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ABSTRACT Edge computing is becoming a mainstream platform for practical applications of machine
learning and in particular deep learning. Many systems capable of efficient execution of deep neural models
in the context of edge computing are readily available or beginning to appear on the consumer market.
The Jetson platform from NVIDIA, the Neural stick from Intel, and the Edge TPU designed by Google
are examples of devices that enable the application of complex neural networks in edge computing. This
work investigates the ability of selected edge devices to address a real-world classification problem from
electrical power engineering. It consists of the detection of partial discharges (PDs) from covered conductors
(CCs) on high-voltage power lines. The CCs are used in heavily forested and generally inaccessible areas
where clearance zones cannot be maintained. Detection of PDs can prevent forest fires and other disasters
potentially caused by prolonged contact of CCs with vegetation. The problem is suitable for an edge
computing-based solution because Internet connectivity in remote areas is usually insufficient and a 2G
(GSM) mobile network is available at best. Because such locations are difficult to access and usually without
a suitable power supply, the proposed solution puts an emphasis also on PD detection latency and the
associated power consumption. Two principal approaches to PD detection are considered. One is based on
the classification of 1D time series (raw data). The second approach uses the signal transformed into a 2D
spectrogram. In this case, two types of algorithms are evaluated. The first one is a novel custom stacking
ensemble detector composed of 2D convolutional neural networks and a neural meta-learner on top of it.
The second one uses the well-known and widely-used used ResNet deep neural model.

INDEX TERMS Edge computing, experiments, edge TPU, neural networks, NVIDIA jetson, partial
discharge, real-world applications, stacking ensemble networks.

I. INTRODUCTION

The area of edge computing attracts increasing attention from
both, academia and industry and many devices for edge com-
puting are commercially available today [1], [2]. A major part
of the development in this field is dedicated to systems that
enable deep learning and, in particular, deep neural network
inference on the edge [3], [4]. The Jetson platform from
NVIDIA, the Neural stick from Intel, and the Edge TPU by
Google are examples of edge devices capable of inference
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and/or training of deep neural models. The use of deep neural
models on edge devices presents many challenges, for exam-
ple, training and inference latency and general performance
of the systems [5]. Energy efficiency is a challenge, too,
as some devices are powered by batteries and the available
energy is limited [6].

There are several studies on the latency and energy effi-
ciency of edge devices that allow the inference of deep neural
models. For example, Kljucaric et al. [7] recently analyzed
the hardware architecture of several edge devices including
Google Edge TPU, Intel Neural Compute Stick 2 (NCS2),
and NVIDIA Jetson AGX Xavier (AGX), and benchmarked
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them on classic CNNs architectures such as AlexNet and
others. Other studies focused on the optimization of cer-
tain network architectures and their benchmarking [8], [9],
[10] or implemented neural networks optimized for target
devices [11]. Some of them focus on the comparison of a
single neural network on multiple systems [12], [13], other
provide a comparison of multiple convolutional neural net-
works (CNNs) on Edge TPU, Jetson Nano, and selected
GPUs [14].

Only a handful of research works focus on the use of deep
neural networks on edge devices for real-world problems and
thoroughly analyze practical results and the performance of
different approaches (models) on different devices. In this
work, we contribute to this area and analyze model perfor-
mance and design novel deep neural network architectures
suitable for the use on edge devices. We compare their accu-
racy and performance on a specific real-world problem and
a variety of widely available systems. The problem is a part
of a broader solution allowing the detection and classifica-
tion of partial discharges using a contactless antenna-based
method [15].

The contribution of this work is threefold. First, it com-
pares the latency and performance of several deep neural
models on 4 edge devices (three NVIDIA Jetson SoCs and
an Edge TPU) in the context of two principal PD detec-
tion approaches. The first one is time series classification
using the 1D stacking heterogeneous ensemble neural net-
work, which we have previously designed [16]. The second
one is based on the physical properties of the signal and
leverages spectrogram and 2D CNN networks, which is a
novel approach to this kind of data. In the second approach,
we compare the well-known and widely used ResNet archi-
tecture [17] and a novel lightweight stacking ensemble of 2D
CNNs with a neural meta-learner.

Second, it investigates the feasibility and performance of
a stacking ensemble of 2D CNNs with a meta-learner on the
top. In particular, the Wide & Deep [18] network is adopted
and investigated because of good past experience and simple
architecture that can be easily implemented on various edge
devices.

Third, it studies the algorithms and edge devices from the
approximate power consumption point of view. It demon-
strates that a stacking ensemble of simpler neural networks
is a feasible model that achieves a reasonable combination of
latency and power consumption.

The rest of this paper is organized as follows: section II
provides the background on the partial discharge detection
problem and stacking ensembles, the top-level classification
approach used in this work. Section III describes the data
used in the experiments. Section IV provides the details
on the individual classification methods and section V on
the test devices. The experiments are detailed and their
main results summarized in section VI and further dis-
cussed in section VII. Finally, major conclusions are drawn
in section VII.
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Il. BACKGROUND

A. PARTIAL DISCHARGE DETECTION

High-impedance faults, such as long-term direct contact with
vegetation, represent a severe problem for medium-voltage
overhead (22 kV) lines with covered conductors (CCs) [19].
CCs are designed to tolerate contacts with grounded objects
such as trees fallen on the power lines, without immediate
interruption of the power supply [20]. However, the use of
CCs alone cannot eliminate all problems.

In remote locations where vegetation clearances cannot be
set up or properly maintained, high-impedance faults appear
as a result of contact between power lines and the surrounding
vegetation [21]. The use of covered conductors prevents their
immediate impacts but cannot prevent the long-term effects
of such faults. The detection of high-impedance faults is not
easy. The fault current is very low and cannot be identified
by standard protection relays. The faults are accompanied
by partial discharges (PDs) [22] that gradually degrade and
eventually damage the CCs and can lead to XLPE insulation
failures (usually in a matter of days) [23]. This leads to power
failures, can cause forest fires, injury or even death under
certain conditions (damage of step voltage), and results in
an interruption of power supply. The process when a fault is
formed and PDs happen takes a longer period of time and
ought to be prevented whenever possible.

PDs are usually detected using the galvanic contact
method. It is suitable for medium-voltage power lines but
fairly expensive [24], [25]. The detection of PDs from the
data obtained by galvanic contact has been thoroughly inves-
tigated [26], [27], [28]. In this work, we focus on another
principal method for PD detection. PDs create in the elec-
tromagnetic field surrounding the CCs specific patterns that
can be observed using an antenna [15]. Such contactless
approach is an alternative to data acquisition by galvanic
contact. The price of data collection is in the contactless
case significantly lower and the measurement device can
be installed without a power outage. However, the mea-
sured data (signal) is very noisy and essentially lacks the
information known to be exploited by the best-performing
detection algorithms used for the galvanic contact method of
measurement [29].

CCs are used in areas that are hard to access such as
national parks or remote mountainous regions. On-site detec-
tion of PDs in such locations is a suitable application scenario
for edge rather than cloud computing. The primary reason is
that the acquired data is fairly large (800 kiB) for this type
of application and the Internet/5G connectivity or LPWAN
is typically unavailable or insufficient in remote areas. In the
ideal case, an on-site edge device would perform the detec-
tion fully offline and communicate only if a PD is detected.
An important requirement of the detection system is energy
efficiency. The detection devices in remote areas are likely
to be powered by batteries and their lifetime ought to be
maximized because battery replacement/maintenance would
be expensive.
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B. STACKING ENSEMBLES OF DEEP NEURAL NETWORKS
Stacking is a top-level ensemble machine learning strat-
egy that allows the combination of multiple base classifiers
into more powerful classification models [30]. The decisions
of baseline (low-level) classifiers are processed by another
top-level model (meta-learner) to obtain the overall predic-
tion [31]. Stacking is an ensembling approach with good
results in various application areas, e.g., biomedical data anal-
ysis [30], [32], [33], [34], detection of defects [32], or auto-
mated recognition of sign language [35]. Several studies have
demonstrated that stacking ensembles of homogeneous or
heterogeneous neural networks can outperform individual
(baseline) models [30], [32], [33], [34], [35] and represent the
state-of-the-art in time-series classification [36]. Moreover,
it has been shown that stacking ensembles have a great poten-
tial for the use in the context of edge (IoT) computing [31].

While the use of neural models, e.g., 2D CNNs, in stack-
ing ensembles is commonplace, the top-level meta-learner is
often based on another machine learning algorithm such as
Support Vector Machines [37]. In this work, we use models
with neural network-based meta-learners to fully utilize the
acceleration potential of specialized devices (mobile acceler-
ators, TPUs).

C. DEEP LEARNING ON EDGE DEVICES

Traditional deep learning algorithms are typically trained and
executed on powerful, centralized servers or computers that
have vast computing resources and can easily process large
amounts of data. The algorithms require large volumes of
data in order to learn the input-output mappings associated
with the solved problems, for example to make accurate
predictions. The training (model learning) is often slow and
resource-intensive [38].

Algorithms for edge computing have to be designed for
execution on devices that are smaller, more lightweight, and
restricted but located closer to the sources of data, such as
smartphones and sensors [39]. They can process data in real
time and do not require centralized processing. This makes
them useful for applications where real-time processing or
data privacy is important. There are many different algorithms
and models that can be used for this type of applications [10],
[40]. In our work, we focus on the general design of efficient
NN architectures. We propose and evaluate ensembles of
simple models that can be executed in parallel (the overall
network is wider) and their outputs are consolidated by a sin-
gle meta-learner. Increasing the width of the network has been
identified as a potential pathway towards overall performance
improvement on Edge TPU [41] but we evaluate this general
architecture on other edge devices, as well.

Data quantization and potential loss of accuracy are tech-
niques commonly used on edge devices, and the use of
FPGA:s is also being explored. Most deep neural networks are
in such restricted environments used for inference only, as it
is difficult to train them directly on the edge. However, the
possibility of model training on the edge is an area of recent
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FIGURE 1. Data collection device.

research [42] with a great potential for enabling online model
adaptation, etc.

To achieve the most efficient solution, it is best to con-
sider using an ASIC-based system-on-chip with a processor
that has integrated engines (hardware and software) designed
specifically for machine learning [39], [43]. The processor
can be used to control the engines and run non-deep learning
services, but the dedicated engine should also have some
flexibility to adapt to the current state of the deep learning
algorithm (model). Examples of such devices include Edge
TPU [8], Edge Board, and Hikey 970 [44].

Ill. DATA

A. DATA ACQUISITION

The data used in this work was collected with the help of
measurement stations located in forested areas and challeng-
ing terrains. The stations were originally designed to detect
PDs using the galvanic contact method and were monitoring
medium voltage power lines with CCs in the Czech and
Slovak Republics. Later, the contactless method was also
implemented at these stations through the addition of new
input to a DAQ card. The detection system can be seen in
fig. 1. The hardware of the detection device is a proprietary
solution manufactured by the ELVAC company. The detec-
tion devices contain ARM CPUs and run the Linux operating
system.

Additionally, a BONI whip antenna was installed in the
measurement stations. It is an omnidirectional active antenna
that can detect PDs from any direction. The BONI whip
is the ancestor of the popular Mini Whip antenna and is
manufactured by Bonito, Germany. The antenna is shown in
fig. 2. It has a frequency range of 20 kHz to 300 MHz but
the data was only sampled up to 20 MHz. The antenna is
17 cm long and has a gain of 3dB. It is powered by a voltage
supply of 14V-15V and has an IP3 of +-32.5 dBm and an IP2
of +55 dBm.

The sensitivity of the antenna in the field can vary due
to the characteristics of the power line. It is not possible to
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FIGURE 2. Antenna for capturing the signal installed on an overhead
power line.

calibrate the antenna on-site because shutting down the entire
power grid, which is required for calibration, is not allowed
by the power grid operators.

B. DATASET DESCRIPTION AND ANALYSIS

The data for PD detection was captured by a wireless antenna,
which received the electromagnetic signal from the CCs.
However, the signal contains a large number of noise arti-
facts [45]. The noise usually compromises a significant por-
tion of the signal because only the highest received frequency
is captured. In addition, the signal changes its properties, such
as magnitude, in time. The signal was processed by an 8-bit
analog-to-digital converter (ADC), which returns values in
the range of -128 to 127. One time series consisted of 800,000
observations, which present one full period (20 ms of a 50 Hz
system).

A signal plotted as amplitude over time usually contains
two larger clusters of higher electromagnetic activity, with
the rest of the signal having relatively little activity. This
corresponds to the three phases of an alternating current in
overhead power lines. There are also usually visible peaks
in the signal, which may indicate the presence of partial
discharges or other noise.

The data set contains recordings from 18 different loca-
tions across the Czech Republic. Its content corresponds to
real-world partial discharge occurrences and is largely unbal-
anced. The positive-to-negative case ratio is 1 : 3.5. The
data set contains 3,992 time series corresponding to partial
discharges (positive cases) and 13,767 time series without
partial discharges (negative cases). The ground truth was
evaluated by the reference galvanic contact method and such
as could be partially wrong, but in our case, it is sufficient
and the galvanic contact method algorithm has an accuracy
of 96.7%, a sensitivity of 98.4%, a specificity of 99.8%, and
a precision of 70%.

The data contained a large amount of noise, as well.
In addition to PDs, it contained time series associated with
other types of discharges, such as corona discharge or rime on
covered conductors. An example of a signal from the data set
can be seen in fig. 3, where the signal contains visible peaks,
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which could indicate possible PDs. For example, detecting
high impedance failures in conductive cores caused by rime
is still an unresolved problem.

IV. PD DETECTION METHODS

This work uses two principal approaches to PD detection.
The first one is based on the analysis of raw data received
by the contactless antenna, which we developed in our pre-
vious work [16], which was also designed to run on HW
accelerators and the second one, the new one, makes use of
spectrograms extracted from the raw signal.

A. 1-DIMENSIONAL TIME SERIES ANALYSIS

The raw data collected from CCs by the contactless antenna
has the form of a 1-dimensional time series. To improve its
usefulness, the data is first denoised with respect to the fre-
quency of values in the time series. The denoising is defined

as
h z
Xdenoised = X - (Tx) s 1

where x is a single entry of a time series, A, is the frequency
of x in the time series, [ is the number of occurrences of the
most frequent entry in the time series, and z is a constant.
An example of a denoised signal can be seen in fig. 4.

Then, max-pooling is applied in order to reduce the size of
the time series. This step is performed because the original
size of the input (800 kiB) is quite large to process by tra-
ditional deep learning models, especially in the constrained
environment of edge devices. In the end, each time series was
transformed into 1563 signed bytes.

After that, a stacking ensemble of neural networks was
used to detect PDs. The model contained two 1D-CNNs and
two autoencoders. The decisions of the models were passed
to a Wide & Deep network [18] that performed the top-level
detection. An overview of the model is shown in fig. 5.

B. SPECTROGRAM ANALYSIS

The second approach exploited the physical properties of
the captured signal. It consists of electromagnetic waves and
a detector can look for specific properties associated with
partial discharges. In order to do that, the signal was con-
verted to a spectrogram, as shown in fig. 6. Partial discharges
on spectrogram are not distinguishable by the human eye.
Also, the difference between samples with partial discharge
is not sufficient for an expert PD identification, as illustrated
in fig. 7. However, machine learning algorithms are capable
of learning from such subtle differences.

A spectrogram is a 2D visual representation of the vari-
ations of a spectrum of signal frequencies over time. This
enables better detection of partial discharges that are defined
as wide-spectrum electromagnetic interference over a short
period of time. The data is split into segments with respect
to a floating window and overlap of particular sizes. The fast
Fourier transformation is performed over each segment. The
x-axis of a spectrogram represents time, the y-axis represents
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FIGURE 3. A signal, which contains PDs, that are visible even by the human eye.
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FIGURE 4. A time series with PDs after denoising, which highlights PDs.
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FIGURE 5. Overview of the 1D Convolutional Neural Network stacking ensemble using autoencoders and 1D-CNN networks.

frequency, and the intensity of the signal is represented by the
color or intensity of the pixels on the graph. In other words,
the spectrogram provides a convenient visual representation
of how the frequency content of a signal changes over time.

After the conversion of the signal to a 2D spectrogram,
we used a stacking ensemble of 2D CNN-based networks
and the ResNet network to analyze it. The stacking ensem-
ble was designed specifically for this task while the second
model represents a well-known and widely-used deep neu-
ral network architecture. ResNet was chosen because of its
past good results in other applications, wide availability on
a number of edge devices, and best performance in initial
trials. It achieved similar results but lower complexity than
EfficientNet, better accuracy than MobileNet, and overall
better performance than VGG (all networks were tested on
inputs of 320 x 240 RGB pixels).
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FIGURE 6. Visualization of a spectrogram of a single captured signal from
the antenna. The visual representation very well illustrates at what time
and for what frequencies varies the intensity of the signal most (pixel
colors are different) and at what time and for what frequencies is the
intensity uniform (pixel colors are similar or the same).

1) STACKING ENSEMBLE OF 2D CNNs

In this work, we propose a stacking ensemble of 2D CNNs
and a top-level neural meta-learner. Each CNN in the ensem-
ble was trained separately and their outputs were passed to
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FIGURE 7. An example of a false color difference between two
spectrograms from a contactless antenna with and without partial
discharges using a simple RGB comparison (pixel diff). The differences
may be subtle and difficult to discern visually due to background noise
from sources such as TV broadcasts, radio, and other sources of noise.
The colors also clearly identify which parts of the spectrogram that are
important for the classification problem.

a meta-learner in the form of a Wide & Deep network. The
architecture is inspired by [46] and the relative success of the
stacking ensemble in 1D time series analysis. It is assumed
that each CNN might base its decisions on a slightly different
set of features because they are trained independently. The
top-level meta-learner processes the outputs of all members
of the ensemble and provides the final decision on whether
the spectrogram contains partial discharges or not. Moreover,
an architecture comprising multiple lightweight CNNs makes
this architecture suitable for acceleration and concurrent exe-
cution of the model for better performance. An overview of
the ensemble is shown in fig. 8.

The ensemble makes use of five 2D CNNs with various
depths (number of 2D blocks in the center of the network).
For the depths, we chose 1 2D block and then selected the
prime numbers (3, 5, 7, 11). A depth of more than 11 blocks
did not improve the ensemble results. 2D CNN networks
were the most simple CNN networks with convolution, max-
pooling, batch normalization, and ReLu activation. This was
done to simplify the network so that it can be used on all
edge devices. This design also enables the utilization of the
available width of the Edge TPU computing unit [41].

To optimize the ensemble, a number of hyperparameters
(the number of layers, filters, kernel sizes, and activation
functions) was adjusted in a series of trial-and-error exper-
iments. The hyperparameter values were not selected by an
exhaustive search but were taken from a pool of values that
performed well according to the literature and past experience
of the researchers.

2) ResNet V2
ResNet is a well-known deep neural network proposed in
2015 [47]. To solve the problem of disappearing gradients,
ResNet introduced a concept called residual blocks. It uses
skip connections that link layers to subsequent ones by skip-
ping some others. This forms a residual block and the ResNets
model is created by stacking the residual blocks together.
ResNet V2 [17] is an evolution of the original ResNet
architecture with two main changes: it uses the stack of batch
normalization, ReLLU activation function, and 2D convolution
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and removes the activation function after an addition (skip
connection).

In this work, we use two particular ResNet V2 models
to study the changes in performance in relation to network
depth. The first one was a 50-layer deep network that was
the best-performing ResNet V2 architecture on these data and
the second one consisted of 152 layers. The models were
created in Keras with a fully connected layer with dropout
and sigmoid activation as the top layer and re-trained for the
PD detection problem.

3) VGG-19

VGG-19 [48] is a convolutional neural network model trained
originally on the ImageNet dataset. This model and its vari-
ants are widely used for image classification tasks. The net-
work has 19 layers (hence the “19”* in the name of the model)
and is characterized by the use of small convolutional filters,
with filter sizes of 3 x 3, and a rather deep architecture.

The VGG-19 architecture consists of 19 layers, includ-
ing 16 convolutional layers and 3 fully-connected layers.
The convolutional layers are arranged in groups, with the
first group using 64 filters, the second using 128 filters,
the third using 256 filters, and the fourth using 512 filters.
The fully-connected layers have 4096 nodes each and the
weights are initialized randomly. In this work, we preliminary
evaluated this architecture but it was found inferior to the
evaluated methods in terms of both, accuracy and perfor-
mance. Because of that, further experiments focused on the
proposed approaches only.

4) MobileNetV2

MobileNetV2 [49] is a convolutional neural network archi-
tecture designed for efficient on-device image classification.
It was developed by Google and introduced as an improved
version of MobileNetV 1, which was designed to be small and
efficient for mobile and embedded devices.

MobileNetV2 uses depthwise separable convolutions,
which leads to a significant scaling down of the number
of parameters and computations in the network, making it
more efficient. It also uses a linear bottleneck design which
further reduces the number of operations in the network
while maintaining a high level of accuracy. MobileNetV2 has
been frequently used for a variety of applications, including
object detection and classification, image segmentation, and
facial recognition. We used random weight initialization and
kept the default Keras settings. In our work we also pre-
liminary tested MobileNetV2 but it achieved worse results
than ResNet V2.

5) XGBoost

XGBoost [50] is a powerful machine learning algorithm that
has been successfully applied to tackle a variety of problems
including image classification. It is an implementation of gra-
dient boosting, which involves training multiple weak models
in a sequential manner and combining their predictions to
form a strong model.
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FIGURE 8. Overview of the 2D Convolutional Stacking Neural Network Ensemble.

One of the key advantages of XGBoost is its ability to han-
dle large datasets and high-dimensional features efficiently,
making it well-suited for image classification tasks. It also
has a number of advanced features that allow for fine-tuning
of model parameters and handling imbalanced datasets. This
algorithm allows GPU acceleration and was included in pre-
liminary testing. However, the rather complex nature of this
model made it unsuitable for use on the target category of
edge devices.

C. NETWORK TRAINING

All networks used in this work were defined and trained using
the Keras framework [51]. they were trained on a cluster of
four NVIDIA GTX 1070 GPUs. The PD data was divided into
two sets: training and test. The test data set contained 20%
data and 15% of the training data set was used for validation.
All data sets were stratified.

The training used early stopping set to track validation loss
with 15 epochs patience and learning rate reduction by 50%
on a plateau with 15 epoch patience. This allowed training
the networks until they started to overfit. To select the model
with the best generalization ability, the weights of the network
with the best validation loss were saved and later evaluated
over the test data set.

V. TEST DEVICES

The proposed PD detection models were evaluated on
several commercially available edge devices capable of
hardware-accelerated neural network inference and suitable
for edge applications.

A. GOOGLE EDGE TPU

Edge TPU is a Google-made application-specific integrated
circuit (ASIC) for deep neural network applications. It is
capable of inference only and has a restricted set of opera-
tions. In exchange, it features excellent energy efficiency and
achieves a very good inference performance [52]. Edge TPU
can perform 4 trillion operations per second (TOPS), using
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0.5 Watts for each TOPS (2 TOPS per Watt). In this work,
it was used together with the Dev Board Mini with MediaTek
8167s SoC (Quad-core Arm Cortex-A35).

Edge TPU accelerators use a template-based design. Tem-
plate accelerators are organized into 2D arrays of process-
ing elements arranged as templates and accelerators. Each
processing element performs a set of arithmetic operations
in a single instruction multiple data (SIMD) manner [41].
Edge TPUs support the quantized TensorFlow lite model,
which is mapped to operations of the device. The operations
are highly limited, and, for example, deconvolution is not
available at all. It means that the autoencoder used for 1D
time series analysis cannot be easily run by the Edge TPU
platform. A workaround would be the use of split convolu-
tion [53]. However, this approach would require after each
split deconvolution the transfer of the entire memory to the
host, making the entire process extremely slow. Also, a bug
in the Edge TPU compiler prevented the compilation of the
1D CNN network on this platform.

B. NVIDIA JETSON FAMILY OF SoCs
NVIDIA Jetson is a family of SoCs designed for
high-performance applications requiring low power con-
sumption. Jetson modules are more general and have better
performance than TPUs. To deploy and run the neural net-
works, the Open Neural Network Exchange (ONNX) frame-
work was used. The ONNX runtime used TensorRT as the
backend and was optimized for each Jetson device separately.
If a network, e.g., the autoencoder, uses operations not avail-
able in TensorRT, the ONNX compiler automatically falls
back to the lower-level CUDA architecture. Three different
Jetson modules were used in the experiments: Jetson Nano,
Jetson Xavier NX, and Jetson Xavier AGX. The properties of
the modules are shown in table 1.

For a broader context, the models were also executed on
a desktop GPU, in particular the NVIDIA GTX 1070. Itis a
high-end desktop GPU introduced by NVIDIA in 2016 based
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on the Pascal architecture. The same GPUs were used for
training of all models.

C. PERFORMANCE EVALUATION AND POWER
CONSUMPTION

The performance of all models was benchmarked on every
device capable their execution. Each model was executed
on every device 1000 times and the execution times were
recorded. In the benchmark loop, a new input was provided
in every iteration and inference was performed (model ini-
tialization was already done). The Edge TPU used mod-
els compiled and optimized for its architecture. The Jetson
devices used the ONNX runtime [54] with the TensorRT
backend [55].

During the benchmarking, the power consumption of the
devices was measured. To track power consumption, the open
source jtop' library was used on the Jetson devices. It per-
forms a software-based estimate of power consumption but
can even provide information about the power consumption
of particular parts of the device [56].

To measure the power consumption of the Edge TPU,
a hardware USB power meter was used. Because it reports
only peak power consumption, average power consumption
could not be determined for this device.

VI. RESULTS

A series of computational experiments was performed to
study the properties of the PD detection models presented in
this work. They focused on three principal areas: accuracy,
speed, and energy costs of online PD detection (inference) of
different models on the target edge devices.

A. PREDICTION ACCURACY

First, the ability of the models to predict PDs was investi-
gated. Prediction accuracy was evaluated by the Matthews
correlation coefficient (MCC) [57] because the data set is
highly unbalanced. The MCC is a special case of Pear-
son’s correlation coefficient better suited for unbalanced data.
It takes values from the range -1 to 1. The value of -1 indi-
cates a complete disagreement between the prediction and
the observation. The value of 0 suggests that the prediction
is no better than a random guess, and in the case of MCC
value 1, the predictions are in perfect agreement with the
observations.

In our preliminary experiments, we evaluated the per-
formance of several machine learning algorithms for MCC
on different devices. These algorithms included Ada Boost
[58], Random Forest Classifier, C-Support Vector Classifi-
cation (SVC) with optimized parameters using grid search
(optimized parameters: C - coef0, gamma and kernel), and
XGBoost. We used the scikit-learn library [59] for Ada
Boost, Random Forest Classifier and to optimize the param-
eters for the SVC algorithm. We also tried the XGBoost

1 https://github.com/rbonghi/jetson_stats
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FIGURE 9. Confusion matrix for ResNet50V2.
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FIGURE 10. Confusion matrix for ResNet152V2.
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FIGURE 11. Confusion matrix for 2D CNN ensemble.

algorithm [50], which can be easily implemented on
GPU-focused platforms like the Jetson family.

Table 2 shows the values of the MCC between predictions
and ground truth obtained by all models. The models were
trained and evaluated 100 times using random cross valida-
tion. The best accuracy (highest MCC) was obtained by the
2D CNN ensemble. The second-best accuracy was obtained
by the 50-layer ResNetV2 (ResNet50V2) and the third-best
by the 152-layer version of the same model (ResNet152V?2).
The accuracy of both ResNetV2-based models is illustrated
by confusion matrices shown in fig. 9 and fig. 10, respec-
tively.

The worst prediction was obtained by the 1D ensemble of
neural networks applied to raw data.

The other evaluated algorithms had worse performance in
terms of MCC and were too complex to be further considered.
For the rest of the results, we only used ResNet V2 with
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TABLE 1. NVIDIA Jetson devices.

Device Jetson Nano Jetson Xavier NX Jetson AGX Xavier
Al Performance 472 GFLOPs 21 TOPs 32 TOPs

GPU 128-core Maxwell™ 384-core Volta™ 512-core Volta™
CPU Cortex®-A57 6-core Carmel Arm®v8.2  8-core Carmel Arm®v8.2
Memory 4 GB 64-bit 8 GB 128-bit 32 GB 256-bit

TABLE 2. MCC averaged over 100 cross-validated results.

Neural network MCC
Ada Boost 0.141
Random Forest Classifier 0.211
XGBoost 0.224
SVC(C=1000, gamma=0.001)  0.288
VGG19 0.495
MobileNetV2 0.512
1D CNN ensemble 0.523
ResNet152V2 0.542
Single 2D CNN 0.571
ResNet50V2 0.683

2D CNN ensemble 0.698

152 layers, Single 2D CNN, ResNet V2 with 50 layers,
and the proposed 2D CNN ensemble. For 1D input-based
algorithms, we only used the best published algorithm, which
outperformed all other algorithms that we tested in our previ-
ous work [16].

The 2D CNN ensemble was more accurate than the single
2D CNN network. A single 2D CNN had the worst MCC of
0.416 and the average MCC of 0.571. Even the best single 2D
CNN (0.648) was worse than the ensemble of 2D CNNs with
the Wide & Deep meta-learner with the MCC of 0.698. The
confusion matrix of classification by the 2D CNN ensemble
is shown in fig. 11.

B. INFERENCE SPEED

Next, the time needed for inference on different target devices
by different models was evaluated. Table 3 shows the average
time needed for the classification of a single spectrogram as
an average of 1000 independent runs. When a model could
fit into the memory of the Edge TPU, then the device was the
second fastest (the case of the single 2D CNN). In other cases,
the Edge TPU was only slightly slower than Jetson Nano.
The other results were largely as expected: the desktop GPU,
GeForce GTX 1070, was the fastest device, followed by Jet-
son AGX Xavier, Jetson Xavier NX, and Jetson Nano. With
regard to the models, the most time-consuming inference was
that of the largest network, ResNet152V2. The Edge TPU was
unable to successfully finish the inference of ResNet152V2
and froze at every attempt.

The results obtained for the 1D CNN ensemble were rather
surprising; the sum of latency of each part of the ensemble
was much greater than a single inference from the ensemble
as is showed in table 4. Also, as can be seen from 3, there was
only a modest improvement in latency at Jetson Xavier NX
when compared with Jetson Nano. This is different from the
spectrogram-based approach where the use of Jetson Xavier
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FIGURE 12. Inference latency.

NX clearly improved inference latency in comparison with
Jetson Nano.

An interesting outcome of the experiments (see table 3)
was the very small difference in inference time between
a single 2D CNN and the 2D CNN ensemble on a
GeForce 1070 GPU. However, the difference in the inference
times on edge devices such as the Jetson Nano was more
significant, with the ensemble resulting in a 30% increase
in average inference time compared to the single 2D CNN’s
65% increase.

Remarkably, the difference was smaller on more powerful
devices such as the Jetson AGX Xavier. It was also observed
that the 1D CNN ensemble was much faster (relative to the 2D
CNN) on a classical GPU than on edge devices. On GeForce
1070, it achieved similar inference time as the single 2D
CNN, but it was much slower on edge devices.

C. SPACE REQUIREMENTS

The target devices use several different formats for model
representation. The Keras format is fully based on Tensor-
Flow and used by the popular Keras framework, the ONNX is
an open and portable format for neural model representation
developed, among others, to leverage the interoperability of
machine learning frameworks, and the Edge TPU uses its own
native network format. The memory required for each model
under different representation (i.e., on different devices) is
shown in table 5. The ONNX format greatly reduces the space
requirements of the models. The Edge TPU uses an optimized
and special format from TensorFlow Lite, and as such had
the smallest models. A single 2D CNN for the Edge TPU can
fit in its modest (4 GiB) memory so that it does not need to
transfer data between host and device, which is an expensive
operation.

D. POWER CONSUMPTION AND ENERGY COSTS

The power consumption associated with PD detection was
studied on all devices, too. Table 6 shows the average power
consumption (energy) per 1,000 inferences on the NVIDIA
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TABLE 3. Average inference time (ms).

Device GTX 1070  Jet. Nano  Jet. Xavier NX  Jet. AGX Xavier = Edge TPU
Single 2D CNN 71.67 257.87 204.35 146.92 116.86
2D CNN ensemble 93.43 426.00 353.81 234.53 489.35
ResNet50V2 109.43 653.45 394.82 283.52 669.25
ResNet152V2 155.69 810.18 423.66 313.53 N/A
1D CNN ensemble 73.09 610.35 604.94 383.42 N/A

TABLE 4. Average inference time (ms) for parts of Ensembled 1D.

Device Autoencoder 1D CNN  Wide & Deep | Ensembled 1D
GeForce GTX 1070 62.52 64.33 53.90 73.09
Jetson Nano 161.32 467.03 236.86 610.35
Jetson Xavier NX 166.11 459.97 247.44 604.94
Jetson AGX Xavier 104.92 294.33 158.92 383.42

TABLE 5. Model sizes in different representations (MiB).

Neural network Keras ONNX Edge TPU
1D CNN ensemble 1.1 0.2 N/A
Single 2D CNN (averaged) 29 9.5 2.5
2D CNN ensemble 48 48 12.3
ResNet50V2 271 90 234
ResNet152V2 670 223 58.1

TABLE 6. Average power consumption (mW).

Jetson model
Neural network Nano Xavier NX  AGX Xavier
1D CNN ensemble | 2826 3982 9088
Single 2D CNN 3639 4907 10662
2D CNN ensemble | 3013 4157 9288
ResNet50V2 3651 5083 10747
ResNet152V2 3534 4798 10331

TABLE 7. Peak power consumption (mW).

Device

Jetson Jetson Jetson Edge
Neural network Nano  Xavier NX  AGX Xavier TPU
1D CNN ensemble 3332 4205 9455 N/A
Single 2D CNN 4712 5316 10032 2024
2D CNN ensemble 3256 6420 10418 2384
ResNet50V2 5237 8125 14858 2415
ResNet152V2 5111 8533 13967 N/A

Jetson modules. The power consumption was measured by
onboard sensors using the popular jtop application. Although
this software-based measurement is not as precise as a
hardware-based measurement would be, it provides a solid
basis for the comparison of the energy costs of the inference
on different devices.

The peak power consumption per 1000 inferences is shown
in table 7. On the Jetson modules, it was again measured
using jtop. On the Edge TPU, we used a USB power meter
which recorded only the current power consumption so only
the peak power consumption could be reliably determined.
Clearly, the Edge TPU had the lowest peak power consump-
tion while Jetson AGX Xavier had the highest peak power
consumption.

In addition, the energy needed to perform the inference on
every device by each model was compared. Table 8 provides
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TABLE 8. Approximated energy consumed per inference (mJ).

Device

Jetson Jetson Jetson Edge
Neural network Nano  Xavier NX  AGX Xavier TPU
1D CNN ensemble 2033 2543 3625 N/A
Single 2D CNN 1215 1086 1473 236
2D CNN ensemble 1387 2271 2443 1166
ResNet50V2 3422 3207 4212 1616
ResNet152V2 4140 3615 4379 N/A
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FIGURE 13. Peak power consumption.

the approximate values of energy (in mJ) consumed by a
single inference. For the Jetson modules, it was computed on
the basis of the average power consumption. For the Edge
TPU, where average power consumption was not available,
the peak power consumption was used instead to estimate the
needed energy in the worst-case scenario. However, it should
be noted that the peak and average consumption of the Edge
TPU are not expected to be much different. The lowest energy
per inference was consumed by the Edge TPU using a sin-
gle 2D CNN model. The highest energy consumption was
observed on Jetson AGX Xavier with 4379 m]J per inference,
on average.

Vil. DISCUSSION
The results, presented in section VI, can be discussed in a
broader context.

A. TIME SERIES-BASED VS. SPECTROGRAM-BASED PD
DETECTION

The two high-level approaches to online PD detection evalu-
ated in this work are the analysis of raw data (1D time series
analysis) and spectrogram analysis. Several neural models for
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both types of detections were studied from different points of
view.

The comparison between the 1D time series approach and
the spectrogram-based approach was rather complicated due
to the specific properties of some models and the limita-
tions of the test devices. Moreover, both approaches require
different data pre-processing. The time complexity of the
straightforward data preparation for the 1D time series analy-
sis is linear, with O(n), while the second approach requires
more complex steps including spectrogram creation that
involves expensive steps, e.g., the Fast Fourier Transforma-
tion. In addition, max-pooling can be easily included in neural
network models. On the other hand, models for the 1D time-
series analysis featured generally lower accuracy, illustrated
by lower MCC.

The spectrogram-based approach was better in terms of
accuracy and energy efficiency, overall. It outperformed the
time-series-based approach on all devices, even when only a
single CNN was used for PD detection. Data pre-processing
(spectrogram construction) can be done by the accelerator on
NVIDIA Jetson SoCs but requires computation on the host
when using the Edge TPU.

Interestingly, the time series-based approach achieved a
better average inference time on a classical GPU (GeForce
1070) than on edge devices compared to spectrogram-based
PD detection, where Single 2D CNN is 2x faster than the 1D
CNN ensemble and on Geforce 1070 the average inference
time is very similar. This could theoretically be attributed
to the fact that the operations used in the time-series-based
approach are better supported on classical GPUs than on edge
devices.

The power consumption and energy requirements were
approximated using different kinds of power consumption
measurements (HW and SW-based) so the obtained results
ought to be assessed with caution.

B. NEURAL MODELS FOR SPECTROGRAM-BASED PD
DETECTION

A number of different neural models for spectrogram-based
PD detection was designed and evaluated. Single networks
achieved reasonable results at a lower space complexity. That
makes them suitable for the most constrained devices such
as the Edge TPU where they can operate without extensive
host-to-device data transfers.

To execute more complex models, for example, CNN
ensembles, on Edge TPU, distributed computation (e.g., TPU
pipelining) is possible to allow the use of models with the
best accuracy on architectures with TPUs. On the other hand,
the approximate power consumption of CNNs on 5 Edge
TPUs is comparable to the consumption of a single 2D CNN
(5 x 236 vs 1166), excluding communication overhead. The
ResNet model achieved worse results than the CNN ensemble
in terms of MCC and power consumption. On the other hand,
the increased depth of the network by 102 layers did not
radically affect inference speed.
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Only the Edge TPU used quantization. This could affect the
performance of the models but several studies confirmed that
this fact should not degrade the performance of other devices
and the comparison is sufficiently fair and robust [60], [61].

C. NEURAL NETWORK ENSEMBLING FOR PD DETECTION
The experiments confirmed the validity of the basic assump-
tions behind model ensembling in the PD detection use case.
They have clearly shown that stacking ensembles of CNNs
allow a more accurate PD detection than individual networks
(weak learners) and standalone neural models. It also illus-
trated the good potential of such models for accelerated exe-
cution on suitable edge devices. For example, the inference
of the 1D CNN ensemble was more than 2 times faster than
the sequential execution of the networks in the ensemble on
Jetson Nano (610 vs 1494 ms).

This observation applies to the spectrogram-based
approach as well. The 2D CNNs ensemble achieved better
accuracy than the underlying networks alone and ran much
faster (1290 ms if run sequentially vs 426 ms in ensemble).
The accuracy of the ensemble was also better than the accu-
racy of the underlying models.

VIIl. CONCLUSION

This work provides an extensive study on the accuracy and
performance of different deep neural models for partial dis-
charge detection on edge devices. Several models consisting
of standalone and ensembled deep neural networks were
designed, implemented, and thoroughly evaluated on a hand-
ful of commercially available edge devices capable of neural
network inference acceleration. The comparison was based
on a data set of signals obtained from covered conductors
in several locations of the Czech Republic by a contactless
antenna. The detection was done either from the raw signal
or from spectrograms extracted from the noisy raw data. The
accuracy, latency, and approximate power consumption per
inference were evaluated. The results highlight the impor-
tance of the selection of suitable PD detection models. They
show that stacking ensembles of 2D CNNs are efficient in
terms of both, accuracy and energy consumption. The overall
best accuracy was achieved by the stacking ensemble of
CNNs with the Wide & Deep network as meta-learner used
for the spectrogram-based PD detection (2D CNN ensemble).
Second to best results were obtained by the widely used
ResNetV2 neural network with 50 layers. Both models were
also able to run on all test devices, including the highly
restricted Edge TPU. This is in contrast with the larger
ResNet152V2 that was not able to finish on the TPU the
inference and the 1D CNN ensemble that included an autoen-
coder, a network requiring deconvolution, an operation not
available in the limited environment of the TPU. The experi-
ments demonstrated that the stacking ensemble of lightweight
neural networks (2D CNN ensemble) was on all devices
executed faster than the more complex model (ResNet5S0V2)
and underpin the importance of experimental development of
custom models tailored for particular applications.
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