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ABSTRACT Recently, the lack of spectrum resources has become a key technical bottleneck to develop
the Industrial Internet of Things (IIoT). Based on cognitive radio technology, the cognitive IIoT (CIIoT)
paradigm can improve spectrum utilization via opportunistically accessing the idle spectrum bands. In this
study, a novel cooperative spectrum sharing scheme is presented for the CIIoT system platform. The main
challenge of our scheme is to effectively share the limited spectrum resource via cooperative sensing
and dynamic accessing techniques. To achieve a mutually desirable solution for different CIIoT devices,
we design a learning game model using the ideas of multi-agent reinforcement learning (MARL) and
the negotiated aspirations bargaining solution (NABS). In the learning mechanism, individual CIIoT
devices adaptively select their cooperative sensing policy according to the MARL model. In the bargaining
mechanism, the available spectrum resource is dynamically shared through the NABS, which is obtained
based on the devices’ selected sensing policy. By investigating the contribution of MARL to game theory,
the proposed scheme can effectively guide intelligent CIIoT devices toward a socially optimal outcome.
Numerical simulation results demonstrate that the normalized device payoff, CIIoT system throughput and
device fairness of our approach are better than those of existing benchmark protocols. Finally, we present
the key challenges and future direction of our research in the CIIoT system operations.

INDEX TERMS Cognitive industrial internet of things, multi-agent reinforcement learning, negotiated
aspirations bargaining solution, cooperative spectrum sensing, game theory.

I. INTRODUCTION
With the rapid development of various technologies, the
world has witnessed an explosive growth in adoption of
Internet-of-Things (IoT) in various fields such as smart cities,
network automation, smart manufacturing, autonomous driv-
ing, and many other kinds of cyber-physical systems. Under
the fact that wireless networks have evolved significantly,
industrial sector is one of the beneficiaries. The use of wire-
less communications in industries make it possible to opti-
mize the production line with better efficiency, scalability,
reliability, and quality of service (QoS). Within an indus-
trial environment, all kinds of industrial devices, which are
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generating the access control data, can connect to the Internet.
This scenario is called Industrial Internet of Things (IIoT).
As the Industrial Internet, the major challenge of IIoT is
the reasonable optimization of the manufacturing process
via network interconnection, data interworking, and system
interoperability of industrial resources [1], [2].

Originally, the concept of IIoT was introduced in 2012 by
GE as industrial Internet that entails the adoption of the
Internet of Things (IoT) in the perspective of general indus-
try. While traditional IoT is providing Internet access to
any ‘thing’, the concept of IIoT restricts the ‘things’ in the
field of industry. Toward making industrial systems more
robust, faster and secure, the IIoT paradigm mainly focuses
on the transfer and control of mission critical information
and responses, and relies heavily on machine-to-machine
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communications. With the rapid growth of industrial data,
IIoT devices need larger spectrum to transfer massive data.
Usually, the IIoT utilizes 2.4-GHz unlicensed frequency band
for wireless communications. However, this spectrum band
is also adopted by other communication networks, such
as ZigBee, WiFi, Bluetooth, etc. Therefore, it has become
very crowded; the scarcity of spectrum resources is a key
technical bottleneck to restrict the development of IIoT
technology [1], [2], [3].

To solve the spectrum shortage problem in the IIoT,
cognitive radio (CR) is seen as an effective method. The
CR has been proposed to improve the spectrum utilization
by enabling unlicensed users, i.e., secondary users (SUs),
to access licensed frequency band without interfering with
the licensed users, i.e., primary users (PUs). Therefore, the
CR method can increase spectrum access opportunities by
making full use of unused idle spectrum. To avoid caus-
ing harmful interference to the PUs, the CR system has to
control the underutilized licensed spectrum through adap-
tively adjusting its transmission parameters. By integrating
CR technology into IIoT, cognitive IIoT (CIIoT) can effec-
tively solve the spectrum shortage problem by opportunisti-
cally accessing the underutilized licensed spectrum. Based on
the control idea of CIIoT, industrial smart devices dynam-
ically share the licensed spectrum frequency bands while
achieving a larger transmission capacity and a higher system
throughput [2], [4], [5].

With the evolution of wireless communications, the
multiple access technologies have also experienced
the change from the orthogonal multiple access (OMA)
to the non-orthogonal multiple access (NOMA) for future
networks. As a fifth-generation (5G) core technology, the
NOMA also effectively improves the spectrum utilization via
allocating the same spectrum resource to multiple devices.
Individual devices operate in the same spectrum band and at
the same time, they are distinguished by their power levels.
Due to the advantages of high spectral efficiency, combining
NOMA principle and cognitive radio technique has been
highly recommended as the promising access technology for
future wireless communications. Nowadays, it becomes an
important scenario for the industrial IoT platform [2], [4], [6].

Introducing NOMA into the CIIoT network system, this
approach can increase the overall transmission capacity by
connecting more IIoT devices using the finite spectrum
resource. However, there are some control issues. Specifi-
cally, dynamic spectrum sensing has received much atten-
tion to avoid generating any harmful interference to PUs.
It plays an essential role in the CIIoT platform to diagnose
the availability of spectrum resource. If spectrum sensing is
imperfect and incorrect, these results cause interference to
PUs or wasting in unused resources. Traditional spectrum
sensing method is operated in a non-cooperative and inde-
pendent manner; each SU device acts on its own behaviors.
But, the non-cooperative spectrum sensing way cannot detect
weak signal in fading channel correctly. Recently, cooperative

spectrum sensing has been receiving intensive attention to
increase the correctness of spectrum sensing; multiple SU
devices can cooperate with each other instead of just working
alone. Usually, cooperative operation helps increase the accu-
racy of sensing information by exploiting the spatial diversity
of SU devices. However, cooperative spectrum sensing is
obviously more complicated than the single non-cooperative
case. For example, additional control mechanism to coordi-
nate multiple SU devices is necessary [2], [4], [7].

Recently, multi-agent systems (MASs) have captured the
attention of academic researchers because of their impressive
abilities in a wide variety of domains including robotic teams,
distributed control, resource management, collaborative deci-
sion support systems, data mining, etc. As a self-organized
system, the MAS can solve problems that are difficult or
impossible for a single agent to solve. Although the smart
agents in aMAS can be programmedwith behaviors designed
in advance, it is necessary that they learn new behaviors in
an online manner to gradually improve the total system per-
formance. Usually, intelligence can be included through rein-
forcement learning. Until now, research on the design ofMAS
has a rich history. Specifically, there are several frameworks
that are available from the field of computer science, psychol-
ogy, operations research, and economics. As one theory from
economics, game theory can provide a useful framework for
analyzing MAS. Both in game theory and MAS, intelligent
multiple agents are considered tomake rational decisions, and
work together to maximize their payoffs [8], [9].

To ensure the communication qualities in the industrial IoT
paradigm, an effective spectrum sharing policy is essential.
Until now, many scientists and technical engineers have been
trying to deal with spectrum sharing problems for the CIIoT
infrastructure. In this study, we propose a new spectrum
sharing scheme for the CIIoT platform. Motivated by the
above discussion, the main principles of game theory and
reinforcement learning in MAS are employed to implement
our cooperative spectrum sensing process, and the NOMA
method is adopted to design our proposed spectrum sharing
algorithm. For the formulating, design, and successful opera-
tions, our major objective is to illustrate how game theory can
be used to design the MAS in CIIoT platform while striking
an appropriate system performance among different CIIoT
devices.

The remainder of this paper is organized as follows.
Section II introduces the necessary background in game the-
ory and MAS model. In Section III, we review the related
work. Section IV describes the CIIoT system infrastructure,
and formulates the spectrum sharing problem with the ideas
of game theory and MAS reinforcement learning algorithm.
And then, our proposed scheme is presented in detail. To help
readers understand better, we also provide the primary steps
of the proposed algorithm. In Section V, simulation testbed
is presented, and some numerical simulation results are ana-
lyzed and discussed. We highlight the better performance of
our approach by comparing the state-of-the-art benchmark
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protocols. Finally, the conclusion of this article and future
study directions are drawn in Section VI.

II. TECHNICAL CONCEPTS AND MAIN CONTRIBUTIONS
Game theory has aimed at providing solutions to the problem
of selecting optimal actions in multi-agent environments.
It studies i) interactions between self-interested agents, ii) the
problems of how interaction strategies can be designed that
will maximize the welfare of agents, and iii) how protocols or
mechanisms can be implemented that have certain desirable
properties. In recent years, game theory based control algo-
rithms have received extensive attentions from theoretical
researches and industrial applications. Particularly, the game
theoretic control approach is a promising new paradigm to
the distributed control ofMASs. As a subfield of game theory,
dynamic bargaining game theory provides an environment for
formulating multi-agent decision problems by using the dis-
tributed optimization concept. At 1975, the celebrated Kalai-
Smorodinsky bargaining solution (KSBS) was introduced for
n-agent bargaining problems. Since then, a number of differ-
ent bargaining solutions have been proposed by redeeming
the original KSBS idea [10], [11].

The negotiated aspirations bargaining solution (NABS) is
a new bargaining solution to deliver attainable allocations for
any number of agents. The NABS fills a gap in the literature
by providing a logical counterpart to the KSBS. Original
KSBS idea considers the disagreement point

(
DP
)
and utopian

point
(
UP
)
where DP is the allocation which would result

if negotiations broke down, and UP is the allocation where
each agent would be granted hismaximal aspirations. Starting
from DP, increase the surplus allocated to every agent in the
direction of UP, increasing each agent’s outcome in a pro-
portional way. The KSBS selects the best allocation obtained
through this procedure while maintaining feasibility. The
NABS proposes the best allocation in the direction of utopia
starting at an endogenous reference point which depends on
both the UP and bargaining power. Therefore, the NABS is
the negotiation outcome, which takes into account feasibility,
bargaining power, and the desire to approach the utopia point.
Implicitly, the NABS can be seen as allocating gains from the
endogenous reference point in the direction of utopia [11].

In a multi-agent setting, individual agents not only adapt
and learn from their shared environment but also from the
actions and learning processes of all the other agents. To reach
an effective solution, multi-agent learning concerns rein-
forcement learning techniques. Recently, multi-agent rein-
forcement learning (MARL) has attracted much attention
from the communities of machine learning, artificial intel-
ligence, and game theory. As an interdisciplinary research,
the MARL is closely related to game theory and MAS, and
it can be treated as a fusion of policy search techniques
to explore the coordination and competition among mul-
tiple agents. Based on the game-theoretic approach, some
MARL models can be designed as learning games to obtain
fair-efficient solutions in dynamically changing multi-agent
environments [12].

In this study, we aim to optimize the CIIoT system per-
formance by adopting the NABS and MARL. By employ-
ing two control mechanisms, such as learning mechanism
and bargaining mechanism, the proposed scheme shares the
limited spectrum resource in a fair-efficient manner. In the
learning mechanism, each CIIoT device learns his best policy
in the cooperative spectrum sensing process. In the bargaining
mechanism, the NABS is applied to solve the spectrum allo-
cation problem. For the efficient operation of CIIoT system
infrastructure, two different control mechanisms are sophis-
ticatedly combined as a new learning game. This approach
can achieve a socially optimal solution. The significant major
contributions of the paper are summarized as follows:

• We construct a new spectrum sharing scheme based on
the CIIoT platform. According to the basic concepts of
the MARL and NABS, we develop two control mecha-
nisms, which work together in a dynamically changing
multi-agent environment.

• For the learning mechanism, individual CIIoT devices
learn their sensing strategies for the cooperative spec-
trum sensing process. This decision process is operated
in a parallel and distributed manner.

• For the bargaining mechanism, the NABS is adopted to
effectively share the limited spectrum resource for CIIoT
application services. Based on the individual rational-
ity of devices, we can reach a consensus with recipro-
cal advantage. By using a dynamic cooperation game
model, this spectrum sharing process is operated in a
centralized manner.

• Our learning and bargaining mechanisms are jointly
combined into the holistic scheme and act coopera-
tively and collaborate with each other. This integrated
approach gives excellent control flexibility under widely
diversified CIIoT system situations.

• The simulation results have shown that the efficiency
of our joint scheme in comparison with the existing
CIIoT spectrum sharing protocols. Numerical analysis
demonstrates that our proposed scheme can achieve a
mutually desirable solutionwith a good balance between
efficiency and fairness.

III. RELATED WORK
Many previous spectrum sharing studies have investigated to
maximize spectrum efficiency. Since the concept of coop-
erative sensing technique was first introduced in the CIIoT
platform, one of the most important issues is to effectively
share the limited spectrum resource while guaranteeing fair-
ness. Recently, a few research papers have been published
to handle this problem [2], [3], [4]. In [2], the Cluster based
Resource Allocation for CIIoT (CRACIIoT) scheme is pro-
posed to improve the sensing and transmission performance
in the cluster-based CIIoT platform. In this scheme, the
cluster heads adopt cooperative spectrum sensing to improve
the success detection rate, and the IIoT devices within a
cluster use the NOMA technology to improve transmission
capacity. To maximize the average total throughput of the
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CIIoT system, a joint resource optimization problem is for-
mulated under the constraints of cooperative detection prob-
ability, the total power of the CIIoT, and the minimal rate of
each node. This optimization problem is solved via sensing
and power optimization techniques. In addition, the clus-
tering and cluster head alternation algorithms are proposed
to improve transmission performance while guaranteeing
enough sensing performance. To ensure the energy balance
of each node, the cluster head is dynamically alternated.
Finally, the simulation results reveal the effectiveness of the
CRACIIoT scheme [2].
Xin Liu et al. develop the Integrated Spectrum Sensing for

CIIoT (ISSCIIoT) scheme for the integrated cooperative spec-
trum sensing and access control processes [3]. In this scheme,
the main goal is to maximize the total throughput of CIIoT
system by jointly optimizing sensing time, the number of
sensing nodes and the transmit power for each CIIoT device.
According to the decision results of spectrum sensing, CIIoT
devices control their spectrum access parameters. To perform
periodic sensing, control and communications, the frame
structure of the CIIoT system is divided into spectrum sens-
ing slot, access control slot, and communication slot. The
SCIIoT scheme can guarantee the efficient utilization of idle
spectrum resources by using alternating direction optimiza-
tion method, which is divided into three sub-optimization
problems for spectrum sensing, allocation, and access control
processes. In this scheme, all CIIoT devices participate in
the cooperative spectrum sensing to improve the performance
without reducing the communication time. Finally, perfor-
mance evaluations indicate the SCIIoT scheme maximizes
the total throughput of the CIIoT system under the con-
straints of spectrum sensing performance and interference
control [3].

The paper [4] proposes the Cooperative Machine Learning
for CIIoT (CMLCIIoT) scheme to tackle the challenges
of complex cooperative spectrum sensing process. This
scheme combines cooperative sensing technique with
NOMA to boost spectrum efficiency. However, this
combined approach makes the mathematical solution more
difficult. By using unsupervised and supervised learning
algorithms, the CMLCIIoT scheme can effectively deal with
the complexity of the CIIoT system scenario. Especially,
K-Means clustering, Gaussian mixture model, directed
acyclic graph-support vector machine, K-nearest-neighbor
and back-propagation neural network algorithms are adopted
to accomplish effective radio environment detection. There-
fore, multiple SUs collaborate to perceive the presence of
PUs, and the state of each PU need to be detected precisely.
From the number of SUs, the average signal ratio of receivers,
the ratio of PUs’ power coefficients, and the training time and
test time, performance evaluation are analyzed. Finally, sim-
ulation results show that the effectiveness of the CMLCIIoT
scheme to achieve the accurate spectrum sensing results [4].

The earlier schemes in [2], [3], and [4] have been stud-
ied the spectrum sensing and sharing process for the CIIoT
system platform. Even though some researchers tackled the

cognitive radio resource sharing problem, they did not con-
sider the combination of bargaining game solution andMARL
algorithm for industrial application services. Compared to
the above existing CRACIIoT, ISSCIIoT and CMLCIIoT
schemes, this article combines ideas of NABS and MARL
for controlling the cooperative activities of CIIoT devices,
and guides intelligent CIIoT devices toward a socially opti-
mal outcome. To the best of our knowledge, our proposed
scheme is the first in the literature to design a novel learning
game paradigm to ensure a well-balanced performance for the
CIIoT system infrastructure.

IV. COOPERATIVE SPECTRUM SHARING ALGORITHM
FOR THE CIIoT PLATFORM
In this section, the CIIoT system platform is described firstly.
Then, we formulate a learning game model for the coop-
erative spectrum sensing and sharing problem. Finally, the
proposed scheme based on the fundamental ideas of theNABS
and MARL is presented in detail.

A. CIIoT SYSTEM INFRASTRUCTURE AND A LEARNING
GAME MODEL
We consider a CIIoT system platform, which comprises
n control centers (CCs), i.e., C = {C1, . . . ,Cn}, and each
CC has a coverage area and a fixed spectrum band (MC ).
The MC is licensed to the PU, and CCs have their secondary
IIoT devices, i.e., D = {D1, . . . ,Dm}, which share the MC
as SUs. IIoT devices are equipped with a single antenna to
contact their corresponding CCs through wireless communi-
cations. In the cognitive radio technology, it is important to
perform spectrum sensing to find the idle spectrum, where the
PU is not present temporarily. As an effective spectrum sens-
ing method, the cooperative spectrum sensing can improve
detection performance by the collaborative sensing and deci-
sion of multiple SUs. Therefore, multiple IIoT devices first
sense the spectrum band independently, and then send their
sensing result to the CC. The CCmakes a final decision on the
status of the spectrum band, via combining the local sensing
information from its corresponding IIoT devices. The general
CIIoT network infrastructure is shown in Fig.1 [3]

FIGURE 1. The industrial IoT system infrastructure for cognitive radio
technology.
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Without loss of generality, we suppose that each spectrum
band (MC ) has two status, i.e., active state and idle state.
The active state indicates that the PU is transmitting its
data, and the idle state means that the PU is not transmit-
ting its data. To verify the band state, cooperative spectrum
sensing process occurs when a group of SUs voluntarily
contribute to sensing and share their local sensing infor-
mation to get a better spectrum usage. However, sensing
work of SUs consumes a certain amount of energy and time.
That is to say, selfish SUs can be easily ‘free-riders’ while
no contributing to serve a common sensing work. In this
instance, SUs face the risk of having no one sense the spec-
trum. Due to this reason, the key issue with the cooperative
sensing method is how to make a selfish SU collaborate
with others. This situation can be seen as a game theory
problem [4], [13].

In the proposed scheme, we adopt the learning game
paradigm, which consists of learning model M and game
model G. Through the M and G, multiple IIoT devices work
as SUs, and they are sequentially interacted with each other to
perfectly complete the cooperative spectrum sensing process.
Formally, we define the tuple entities in our proposed M and
G, such as {M, G} = {C, D, {C1≤i≤n | MCi ,GCi}, {MCi | Dj ∈

DCi , MCi , a
Dj
1≤k≤l ∈ LDj , R

Dj
a }, {GCi | Dj ∈ DCi , MCi , SDj ,

UDj (·)},T}
• C and D represent the set of CCs and the set of IIoT
devices, respectively.

• Each CC has its learning model (MC ) and game
model (GC ).

• For the Ci ∈ C, the MCi is developed as a MARL
model for the Dj ∈ DCi where DCi is the set of
the Ci’s corresponding IIoT devices. The MCi is oper-
ated in a distributed manner to learn the best action
of Dj.

• In the MCi , MCi is the spectrum band assigned to the
PU. LDj is the Dj’s action set, which consists of total l

actions
(
a
Dj
1≤k≤l

)
. R

Dj
a is the Dj’s reward function with

the joint action a.
• For the Ci ∈ C, the GCi is designed as a cooperative
game model for the devices in DCi . The GCi is operated
in a centralized manner.

• In the GCi , the Dj ∈ DCi is a game player, and SDj and
UDj (·) are his strategy and utility function, respectively,
to share the spectrum resource

(
MCi

)
.

• The MCi and GCi are reciprocally interdependent each
other, and work together in an iterative manner.

• Discrete time model T ∈ {t1, . . . , tc, tc+1, . . .} is rep-
resented by a sequence of time steps. The length of tc
matches the event time-scale of MCi and GCi .

B. TECHNICAL CONCEPTS AND IDEAS OF NABS AND
MARL
In this subsection, we quickly review the fundamental con-
cepts of NABS, and the multi-agent reinforcement learning
based on the joint action.

1) NEGOTIATED ASPIRATIONS BARGAINING SOLUTION FOR
COOPERATIVE GAMES
To characterize the idea ofNABS, the following notations will
be used. Let Rn

+ be the n-fold Cartesian product of positive
real numbers. A group of n agents, i = 1, . . . , n, need to agree
on a utility vector from a set of potential possibilities (called
the bargaining set), S ⊆ Rn

+. In case of disagreement, a dis-
agreement point d = [. . . , 0, . . .] ∈ S will be implemented.
Formally, a bargaining problem is a pair (S, d) where d ∈ S.
Let

∑n be the set of all bargaining problems of the form
(S, d). A bargaining solution is a function F:

∑n
→ Rn

+

satisfying F (S, d) ∈ S for every (S, d) ∈
∑n; that is, given a

bargaining problem (S, d), the solutionF prescribesF (S, d).
Simply, a bargaining problem (S, d) ∈

∑n will be denoted
by S from now on [11].
For a given S, the utopia point U (S) ∈ Rn

+ is the point
where each coordinate ui contains the maximum conceivable
outcome for agent i. Mathematically, the utopia point of i. i.e.,
Ui (S), is given by [11];

Ui (S) = max {ui | U ≥ d and U ∈ S} ,

s.t., U = [. . . , ui, . . .] (1)

To measure asymmetries in bargaining power, let W =

[W1, . . . ,Wn] be a vector of bargaining weights. The
endogenous reference point, i.e., UW (S), is a key point for
the NABS. In general, it might be in the interior of S, and
respects the given bargaining weights. At the UW (S), each
agent achieves a fraction of his utopian payoff which is
proportional to the agent’s bargaining power. The UW (S) is
given by [11];

UW (S) = ((W1 · Ui (S)) , . . . , (Wn · Un (S)))

s.t., W =

{
W ∈ Rn

+

∣∣∣∑n

i=1
Wi = 1

}
and

UW (S) ∈ S (2)

Based on the U (S) and UW (S) points, the NABS can
be obtained. As an anchor point, we start with the U (S)

point, and adjust it down to the UW (S) point while iden-
tifying the Pareto optimal point. Finally, the mathemat-
ical definition of NABS, i.e., NABS (S, d, W), is given
by [11]:

NABS (S, d, W) =
(
ε

∗
· U (S)

)
+

((
1 − ε

∗
)
· UW (S)

)
s.t., ε

∗
= max

ε ∈ [0, 1]

∣∣∣∣∣∣
 (ε · U (S))

+(
(1 − ε) · UW (S)

)


∈ S ∈

n∑ (3)

Intuitively, the NABSminimizes the losses with respect to the
utopia point, distributing it according to bargaining power.
Therefore, we can think that the NABS is a weighted pro-
portional losses solution, and it is the generalized KSBS;
the original idea of KSBS corresponds to the particular case
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of the NABS. Especially, the NABS is characterized by a
collection of desirable axioms like as, weakly Pareto optimal
(WPO), scale invariance (SI), restricted monotonicity (RM),
and restricted concavity (RC). To explain these axioms, vec-
tor inequalities are treated as follows. x ≥ ymean that xi ≥ yi
for all i, x > y indicates that x ≥ y and x ̸= y and x ≫ y
means xi > yi [11].

• WPO: For every S, its weakly Pareto optimal set is
defined asWPO (S) = {x ∈ S|yi > xi implies y /∈ S}.

• SI: Let 3n denote the class of profiles of affine
transformations that act independently agent by agent.
For each S ∈

∑n, and each ε ∈ 3n, then
F (ε (S) , ε (d) , ε (r)) = ε (F (S, d, r)).

• RM: For each pair S,T ∈
∑n, if S ⊆ T and U (S) =

U (T ) then F (S) ≤ F (T ).
• RC: For each pair S,T ∈

∑n and each ε ∈ [0, 1],
if U (S) = U (T ) then F ((ε · S) + ((1 − ε) · T )) ≥

((ε · F (S)) + (1 − ε) · F (T )).

2) MULTI-AGENT REINFORCEMENT LEARNING FOR GAME
THEORY
Traditionally, the game theory is strongly related to the
multi-agent systems. Compared to single-agent reinforce-
ment learning, it becomes apparent thatMARL is intrinsically
linked to the field of cooperative games, such as the study of
multi-agent decision problems. Standard learning model for
MARL is Q-learning, and it has attracted much interest in the
last decade. Each agent acting in the multi-agent environment
not only has to consider the effects of his own actions but
is also influenced by the actions of the other agents. From
this perspective, agents are assumed as joint action learners,
and they are able to observe all actions taken by any agent.
Therefore, Q-values are learned for every combination of
actions of the individual agents. Until now, manyMARLmod-
els require exact measurements of multiple states and also of
the other agents’ actions. Therefore, the general Q-learning
formulation forMARL process is more sophisticated than we
need here. However, general approach is inappropriate for
applyingMARL algorithms to real world applications; it is not
computationally feasible due to the Curse of Dimensionality.
In the multi-agent system for the CIIoT control scenario,
a state representation is not required. Therefore, we just
simplify the general multi-agent Q-learning to its stateless
version [14], [15].

In our stateless MARL model M, we assume the Q-value
of agent i, i.e., Qi (ai, a−i), that provides an estimate of the
value of performing joint action a = (ai, a−i). The sample
⟨(ai, a−i)r⟩ is the experience obtained by the agent iwhere the
joint action a was performed resulting in the reward r . Based
on the ⟨(ai, a−i)r⟩, the agent i updates its estimateQi (ai, a−i)

as follows [14]:

Qi (ai, a−i) = Qi (ai, a−i) + α · (r − Qi (ai, a−i)) (4)

where α ∈ [0, 1] is the learning rate while governing to
what extent the new sample replaces the current estimate.

Usually, the goal of MARL incorporates the stability of the
learning dynamics, and the adaptation to the dynamic behav-
ior of other agents. Stability essentially means the conver-
gence to a coordinated equilibrium. To enhance the overall
performance during MARL process, each agent intuitively
makes sense to bias selection toward better actions. Even
though there is virtually no theoretical understanding, Boltz-
mann strategy is the most standard tools to eventually con-
verge to a coordinated equilibrium; each agent chooses an
action to perform in the next iteration with a probability
that is based on its current estimate of the usefulness of that
action [8], [14].

C. THE PROPOSED SPECTRUM SHARING SCHEME FOR
THE COGNITIVE IIoT PARADIGM
To develop our CIIoT spectrum sharing scheme, we construct
the learning (M) and game (G)models for each device. In the
M, a single-stateMARLQ-learning process is implemented in
a distributed manner. From the viewpoint of each individual
IIoT device, the Q value of the selected action is updated by
receiving a reward, and what is the best action is gradually
learned. In the proposed scheme, the spectrum sensing activ-
ity of each device is discretely varied, and each activity level
is defined as the device’s action. Understandably, there is a
trade-off for each action between sensing performance and
sensing cost. Therefore, the main goal of IIoT devices is to
maximize the spectrum sharing benefit while minimizing the
sensing cost.

In our stateless setting, we assume that the Dj device has

his action set LD =

{
a
Dj
1 , . . . a

Dj
k . . . , a

Dj
l

}
, which consists

of its sensing participation levels. For example, the Q-value
of Dj’s k th action, i.e., Q

Dj
1≤k≤l

(
a
Dj
k , a−Dj

)
, provides an

estimate of the value of performing the joint action a =(
a
Dj
k , a−Dj

)
. TheDj updates its estimateQ

Dj
k (·) value based

on the experience sample ⟨a, R
Dj
a ⟩ where R

Dj
a is the Dj’s

reward function of the joint action a. The R
Dj
a is defined

based on the idea that the reward is assigned by considering its
sensing contribution. In the proposed scheme, the R

Dj
a func-

tion is also used as theDj’s utility function, i.e.,UDj (·), in the
game model G. Therefore, our learning and game models are
strongly connected each other. Finally, our stateless MARL
Q-function is defined as follows [14].

Q
Dj
1≤k≤l

(
a
Dj
k , a−Dj

)
= Q

Dj
k

(
a
Dj
k , a−Dj

)
+ α ·

(
R

Dj
a − Q

Dj
k

(
a
Dj
k , a−Dj

))
s.t., a

Dj
1≤k≤l ∈ LDj and R

Dj
a = UDj (·) (5)

According to (5) and the Boltzmann strategy, the Dj can
learn his best action for the cooperative spectrum sensing.
Based on his action, theDj can adaptively obtain the spectrum
resource for its service. Usually, industrial equipments in the
IIoT network are expected to support different application
services. In this study, different application services over IIoT
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devices can be categorized into four data types according to
their characteristics, i.e., type I, II, III and IV data. Based on
the data type, multiple applications are grouped, and each CC
assigns orthogonal spectrum sub-bands, i.e., MI

C , M
II
C , M

III
C ,

andMIV
C for them. Then, each group is treated as a traffic unit

via the NOMA technique. To achieve the strategic advantage
within the CIIoT platform, each CC adaptively decides power
levels for its corresponding IIoT devices within the same sub-
band [16].

To adaptively decide the devices’ power levels, we develop
a cooperative gamemodelG. In theGCi , individual devices in
the DCi share the MCi in a centralized manner. In this game,
the power level decision process is operated through the idea
of NABS, and we get the PD

Ci =
〈
Dj ∈ DCi

∣∣ . . . , SDj , . . .
〉
;

it is a
∣∣∣PD

Ci

∣∣∣-dimensional power level vector for IIoT devices

in the DCi where SDj is the power level of Dj. Specifically,
the GCi is divided into four sub games, i.e., GI

Ci , GII
Ci , GIII

Ci ,
and GIV

Ci , based on the sub-band. Therefore, each sub game
is operated separately. According to his data type T ∈

{I , II , III , IV }, the utility function for the Dj, i.e., UT
Dj

(·),
is defined as follows:

UT
Dj

(
MT

Ci , DT
Ci , SDj , PD(T )

Ci , a
Dj
k , θTDj

,E tDj

)
=QDj−CDj

s.t.,



QDj =
(
σ × log

(
JDj + κ

))
and

CDj =

(
exp

(
ζ ×

(
E

Dj−E tDj

EDj

))
− φ

)

JDj = min

[(
ϒ ×

(
MT

Ci∑
Dk∈DTCi

θTDk

)
× H

)
, η

]

H = SDj+

SDj−

∑SDk ∈PD(T )
Ci

SDk

/∣∣∣PD(T )
Ci

∣∣∣


(6)

where σ and κ are adjustment parameters for the Dj’s
outcome QDj , and ζ and φ are adjustment parameters for
the Dj’s cost ZDj . ϒ is an orthogonality factor for wire-
less communications, and η is a control factor. EDj and
E tDj

are the initial assigned energy amount and the cur-

rently remaining energy of Dj, respectively. MT
Ci , DT

Ci and

PD(T )
Ci are the sub-band, device set and power level vec-

tor, which are dedicated to the service type T devices in
the Ci. θTDk

is the T type’s service data generated from
the Dk .

According to (2) and (6), the idle spectrum sub-band(
MT

Ci

)
is shared based on the idea of NABS. In the GT

Ci ,
we define the bargaining power of each device according
to the spectrum sensing contribution, which is individually
decided in the learning model M. For the DT

Ci , the bargaining

power vector
(
WT

Ci

)
of each devices is defined as follows;

WT
Ci =

〈
WT

Ci ∈ R

∣∣∣DT
Ci

∣∣∣
+ , Dj ∈ DT

Ci

∣∣∣∣∣ [. . . , WDj , . . .]

〉

s.t., WDj =
aDj∑

Dk∈DT
Ci

aDk
and

∑
Dk∈DT

Ci

WDk = 1 (7)

where aDk is the Dk ’s selected action in the M. Finally,
the allocated spectrum amount for the Dj, i.e., NABSDj (·),
is given by:

NABSDj

(
Dj ∈ DT

Ci

∣∣∣U, dDT
Ci

, WT
Ci

)
=

(
ε

∗
· UT (U)

)
+

((
1 − ε

∗
)
· UW

T (U)
)

s.t., ε
∗

=



U =

〈
Dk ∈ DT

Ci

∣∣∣ . . . , UT
Dk

(·) , . . .
〉

UW
T (U) =

(
. . . ,

(
WDk · UT

Dk
(·)
)

, . . .
)

∈ U

ε∗
= max

{
ε ∈ [0, 1] |X ∈ U ∈ 6

∣∣∣DT
Ci

∣∣∣}

X =
(
ε · UT (U)

)
+
(
(1 − ε) · UW

T (U)
)

(8)

where UW
T (U) is a reference point in the interior of U, and

dDT
Ci
is the disagreement points for devices in the DT

Ci .

D. MAIN STEPS OF OUR LEARNING GAME BASED
SPECTRUM SHARING ALGORITHM
The cognitive radio techniques applied to the industrial IoT
platform greatly depend on the degree of cooperation among
the secondary devices. From this perspective, the spectrum
sharing setting is strongly related to the cooperative game
model. In contrast, individual IIoT devices can also act in
a competitive environment where their received payoffs are
negatively impacting the payoffs of other devices. There-
fore, the CIIoT spectrum sharing scenario can neither be
designed as fully cooperative or fully competitive. In this
study, we investigate the intersection of game theory and
multi-agent learning. Traditional MARL algorithms require
exact measurements of the state and action. However, as men-
tioned earlier, this approach is not computationally feasible.

In our proposed scheme, we design a new learning game,
which control the coordination between IIoT devices in the
MARL process. To participate in the cooperative spectrum
sensing, multiple secondary devices adaptively learn their
best actions through the MARL. They are able to observe all
actions taken by other devices and update the Q-values for
available actions. Based on the selected strategy, we decide
the reference point, and the spectrum resource is shared
according to the NABS. In the proposed scheme, the MARL
and NABS mutually dependent and act cooperatively to
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obtain a fair-efficient CIIoT system performance. In addi-
tion, we adopt a stateless joint action learning, which can
dramatically reduce the complexity of the MARL algorithm.
This approach is especially appropriate for applying MARL
algorithms to real world applications. The primary steps of
our proposed algorithm are described as follows.\

Step 1: Based on the experimental settings in the Section V
and Table 1, control factors and adjustment parame-
ter values are determined to carry out the numerical
experiments.

Step 2: At a sequence of time steps, each control center in
the C execute its learning game {M, G} in a parallel
and distributed manner.

Step 3: In the C ∈ C, individual CIIoT devices in the DC
generate their data

(
θTD

)
, which are transmitted to

the C through the NOMA based cognitive radio
technology. Especially, the C divides his spectrum
band (MC ) into different sub-bands for distinct data
types.

Step 4: At the MARL process (M), each CIIoT device
selects his action to participate in the cooperative
sensing. According to (4) and (5), the Q-value of
each action is updated based on the experience of
joint action and reward.

Step 5: Based on the Q-value, each device’s action is
dynamically selected via Boltzmann strategy. Our
proposed MARL algorithm is implemented as a
stateless learning mode, and it is operated in a dis-
tributed fashion.

Step 6: At the bargaining game process (G), each sub-band
of MC is shared based on the idea of NABS. Each
device’s utility function is defined as according to
(6), and the device weight is decided using (7).

Step 7: According to (8), the reference point and power
levels of secondary devices are decided. The G is
executed in a centralized manner.

Step 8: In our proposed scheme, the M and G are strongly
related and sophisticatedly combined based on the
reference point and utility functions. Therefore, the
M and G work together to reach a consensus with
reciprocal advantages.

Step 9: Constantly, individual agents are self-monitoring
the current CIIoT system environment, and sequen-
tially interact with each other in the both distributed
and centralized fashions. For the next iteration,
it proceeds to Step 2.

V. PERFORMANCE EVALUATION
In this section, the numerical simulation results are presented
for the proposed learning game based scheme at cognitive
industrial network platform. By using the MATLAB soft-
ware, we model our proposed protocol, and the other com-
peting protocols of CRACIIoT [2], ISSCIIoT [3] and CMLCI-
IoT [4]. To outline the benefits of our MARL and bargaining
game combination, we show a detailed comparative analysis.

Simulation parameters and their values are summarized in
Table 1, and the simulation environment and system scenario
are given as follows:

• Simulated the CC assisted CIIoT system platform con-
sists of five CCs and fifty IIoT devices, i.e., |C| = 5, and
|D| = 50.

• Five CCs are deployed in the industrial area, and indi-
vidual IIoT devices are randomly distributed over there.

• Each secondary IIoT deviceD1≤k≤50 generates different
T type data

(
θTDk

)
where T ∈ {I , II , III , IV }.

• The arrival process of θTDk
is the rate of Poisson pro-

cess (ρ). The offered range is varied from 0 to 3.0.
• Individual IIoT devices participate in the cooperative
spectrum sensing through sensing actions aD

1≤k≤l in the

action set LD where LD = {0.7, 0.8, 0.9, 1, 1.1, 1.2}.
• The total spectrum resource of each CC (MC ) is 4 Gbps,
and it is evenly divided into four different sub-band
where MCT = 1 Gbps.

• The energy dissipation coefficient for data transmissions
is 1µJ/bit, and the initial assigned energy amount of each
device is 10 Joule.

• The disagreement points for bargaining process, i.e.,
dDT

Ci
, are zeros.

• We assume the absence of physical obstacles in the CC’s
coverage area.

• The licensed spectrum band (MC ) is randomly inactive
by PUs.

• We assume that power levels for secondary IIoT devices
are their strategies. Simply, each power level is logi-
cally defined. The range is varied from 1 to 10 where
1 ≤ SD ≤ 10.

• The power assignment process through the NABS is
specified in terms of basic power control units (PCUs)
where one PCU is 0.25 in this study.

• The CC assisted CIIoT system performance measures
obtained on the basis of 100 simulation runs are plotted
as functions of the Poisson process (ρ).

To evaluate the proposed scheme, we compare its perfor-
mance in terms of normalized CIIoT device payoff, system
throughput and fairness in the cooperative spectrum sensing.
Table 1 shows the control parameters and system factors used
in the simulation.

Fig.2 compares the device payoff in the CIIoT platform.
It is seen that the trend of device payoff when implementing
the different spectrum sharing protocols. In the viewpoint of
end users, the device payoff is strongly related to the service
quality. As the workload rate increases, the device payoffs
of all protocols increase similarly. However, our proposed
scheme is better than the CRACIIoT, ISSCIIoT and CMLCI-
IoT schemes. The reason is that we adopt a learning game
control paradigm, and the power levels of CIIoT devices are
dynamically adjusted based on the idea of NABS. Therefore,
multiple CIIoT devices share the limited spectrum resource
in a coordinated manner. Based on the desirable axioms,
we can achieve a mutually acceptable solution under dynamic
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TABLE 1. System parameters used in the simulation experiments.

FIGURE 2. The normalized CIIoT device payoff.

changing CIIoT system environments. Simulation result con-
firms that our proposed method gains a significant advantage
for the spectrum sharing problem.

FIGURE 3. System throughput in the CIIoT system platform.

FIGURE 4. Fairness in the cooperative spectrum sensing.

Fig. 3 compares the throughput of the CIIoT system for
four different spectrum sharing methods. In this study, the
throughput refers to the rate of message delivery over the
wireless spectrum resource in the CIIoT platform. As a main
performance criterion, the throughput is essentially synony-
mous to spectrum consumption. Simulation result is seen
that our proposed scheme outperforms the existing schemes.
That is because each CIIoT device on our scheme can learn
what is the best strategy for the cooperative sensing problem
through theMARL algorithm. Based on the selected strategy,
the spectrum resource can be adaptively shared according
to the idea of NABS. Therefore, compared with the other
spectrum sharing methods, our approach is quite flexible to
maximize the system throughput while handling different
service requirements.

We depict the service fairness in the cooperative spectrum
sensing process in Fig.4. To verify the fairness for different
schemes, we compare its normalized index. In Fig.4, it can
be observed that the fairness of our proposed scheme is
higher than that of other schemes. To share the idle spectrum
band (MC ) among CIIoT devices, the main feature of NABS
is to consider the reference point as a key factor to the
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bargaining solution. In the proposed scheme, the reference
point is decided based on each device’s contribution in the
cooperative spectrum sensing. Therefore, we investigate the
fairness issue through the learning game paradigm to obtain
the fair-efficient solution. Due to this reason, our proposed
scheme efficiently shares the limited spectrum resource while
ensuring a higher fairness among secondary IIoT devices than
other existing protocols.

Fig.2 to Fig.4, we can conclude that our proposed scheme
not only guarantees the fairness among different secondary
IIoT devices, but also improves the total system throughput
for the CIIoT platform. To capture dynamic interactions
among secondary devices, the combination of multi-agent
learning and game theory significantly improves the
effectiveness of the CIIoT system, and the simulation results
confirm the superiority of our approach. As the candi-
date technology of beyond 5G and 6G, our learning game
paradigm can get a desirable solution in the spectrum sharing
problem than that of CRACIIoT, ISSCIIoT and CMLCIIoT
schemes.

VI. SUMMARY AND CONCLUSION
In this paper, we aim to answer the research question of
how to effectively share the limited spectrum in the NOMA
based CIIoT system platform. By integrating the spectrum
sensing and access control algorithms, our major goal is to
maximize the total CIIoT system performance. In our pro-
posed scheme, we design a MARL process to learn the best
sensing strategy, and employ the idea of NABS to share the
spectrum resource. It is worth noting that the multi-agent
systems and game theory are strongly linked, and mutually
dependent each other. Our learning and bargaining algorithms
are jointly combined, and act cooperatively to strike a good
balance between spectrum efficiency and service fairness.
In addition, we adaptively mix the both centralized and dis-
tributed methods to reduce the control complexity. From the
viewpoint of practical operations, this approach is suitable for
the real world CIIoT systemmanagement. Finally, the simula-
tion results have shown that our learning game based control
protocol performs well in terms of the normalized device
payoff, CIIoT system throughput and fairness compared to
the existing CRACIIoT, ISSCIIoT and CMLCIIoT schemes.

As a future work, we will investigate the energy efficiency
for the CIIoT spectrum access method with wireless energy
harvesting technology. To improve sensing and transmission
performance of the CIIoT platform,we plan to incorporate the
clustering algorithm, and develop a joint resource optimiza-
tion technique for sensing time and device powers. Moreover,
wewill also consider deepQ-learning algorithms for dynamic
spectrum access mechanisms. By using deep learning algo-
rithms, the reliability and scalability of the CIIoT system can
be improved as a promising direction.
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