigration rate
and emigration rate, n is the maximum number of species on a
certain type of island, k is the number of species on the current
island of this type, and k=n-i, and i is the fitness ranking of
the island on its type of island. Taking the migration from
class I to class Il islands as an example, firstly, the individual
X; is selected from class III islands by using (18); secondly,
the individual Y is selected from class II islands by using
the roulette method according to (19); finally, (20) is used to
update the individual X;.

d=x+ 90} —x) (20)

where Z; = (Z} , Z,~2, . ~ziD ) is the updated individual. This
paper does not use the individual renewal equation of the
basic BBO algorithm, but uses the equation similar to the
employed bee search phase to achieve the renewal of indi-
viduals with poor fitness value.

Islands with poor overall fitness value in evolution, such
as class III islands, may produce relatively potential solu-
tions, but the search equation adopted by them is of great
randomness. Such random search is difficult to develop a
better solution than the current solution, or even produce a
solution of no use value. In order to further develop this type
of solution and to facilitate the exchange between different
islands, an immigration operator is introduced in this paper,
that is, class III islands transport the best individual of this
type islands to class II islands and replace any non-optimal
individual from class II islands. Similarly, class II islands
transport the best individuals of this type islands to class I
islands and replace any non-optimal individuals from class I
islands.

F. FLOW OF HYBRID DISCRETE ARTIFICIAL BEE COLONY
ALGORITHM
The general flow of the hybrid discrete artificial bee colony
algorithm is obtained based on the above description as
follows.

stepl: Set the population size N, the maximum number
of iterations MaxG, the guiding factor ¢, the number of
iterations between executing the scout bee search phase, ini-
tialize the population, calculate the fitness value of the initial
population, and classify each individual in the population into
three types of islands according to the fitness value, and let
the number of iterations g=1.

step2: If the number of iterations g is greater than MaxG,
output the optimal solution.
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step3: The employed bees uses a multi-strategy search
equation mechanism to generate new solutions, and replaces
the current solution when the new solution is better than the
current solution.

step4: The following bees use roulette rule to select the
better solution to execute the neighborhood search operator.

stepS: Determine whether to carry out the scout bee search
phase. If so, go to step6; if not, go to step7

step6: The scout bees implement the migration operator
and the immigration operator to improve the poor solution
and promote the communication between different islands.

step7: Let g=g+1, calculate the fitness value of each solu-
tion, record the global optimal solution, go to step2.

G. ANALYSIS OF THE ALGORITHM COMPLEXITY
In the standard ABC algorithm, it mainly includes the follow-
ing key operations: parameter setting, population initializa-
tion, employed bee search phase, following bee search phase
and scout bee search phase. Let the population size be N, the
maximum number of iterations be Tyyax, and both the number
of employed bees and the number of following bees be N. The
time complexity of the three search phases is O(N). Then, the
total time complexity of the algorithm is O(3TmaxN)+O(N )+
O(1), where, O(3Tmax V) is the time complexity of T,y itera-
tions of the three search stages, O(1) is the time complexity of
parameter setting, and O(N) is the time complexity of popula-
tion initialization. In the HDABC algorithm designed in this
paper, the main phases that affect the time complexity are
the improved employed bee search phase and the improved
scout bee search phase. In the improved employed search
phase, the population is divided into three parts and three
search strategies are performed respectively. In the improved
scout bee search phase, the scout bee search phase runs every
G generation, which reduces the time complexity compared
to the original scout bee search phase. Suppose the popu-
lation numbers of the three populations are N1, N> and N3
respectively, and meet N1 + N2 + N3 = Nyqp, then the total
time complexity of the HDABC algorithm can be calculated
as O(Tiax(2Npop + Npop//G)) + O(Npop) + O(1). It can be
seen that the main difference between the time complexity
of the HDABC algorithm and the standard ABC algorithm
is the population size, and both are at the same quantity
level. Therefore, the HDABC algorithm does not improve the
solving effect at the cost of improving the time complexity.
In terms of space complexity, the main factor that leads to
the difference between the storage space required by HDABC
algorithm and standard ABC algorithm is also population
size. Assume that the standard ABC algorithm requires N
storage space, and the HDABC algorithm requires N, stor-
age space. Generally speaking, the population size of the
HDABC algorithm is larger than that of the standard ABC
algorithm because it adopts three search mechanisms, but the
spatial complexity of the two algorithms is still at the same
quantity level, so the HDABC algorithm has little influence
on the spatial complexity of the standard ABC algorithm.
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TABLE 2. Orbital parameters of the seed satellite.

SA E I RAAN AP TA

7103.14 0 98.295 20.714 0 0

TABLE 3. Levels of each parameter.

Parameter level

Parameter
1 2 3 4
40 80 120 160
@ 0.2 0.4 0.6 0.8
5 10 15 20

V. SIMULATION EXPERIMENT

At present, there is no recognized test set for imaging satellite
mission planning. In this paper, random task generation is
adopted to verify the algorithm. A Walker constellation con-
sisting of 12 imaging satellites is established. The satellites
adopt sun-synchronous orbits and are evenly distributed in
4 orbital planes. The satellite’s position in space is defined
by six orbital parameters: semimajor axis (SA), eccentricity
(E), inclination (I), right ascension of the ascending node
(RAAN), Argument of periapsis (AP), and true anomaly
(TA). The orbital parameters of the seed satellite are shown
in Table 2.

A total of 6 image missions are set, and the mission
sizes are 100, 150, 200, 250, 300 and 400 respectively. All
missions are randomly generated in the range of 70°S ~
70°N, 180°W ~ 180°E, and the mission benefit is randomly
generated in the range of 1 to 10. The start time of the
simulation scenario is 12 Oct 2022 04:00:00 (UTCG) for one
day.

A. DETERMINATION OF ALGORITHM PARAMETERS

The HDABC algorithm involves three relatively important
parameters, the population size N, the guiding factor ¢ and
the interval generation G, all of which can affect the operation
effect of the algorithm. With the increase of population size,
the profit value obtained by the algorithm gradually increases.
However, the increase of the profit brought by too large
population size is not obvious, and the optimization time of
the algorithm will be increased. For the guiding factor g, if it
is too small, the current solution will lack the guidance of
the elite solution, the randomness of search is large, and the
convergence effect is not good; if it is too large, the current
solution will inherit too much information from the elite
solution, but at the same time it will sacrifice the diversity of
the population. For the interval algebra G, if it is too small, the
migration operator and the immigration operator are executed
too frequently, which will increase the running time of the
algorithm and affect the operation of the search mechanism
of the island itself; if it is too large, it is not conducive to the
spread of island population diversity, the improvement of the
poor solution and the development of the better solution.
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FIGURE 2. Trend graph of fitness values at different parameter levels.

TABLE 4. Results of the orthogonal experiment.

Parameter level fitness value

. D .
1 1 1 1 0.867
2 1 2 2 0.916
3 1 3 3 0.930
4 1 4 4 0.818
5 2 1 2 0.903
6 2 2 1 0.849
7 2 3 4 0.836
8 2 4 3 0.821
9 3 1 3 0.896
10 3 2 4 0.924
11 3 3 1 0914
12 3 4 2 0.889
13 4 1 4 0.843
14 4 2 3 0.945
15 4 3 2 0.912
16 4 4 1 0.896

In this paper, the maximum number of iterations is set
to 500, the task size is 200, and the other parameters have
5 levels as shown in Table 3, which are determined by exper-
imental design. The orthogonal experiment layout Lig(4°)
with two dummy parameters is selected for the experimental
analysis of 3 parameters and 5 levels, and the experimental
results are shown in Table 4.

Controlling a fixed level of a variable, the fitness values
under that level are averaged as the fitness value of the algo-
rithm under that variable. The influence of this variable level
on the fitness value of the algorithm is drawn, as shown in
Fig.2. Based on the results of this experiment, the population
size N is taken as 120, the guiding factor ¢ is taken as 0.5,
and the interval generation G is taken as 10.
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B. ALGORITHM COMPARISON

The algorithms in this paper are tested on problems of dif-
ferent scales with the discrete artificial bee colony algorithm
(DABC), the improved genetic algorithm (IGA) [17], and the
improved discrete particle swarm algorithm (IDPSO) [40],
respectively. Each algorithm is run 20 times on each problem
scale to record the best fitness value (BF) and the average
fitness value (AF), and the results are shown in Table 5. From
Table 5, When the problem scale is small, satellite resources
are relatively sufficient, and all the four algorithms are capa-
ble of finding a better planning scheme. When the problem
scale gradually increases, satellite resources become strained
and the conflict between missions gradually increases. At this
time, the difference between the four algorithms’ searching
ability gradually appears. In general, the HDABC algorithm
achieves better best fitness values and average fitness values
than the other three algorithms for six problem sizes. In terms
of average fitness values, as the problem size increases, the
HDABC algorithm achieves average fitness values that are
6.3%, 7.4%, 9.5%, 16.9%, 19.2%, and 22.3% higher com-
pared to the DABC algorithm; 3.7%, 4.4%, 5.6%, 6.6%,
9.3%, and 12.7% higher compared to the IGA algorithm;
1.3%, 1.5%, 2.8%, 4.1%, 5.5%, and 8.7% higher compared
to IDPSO. In terms of the best fitness value, the HDABC
algorithm achieves best fitness values that are 4.9%, 7.2%,
9.3%, 16.1%, 18.9% and 20.7% higher compared to the
DABC algorithm; 2.9%, 4.4%, 5.3%, 6.3%, 9.1% and 11.3%
higher compared to the IGA algorithm; 0, 1.4%, 2.3%, 3.8%,
5.2% and 7.8% higher compared to IDPSO. It can be seen that
with the increase of problem scale, the advantages of HDABC
algorithm are more obvious than other algorithms.

In order to demonstrate the statistical significance of the
experimental results, the average fitness values obtained by
the HDABC algorithm are statistically tested with the aver-
age fitness value obtained by the other three algorithms
at the 95% confidence level, and the results are shown in
Table 6. It can be seen from Table 6 that p values of different
scales are all less than 0.05, indicating significant differences
between algorithms. With the increase of the problem scale,
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TABLE 5. The results of algorithm comparison experiment.

HDABC DABC IGA IDPSO
Problem scale
BF AF BF AF BF AF BF AF
100 1.000 1.000 0.951 0.937 0.971 0.963 1.000 0.987
150 0.977 0.969 0.906 0.897 0.934 0.926 0.963 0.954
200 0.942 0.922 0.854 0.834 0.892 0.870 0.920 0.896
250 0.915 0.889 0.763 0.739 0.856 0.830 0.879 0.852
300 0.870 0.832 0.705 0.672 0.791 0.754 0.825 0.786
400 0.772 0.721 0.612 0.560 0.685 0.632 0.712 0.658
TABLE 6. Statistical tests at 95% confidence level.
T HDABC-DABC HDABC-IGA HDABC-IDPSO
Z p-value V4 p-value 4 p-value
100 2.065 0.040 2.013 0.045 1.961 0.049
150 2.113 0.036 2.052 0.041 2.023 0.043
200 2.162 0.031 2.093 0.037 2.061 0.039
250 2223 0.027 2.132 0.333 2.110 0.035
300 2.271 0.023 2.184 0.030 2.142 0.032
400 2.312 0.020 2212 0.027 2.195 0.029

1 (b)150 missions 1 (¢)200 missions
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E § 0.8 g 0.8
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FIGURE 3. Comparison of HDABC algorithm using different strategies.

the differences among algorithms also increase, which further
confirms the good performance of the HDABC algorithm
in solving the imaging satellite mission planning problem
studied in this paper.
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C. ANALYSIS OF ALGORITHM VALIDITY

The HDABC algorithm, the hybrid discrete artificial bee
colony algorithm without multi-strategy search equation
mechanism (HDABCI), the hybrid discrete artificial bee
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colony algorithm without two kinds of neighborhood search
operators (HDABC?2), and the hybrid discrete artificial bee
colony algorithm without migration and immigration opera-
tors (HDABC3) are respectively run in the six scale problems,
and the results are shown in Fig.3. As can be seen from Fig.3,
when the problem size is small, all the four algorithms can
achieve good planning results. With the increase of the scale
of the problem, the advantages of HDABC algorithm are
gradually highlighted. Its optimal solution and convergence
are better than the other three algorithms, and the other three
algorithms all fall into the local optimal value due to different
degrees of premature convergence. In summary, the three
improvement strategies have influence on algorithm perfor-
mance from large to small: the multi-strategy search equa-
tion mechanism, the neighborhood search strategy, migration
operator and an immigration operator. Therefore, the design
of three strategies in the HDABC algorithm can take into
account the exploration and development of the algorithm,
make it out of the local optimal solution, and further improve
the performance of the algorithm.

VI. CONCLUSION

Aiming at the problem of mission planning for imaging
satellite, a mission planning model for imaging satellite
is established by considering the mission benefit and the
mission completion rate comprehensively, and a HDABC
algorithm is proposed to solve the model. The HDABC algo-
rithm improves the three search phases of the standard ABC
algorithm and discretized it to make it suitable for satellite
mission planning. In the employed bee search phase, the
multi-strategy search equation mechanism is used to explore
and develop the algorithm. In the following bee search phase,
two neighborhood search operators are designed based on
the problem characteristics. In the scout bee search phase,
a migration and an immigration operator are introduced to
improve the fitness values of poor solutions and promote the
communication of different subpopulations. Experimental
results show that the proposed algorithm has certain advan-
tages in solving satellite mission planning problems.

Facing the future, imaging satellite mission planning still
has a lot of research content worth paying attention to. As for
the imaging mission itself, it shows the characteristics of large
scale, multi-type and dynamic arrival. On the one hand, the
increase in users of various types of satellites will inevitably
bring about a large number of multi-type imaging tasks, such
as visible, hyperspectral and radar images. How to combine
multi-type imaging satellites for mission planning is worth
discussing. On the other hand, in the actual mission planning,
some urgent imaging missions may arrive at any time, and
these urgent imaging tasks often need to be executed in a short
time. For this kind of task, heuristic method is used to adjust
the planning scheme. However, when the dynamic arrival of
the task becomes normal, this method will make the existing
scheme be modified repeatedly, resulting in a sharp decline
in the optimization of the scheme.
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We believe that distributed satellite mission planning may
provide a way to solve the above problems. At present, satel-
lite mission planning mostly belongs to ground centralized
planning. This kind of planning requires a ground control
center with all the satellite information. After completing
the mission planning based on the status of the in-orbit
satellite, the ground control center sends the instructions
to the satellites, and the satellites complete the relevant
actions according to the instructions. In the future, with the
smooth communication link and the development of intelli-
gent satellites, distributed satellite mission planning may be
widely used. In the distributed satellite mission planning, the
satellites first realize the reasonable assignment of missions
through negotiation, and then the satellites can call the plan-
ning algorithm according to their own state to carry out rea-
sonable planning of their own missions. Distributed satellite
mission planning has advantages in dealing with large scale,
multi-type and dynamic arrival imaging missions. On the
one hand, the imaging missions has been decomposed to the
level of single satellite, which greatly reduces the difficulty of
solving. On the other hand, satellites can receive missions in
real time and plan them online, which is suitable for handling
missions that arrive dynamically. However, the implementa-
tion of distributed satellite mission planning is based on effi-
cient intersatellite and satellite-ground communication links,
which may not be available at the present stage. But we can
make some useful exploration and do some valuable work in
satellite negotiation model and mission planning algorithms.
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