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ABSTRACT In this era of information overload, to better provide personalized content services to users,
recommendation systems have greatly improved the efficiency of information distribution. Graph Convo-
lution Network(GCN), which is one of the representative works of graph structure aggregation processing,
works by node convolution with the help of the Laplacian matrix of the graph and weighted combination of
neighbor node information according to the outgoing and incoming degrees of neighbor nodes to obtain the
representation of the current node. However, the mainstreamGCNmodels nowadays do not take into account
data augmentation of metadata and the fact that each node plays different roles with different importance
and weights, thus making the recommendation performance limited. To better solve the above problems,
we propose the IcaGCNmodel, which can perform data augmentation and calculate nodeweights inmodules,
and is a convenient plug-and-play method. Finally, extensive experimental results on four real-world datasets
have shown the effectiveness and robustness of the proposedmodel. Especially on the Amazon-Book dataset,
our IcaGCN has improved by 6.32%, 42.29%, and 12.38% in Recall@20, MRR@20, and NDCG@20,
respectively, compared to other existing state-of-the-art models. We also provide source code and data to
reproduce the experimental results available at https://github.com/PersonZ1223/IcaGCN.git

INDEX TERMS Recommender systems, graph neural networks, collaborative filtering.

I. INTRODUCTION
In this era of information overload, in order to better provide
personalized content services to users, the birth of recom-
mendation systems has greatly improved the efficiency of
information distribution and gradually become one of the
infrastructures of information services. Reviewing the devel-
opment history of recommendation system, it can be divided
into traditional shallow model stage, general neural network
model stage and graph neural network model stage [3]. The
essence of recommendation system is to solve the matching
problem between users and items, i.e., to learn the similarity
between users and items. Early collaborative filtering (CF)
was done by capturing the similarity of users/selected items,
however, the disadvantage of such shallow models is that it
is difficult to make full use of data in the face of complex
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user behavior, which leads to unsatisfactory recommendation
results [12]. The rise of deep learning research, however,
has made it possible for machines to process large-scale
complex data, and neural network-based models have grad-
ually replaced shallow models. The multi-layer perceptron
(MLP) [8] in neural collaborative filtering models replaces
the dot product operation of matrix factorization (MF) [13],
which is the most classical of collaborative filtering methods.
However, both of the above models deal with Euclidean
spatial data, and they both ignore the structured information
of the data. That is, they generally utilize only the information
of first-order neighbor nodes on the graph, leading to limited
recommendation performance.

In the real world, data has more complex relationships,
and the use of ‘‘graph’’ to represent data becomes a new
solution. Take social network as an example, the graph is
constructed with users as nodes and relationships as edges,
each node has no fixed number of neighbors, and there is
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no clear sequential relationship between nodes. The graph
neural network (GNN) is based on ‘‘graph’’ structure data,
and inferring and reasoning by deep learning the relation-
ship information in the graph, the complex data in non-
Euclidean space can be represented as a graph. This message
propagation mechanism allows nodes to aggregate informa-
tion from higher-order neighbors, thus effectively capturing
higher-order relationships for more effective representation
learning. Therefore, graph neural networks have stronger
learning ability and are expected to solve relational inference
problems and improve interpretability. Among them, graph
convolutional network (GCN), as one of the representative
works of graph structure aggregation processing, works by
node convolution with the help of Laplacian matrix of the
graph and weighted combination of neighbor node infor-
mation according to the outgoing and incoming degrees of
neighbor nodes to obtain the representation of the current
node.

The message propagation mechanism in the graph convo-
lutional network should make a distinction for the importance
of the user’s intentions to different items. Different items have
different influence on user interest learning, so the different
weights of different nodes should be taken into account when
propagating. As shown in the FIGURE 1, the user on the left
chooses to buy supplies related to his occupation when shop-
ping, but these supplies are not suitable to be recommended
to most people. But the user on the right has social influence,
so what he buys also becomes something that many people
like, so the user on the right should have more weight than the
user on the left. Similarly, if an item is more niche, such as the
diamond ring shown in the FIGURE 1, then it has less weight
because of the small audience. In addition, data augmentation
is also important to ensure that user and itemmetadata are not
ignored. Therefore, our proposed IcaGCNmodel can process
the data from two aspects, data augmentation on the one
hand, and assigning different weights to different nodes on
the other.

To summarize, this work makes the following main
contributions:

• We propose the IcaGCN model, in which the Coactivate
Unit can augment user data and item data, and the Cube
Unit can assign different weights to different nodes.

• IcaGCN model obtains better results than other baseline
models. Especially on the Amazon-Books dataset, our
IcaGCN has improved by 6.32%, 42.29%, and 12.38%
in Recall@20,MRR@20, and NDCG@20, respectively,
compared to LightGCN.

II. PRELIMINARIES
In this section, we will briefly explain several methods for
deriving node weights led by the attention mechanism, and
discuss several currently available methods that can combine
user and item raw data and embeddings to maximize the
use of user embeddings and item embeddings without losing
important information. In addition, we will explain in detail
the baseline model of IcaGCN: LightGCN.

FIGURE 1. Different users and items in shopping sites.

A. TYPICAL ATTENTION MECHANISM
The attention mechanism originated from the fact that
humans can naturally and effectively discover salient regions
in complex scenes, and then with the development of com-
puter technology, this attention mechanism can be regarded
as a dynamic weight adjustment process based on input fea-
tures [6]. The way to combine deep neural networks with
attention mechanisms starts in the Residual Attention Mod-
ule(RAM) [23] by repeatedly predicting important regions
and updating the entire network in an end-to-end fashion.
Subsequently, research in this area transitioned to explicitly
predicting the input features to be discriminated, of which
Deep Crossing Network(DCN) [24] is an important exam-
ple. After the channel attention network represented by the
Squeeze-Excitation network (SENET), [9] is generated, the
model can adaptively predict potential key features. GCN
assigns the same weight to different neighbors in the same-
order domain, which limits the capture of spatial informa-
tion correlation, and then GAT [21] based on the attention
mechanism weighted summation of neighbor node features,
according to different neighbor node features assign different
weights to it.

B. CHANNEL ATTENTION MECHANISM
Hu et al. [9] proposed the SENET which learns the impor-
tance of each feature channel is automatically obtained, and
then useful features are promoted and unuseful features for
the current task are suppressed according to this importance,
so the interdependence between feature channels is explic-
itly modeled relationship to enhance the directivity of the
extracted features. There are many applications of SENET,
such as skin lesion classification, recalibrating fully con-
volutional networks and context aggregation. Dai et al. [2]
proposed a multi-scale channel attention module(MS-CAM)
which adds the global context inside the attention module.
Given the global channel context g(X ), the g(X ) can be
obtained as follow:

g(X ) = GP(BN(PWConv(δ(BN(PWConv(X )))))). (1)

BN denotes batchnorm, PWConv denotes point-wise channel
interactions for each spatial position, δ denotes relu and GP
denotes global average pooling. The refined feature X ′

∈

RC×H×W by MS-CAM can be obtained as follow, in which
σ denotes sigmoid:

X ′
= X ⊗ σ (g(X )). (2)
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C. FEATURE INTERACTION
Feature interaction plays an important role in recommender
systems. Feature intersection refers to the cross combination
between two and more original features, and how to mine
higher-order feature interactions is one of the key directions
of current research. Liu et al. [14] uses CNN architecture
combined with pooling layer andMLP layer to form a higher-
order feature interaction extraction structure, and uses this
part of features as input together with original features into
the subsequent network structure to get the prediction of sam-
ples. CNN as a classical method for processing image data is
incorporated into the recommendation system. Liu et al. [16]
introduces a weight parameter for each feature interaction out
of the idea that the interaction between individual features
is not equally important, thus reflecting the importance of
that feature interaction. Liu et al. [15] makes the model
automatically mine the interaction features by setting dif-
ferent feature grouping, and each group is responsible for
mining different order of feature interaction information,
which means that AutoGroup shows not only 2nd order but
even arbitrary higher order interactions when mining feature
interactions. All the above examples illustrate the positive
effect of mining effective higher-order feature interactions
on the model. However, most people tend to characterize
users and items as vectors for learning, i.e., features are non-
linearly and implicitly transformed into embeddings, ignor-
ing the interaction between the original data of users and
items. In contrast, the Cartesian product, an excellent method
for data interaction, has the problem of a huge number of
parameters.

D. GCN AND LightGCN
Euclidean spatial data with regular data and fixed shape,
such as image data, are mostly processed by DNNs. To solve
the data in non-Euclidean space, GNN and GCN are born.
Data in non-Euclidean space is widely existed in scenarios
such as social networks, virus propagation paths, food chains,
particle networks, etc. The data in these scenarios are best
represented by graphs. GNN takes graphs as input and gets
prediction results as output. In a graph neural network, the
information of the current node and its n-hop neighbors nodes
are aggregated and updated. For GNN, a graph network needs
the input of node feature matrix and adjacency matrix so that
the aggregation operation of nodes can be performed. In a
graph convolutional network, the weighting of the adjacency
matrix itself is taken into account and the rows and columns
of the degree matrix are normalized such that the embedding
of the current node in the current layer is equal to theweighted
sum of its neighboring nodes as well as itself. Thus, the com-
putation of each layer in a graph convolutional network can be
viewed as matrix multiplication. Briefly, GNN aggregates the
nearest neighbor information and GCN aggregates the edge
weight information [19]. GCN, which learns node representa-
tion by smoothing features on the graph, iteratively performs
the neighbor aggregation operation of graph convolution as

follows:

e(k+1)
u = AGG(e(k)u , e(k)i : i ∈ Nu}). (3)

NGCF [25] divides the propagation process into two parts:
message construction and message aggregation. The model
also retains the two most common designs in GCN: feature
transformation and nonlinear activation. The user and item
embeddings predicted by the LightGCN model [7] through
iterative and weighted summation are as follows:

e(l+1)
u =

∑
i∈Nu

1
√

|Nu|
√

|Ni|
e(l)i , (4)

e(l+1)
i =

∑
u∈Ni

1
√

|Ni|
√

|Nu|
e(l)u . (5)

Each layer of user embeddings and item embeddings are
involved in a multilayer graph convolutional neural network
and are summed according to the weights. In the authors’
experiments, it is found that learning that weight with aver-
age weight gives better results. The weighting formula is as
follows:

eu =

K∑
k=0

αkeku, ei =

K∑
k=0

αkeki . (6)

III. OUR MODEL
In this section, we first give an overview of our proposed
method IcaGCN to briefly describe how it computes the
weights of each node while preserving the user embedding
and item embedding. Then, we will explain in detail the
principle, the role of each step, and the shape change of the
data in a hierarchical manner according to the flow of the data.

A. OVERVIEW
The goal of our method is to preserve the impact of user
embeddings and item embeddings themselves as much as
possible, and to derive the weight of each node by a non-
attention mechanism method, so that the impact of important
nodes is greater than the impact of non-important nodes.
As shown in FIGURE 2, after first processing the user
and item metadata to obtain the user embeddings and item
embeddings, the user embeddings and item embeddings are
stitched together into the Coactivate Unit, which serves as a
data enhancement. Then, it enters the Cube Unit, where the
weights of individual nodes can be extracted relative to the
global one.When the data flows out of the IcaGCNLayer, the
weights of each node will be obtained, and the weights will be
brought to the adjacency matrix through L-layer information
transfer, so that each node plays a different role: the role of
important nodes is more pivotal.

Once the nodes that have obtained the weights have gone
through the L-layer information transfer, they follow the
LightGCN approach to train the model with the traditional
transpose of the user embeddings and the Hadamard product
of the item embeddings as the prediction result. In this way,
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the IcaGCN model is able to distinguish between significant
and non-significant nodes while preserving the influence of
user embeddings and item embeddings, thus optimizing the
prediction results. In the following, we elaborate more details
of the method we propose.

B. INPUT LAYER
Out of concern for the overly sparse nature of the data
set present, we first represent the user attributes and item
attributes with sparse vectors. Then, we use one-hot coding,
which is computationally convenient and fast and expressive,
to process the data. At the same time, in order to solve the
drawback of one-hot encoding for too sparse data, which
has the disadvantage of over-utilizing resources, we introduce
the embedding layer for dimensionality reduction operation.
We keep the operation of this layer consistent with Light-
GCN, and assume that the number of users is M and the
number of items is N . Then the obtained user embeddings
and item embeddings can be expressed as:

Eu = [eu1 , . . . , euM ], Ei = [ei1 , . . . , eiN ]. (7)

where D denotes the embedding size, eu ∈ RD denotes
user embeddings while ei ∈ RD denotes item embeddings.
We input the embedding obtained after splicing Eu and Ei
to the next layer. That is, the input of IcaGCN Layer can be
expressed as:

E = [eu1 , . . . , euM , ei1 , . . . , eiN ]. (8)

C. IcaGCN LAYER
For E = eu ⊕ ei, the size of this embedding is [N ,D]. Next,
we have to go through the Coactivate Unit and the Cube Unit
in turn, where the former serves for data augmentation and
the latter serves for computing the weight of each node. In the
following two subsections, we will explain in detail.

1) COACTIVATE UNIT
In the graph-based feature interaction method, GCN is the
aggregation of information from edge weights. In the actual
recommendation projects, it is easy to produce the situation
that the original data is ignored, which leads to the degrada-
tion of the recommendation effect. Therefore, it is necessary
to enhance the data before processing them. In Coactivate
Unit, we set a variable parameter order, which can be set by
ourselves. Regarding the effect of the size of this parameter
on the model results, ablation experiments are performed
in Section IV of this paper. The significance of order is to
specify the degree of enhancement of the original input and
the number of fully connected layers. The following equation
shows the mathematical form of the coactivate unit:

order = i+ 1; (9)

h0 = E = [eu ⊕ ei]; (10)

hi = wi−1 ⊗ hi−1 + bi−1; (11)

Ecoa =

order−1∑
i=1

hi. (12)

where order is set to i+1 and the original input E is assigned
to h0. The weights and bias terms of each fully connected
layer are set by random initialization of the Gaussian distri-
bution. The final output is obtained from the cumulative hi,
so the Coactivate Unit does not change the shape of the input
and remains [N ,D] unchanged.

Our proposed coactivate unit has several advantages over
other methods: First, we take full advantage of the compu-
tational advantages of MLP to fully exploit the potential of
the original input and perform this task of data augmentation
well. Second, in terms of time complexity, the approach using
fully connected layers is more space and time efficient than
the approach using Cartesian products. Fewer parameters
also mean less time complexity. The traditional cartesian
product to solve similar problems requires a time complexity
of O(N 2

× D), while the time complexity of our proposed
unit is only O(N × D), where D represents the dimension of
embedding and N represents the total number of users and
items. Third, the coactivate unit is very convenient and plug-
and-play. In Section IV of this paper, we show the model
code, and we can see that our proposedmethod can be applied
not only to graph convolutional networks, but also to other
network models.

2) CUBE UNIT
From the MS-CAM method mentioned in the previous
section, we consider whether there exists a non-attention
mechanism plug-and-play method that can, like the attention
mechanism, serve to make different nodes play different roles
with different importance, i.e., important nodes have more
weight and non-important nodes have less weight. In dealing
with the image problem, the MS-CAM method uses global
average pooling (GAP) to make the image reduced from
3 dimensions to 1 dimension, outputting a response opera-
tion for each feature map. After that, the convolution layer
and regularization operation are used to find the weights
of different regions of the image. In analogy to the rec-
ommendation class problem, we first consider the use of
linear layers instead of convolutional layers, which greatly
reduces the number of parameters and increases the training
speed. Finally, we use the relu activation function and dropout
operation instead of the original regularization operation to
enhance the plug-and-play nature. The following formulas,
executed sequentially, represent the mathematical form of the
Cube Unit:

Cube0 = E = [eu ⊕ ei]; (13)

Cube1 = Global_max_pooling(E); (14)

Cube2 = max(0,w⊗ Cube1 + b); (15)

Cube3 = dropout(Cube2); (16)

Ecube =
1

1 + e−Cube3
. (17)
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FIGURE 2. Illustration of the IcaGCN model.

after the embedding with shape [N ,D] enters the Cube Unit,
it first undergoes global max pooling for dimensionality
reduction, and the shape becomes [N , 1]. This step of the
operation can transform the shape more naturally without
using a large number of parameters. After straightening the
embedding, it enters the linear layer and continues the compu-
tation of the activation function and randomly discards some
nodes according to the situation. Regarding the rounding
probability parameter in the dropout operation, we will do
ablation experiments later for comparison. After the data flow
out of the Cube Unit, we limit the size of the obtained weight
scores to between [0, 1] by sigmoid operation and weight the
user embedding and item embedding.

The advantages of Cube Unit are numerous: first, it follows
that the attention mechanism mentioned in LightGCN may
not be able to play a more active role in such a simple model.
Second, it improves the approach of the image domain and
applies it reasonably well to the recommendation domain,
plug-and-play computing the weights of each node. Third,
it is efficient and convenient. While ordinary attention mech-
anisms need to recalculate node weights in each round, this
method only needs to calculate them once, bringing advan-
tages such as a small number of parameters and fast training,
and its time complexity is only O(N × D).

D. PREDICTION LAYER
After passing through the IcaGCN layer, we obtain the
weighted user embeddings and item embeddings. using the

same L-layer messaging strategy as LightGCN, the data
enters the prediction layer. We use the weighted e(0)u to repre-
sent all users and e(0)i represents all the items. We get a final
representation of the user and item via L-layers normalized
sum:

eu =

L∑
l=0

ale(l)u ; ei =

L∑
l=0

ale
(l)
i . (18)

where αl means the importance of l-th layer, which keeps the
same setting with LightGCN [7]. We use the inner product
of user and item final representations to define the model
prediction:

ŷui = eTu ei. (19)

E. MODEL TRAINING
For this processing step, we choose the same way as Light-
GCN: Bayesian personalized ranking (BPR) [20] loss to cal-
culate the loss of the model. BPR loss is pairwise loss, for
which the predicted value of entries that can be observed will
be higher than the predicted value of entries that cannot be
observed. It does ranking optimization for each user’s own
item preference decibel, and introduces a Bayesian prior, thus
reducing the overfitting of the model. The formula is shown
as follows:

LossBPR =−

M∑
u=1

∑
i∈Nu

∑
j/∈Nu

ln σ (ŷui−ŷuj)+λ ∥ E (0)
∥
2 . (20)
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TABLE 1. Statistic of the datasets.

where λ controls the strength of L2 regularization. In addi-
tion, we use the Adam optimizer in small batches to help with
training, which has the advantages of fast gradient descent
and ease of use. Since the focus of this model is on the update
of the network structure, model training is not the focus of
our work, and we leave the optimization strategies such as
the optimal loss function for future study.

IV. EXPERIMENTS
In this section, we specifically present several empirical
studies of the IcaGCN model. In Sec.A, we describe the
four datasets used in the experiments. In Sec.B, we detail
the experiments’ settings. In Sec.C, to better validate the
IcaGCN model, we compare it with other state-of-the-art
models on four real and large datasets; In Sec.D, to specif-
ically discuss the influence of each module in the IcaGCN
model on the experimental results, we modify the values
of some parameters in the module and learn extensively
how the IcaGCNmodel affect recommendations. In addition,
we designed more ablation experiments to demonstrate the
effectiveness of the model by comparing it with existing data-
enhancement models, adding contrast learning to IcaGCN
for further improvement, and finally comparing the training
efficiency.

A. DATASET DESCRIPTION
To better show the effectiveness of our IcaGCN model,
we use four datasets: Movielens-1M, Yelp2018, Gowalla and
Amazon-Book, which are large and sparsity, and span a wide
range of domains. We show the statistics of four datasets in
Table 1.

• Movielens-1M is a movie rating dataset: it includes
movie ratings, movie metadata (genre type, era) and
demographic data about users (age, zip code, gender,
occupation, etc.). Among them, our experiments mainly
use user_id and item_id to construct a bipartite graph
of user items, and user scores above 3 are considered as
valid data.

• Yelp2018 is a publicly available dataset from Yelp, the
largest review site in the United States. The dataset
contains customer reviews of restaurants, bars, and other
business establishments. Among them, our experiments
mainly use user_id and business_id to construct a bipar-
tite graph of user items, and ensure that there are at least
15 interactions between them.

• Gowalla is a check-in dataset from the United States.
Each check-in record for each user is represented as one
record with the specific attributes of the check-in broken

out. Each check-in record includes user_id , check-in
time, latitude of check-in location, longitude of check-
in location, and location_id that uniquely corresponds
to the latitude and longitude of each location. where
our experiments mainly use user_id and location_id to
construct a bipartite graph of user items, and ensure that
there are at least 10 interactions between them.

• Amazon-Book provided by Amazon. The dataset
includes Amazon’s product reviews and metadata.
Among them, our experiments mainly use user_id and
item_id to construct a bipartite graph of users-items, and
ensure that there are at least 15 interactions between
them.

For each user-item interactions, we treat it as a positive
instance, and then conduct the negative sampling strategy to
pair it with one negative item that the user didn’t consume
before.

B. EXPERIMENTAL SETTINGS
1) EVALUATION METRICS
For each user in the test set, we specify all items that the
user has not interacted with as negative items. To better
validate the effectiveness of the IcaGCN model applied to
top-k recommender systems, we adopt three widely used
metrics: recall@k, mrr@k, and ndcg@k. We set k=20 by
default. In the following, we briefly describe the implications
of these three criteria.

• recall@k The ratio of the number of relevant results
retrieved from the top-k results to the number of all
relevant results in the library, and measures the search
completion rate of the retrieval system [17]. The larger
this value is, the better.

• mrr@k Mean reciprocal rank [18], an internationally
used mechanism for evaluating search algorithms, using
the ranking of the correct search result value in the
search results to assess the performance of the retrieval
system. The larger this value is, the better.

• ndcg@k Normalized discounted cumulative gain [26],
an evaluation metric that takes into account the order of
return. The larger the effect the better.

2) BASELINES
We use recbole [33] as the codebase for experiments. In the
following, we briefly describe the baselines we compared
with.

• BPRMF [11] This is a basic algorithm in the field
of recommendation systems. The collaborative filtering
algorithm mainly predicts users’ ratings of items and
thus makes recommendations, but the BPRMF algo-
rithm sorts each user’s items of interest by preference,
and this approach is very popular for handling implicit
feedback data.

• NeuMF [8] It combines generalized matrix factoriza-
tion(GMF) and multi-layer perceptron(MLP). It can
extract both low and high dimensional features. The

VOLUME 11, 2023 41853



J. Zhang, C. Yang: IcaGCN: Model Intents via Coactivated GCN for Recommendation

GMF module converts user_id and item_id into user
feature vectors and item feature vectors, while the MLP
module focuses on learning nonlinear relationships.

• GCMC [1] This is a message passing based graph self-
coding framework that considers both side information
and network structure, and analyzes the impact of side
information in cold starts of recommender systems. The
main contribution is the application of GNN to matrix-
completion tasks with side information.

• GAT [22] An attention mechanism is introduced to
assign different weights to each node, learn node fea-
tures and structural features of nodes in the graph, and
process local information while paying attention to the
overall information. The core idea is to assign attention
only to the first-order neighbors of the nodes.

• NGCF [25] It enhances embedding by explicitly model-
ing the high-order connectivity between user-item, and
mining the higher-order connectivity relations to capture
interactions to refine the multiple embedding propaga-
tion of embedding. It is deformed from the standard
GCN using a nonlinear activation function and feature
transformation matrix.

• LightGCN [7] It removes the nonlinear activation func-
tion and feature transformation matrix from NGCF, and
only adds a set of weight coefficients to neighborhood
aggregation of embeddings output from different GCN
layers as the final embedding, and only aggregates
neighbor nodes, thus greatly simplifying the model.

3) PARAMETER SETTINGS
We use PyTorch to implement all models in our experiments.
The GPU of the server we use is P100-16G and the CPU is
Intel(R) Xeon(R) CPU E5-2690 v4. The python version is
3.8, the cuda version is 10.2, and the torch version is 1.11.0.
For the embedding layer and optimization method, we use
L2 regularization with 10−4 weight, the learning rate is set
to 10−3, the batch size of training to 4096 and batch size
of evaluating to 204800, the negative sampling radio R to
300, we fix the embedding size to 64 and this is same to
many recent GCN-based models like LightGCN. For all deep
models, the depth of layers is set to 3 and we use RELU as an
activation function and the dropout rate is set to 0.5.

C. PERFORMANCE COMPARSION
We first report the performance of our method in Table 2, and
then we have the following observations:

• IcaGCN has the best performance in all the four datasets
mentioned above. Among them, on the Amazon-
Book dataset, IcaGCN improves over LightGCN in
recall@20, mrr@20 and ndcg@20 by 6.32%, 42.29%
and 12.38%, respectively. This also shows the effective-
ness of the proposed method of IcaGCN to combine
the information of user embedding and item embed-
ding itself, and then find the weight of each node.
Summarizing the excellent results shown by our model,
we attribute it to the following reasons: 1) Compared

with previous GCNs, IcaGCN further widens the gap
between the different roles played by different nodes
without losing the information of the users and the item
itself in the process of exploring higher-order connec-
tivity, which also indicates that the method used for
image processing has certain interoperability with the
method used for recommender systems; 2) Compared
with other baselines, IcaGCN can effectively utilize the
importance of nodes and learn them. These advantages
together lead to the superiority of IcaGCN to outperform
SOTA models.

• We believe that the results of the model are related to
the amount of data in the dataset. the Gowalla dataset
and the Yelp2018 dataset have comparable amounts of
data, and the gains of IcaGCN on these two datasets
are not very different. The Amazon-Book dataset has
the largest and sparsest data volume, and our model
achieves better results on this dataset, especially the gain
of mrr@20 illustrates that the improved IcaGCN model
advances almost half of the ordinal number of the first
item cited in the top-20 recommendations that meets
users’ expectations.

• In general, the graph convolutional network model out-
performs the traditional web embedding model, but this
advantage is not obvious on the Movielens-1M dataset.
The reason for this is that the Movielens-1M dataset
has a small amount of data, while the graph convolu-
tional approach is more suitable for a cluttered and large
amount of dataset. The graph convolutional network is
better at mining collaborative information and is more
suitable for complex datasets than random wandering
and heuristic mining strategies. All technical improve-
ments work because they fit the characteristics of our
data, and the data support the strengths of the model. For
sparse and simple datasets, the structure of the model
often does not need to be too complicated, and the
success of LightGCN also illustrates this.

D. STUDY OF MODEL
In order to deeply explore the role played by each mod-
ule of IcaGCN, we designed some ablation experiments for
validation: 1) we analyzed the effect of order on the results,
and designed the range of order values among [1,2,3,4];
2) we experimented with the number of Cube Unit values,
and set them among [1,2,3,4]; 3) the dropout parameter
in the Cube Unit is discussed to explore the relationship
between its size and the dataset; 4) comparison with existing
data enhancement methods; 5) comparison of single-round
training time; 6) utilize the contrastive loss to learn user and
item embeddings and compared to traditional collaborative
filtering methods.

1) EFFECT OF ORDER
The parameter order reflects to some extent the degree of
input of the original information of user and item. When
order=1, the user and item embeddings themselves go
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TABLE 2. Overall performance comparison. IcaGCN denotes our model when dropout ratio=0.5, the number of Cube is 1 and order=1. R, M, and N
denote recall, mrr, and ndcg, respectively. Improv. denotes the relative improvements over the best GNN-based baselines. The results of significance
testing indicate that our improvements over the current strong GCN-based baseline are statistically significant(p-value<0.05).

FIGURE 3. Performance comparison of setting the different number of
order on Movielens-1M. 1, 2, 3, 4 denotes order=1,2,3,4. Experiments are
shown when the number of Cube Unit is 1 and dropout=0.5.

through the subsequent fully connected layers, and as order
increases, the user and item embeddings accumulate their
powers. In this set of ablation experiments, we set the range
of order to [1,2,3,4] and use IcaGCN-order-1 to represent the
result when order=1, and so on for other cases. In FIGURE 3,
we can get the following conclusions:

• The increase of order can optimize the model’s results
on both recall and ndcg metrics to some extent, but at
the same time it further increases the epoch required for
training. simply, IcaGCN-order-2, IcaGCN-order-3 and
IcaGCN-order-4 have better results than IcaGCN-order-
1 on recall@20 and ndcg@20, IcaGCN-order-1 has the
best performance in the training process because of less
computation and shorter training time when order=1.

• Starting from IcaGCN-order-3, the gain of IcaGCNwith
increasing order is no longer significant and the required
epoch is stabilized at 273. If the user embedding and
item embedding are performed too many powers, it does
not have much impact on the training time, but it can no
longer bring gain to the model.

2) EFFECT OF CUBE UNIT
To better test the role of Cube Units and explore the impor-
tance of their depth in mining nodes in the global context,

FIGURE 4. Performance comparison of setting the different number of
Cube Unit on Movielens-1M. 1, 2, 3, 4 denotes Cube Unit’s
number=1,2,3,4. Experiments are shown when order=2 and dropout=0.5.

we repeated the Cube Units for a number of times in the
range [1,2,3,4]. It should be noted that we use IcaGCN-Cube-
1 to refer to the results where the number of Cube Units is 1,
and so on for other cases. The experimental results under
Movielens-1M dataset are shown in FIGURE 4. We have the
following findings:

• We can clearly observe that the results of IcaGCN-
Cube-1 and IcaGCN-Cube-2 are similar under the three
metrics of recall@20, mrr@20 and ndcg@20, while the
results of IcaGCN-Cube-3 are significantly better than
those of IcaGCN-Cube-1 and IcaGCN-Cube-2, espe-
cially mrr@20.

• IcaGCN-Cube-3 not only has excellent results on the
above three metrics, but also the number of epochs
required for training is significantly less than the other
three experiments, which indicates that when increasing
the number of Cube Units, it has little effect on the
single-round training time, and can even shorten the total
training time to some extent.

• Both the above three metrics and the number of epochs
required for training, IcaGCN-Cube-4 does not perform
as well as IcaGCN-Cube-3. Therefore, we believe that
increasing the number of CubeUnits will not bring better
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FIGURE 5. Performance comparison of different dropout on
Movielens-1M. 0, 0.3, 0.5, 0.8 denotes dropout=[0,0.3,0.5,0.8].
Experiments are shown when order=2 and the number of Cube Unit is 1.

results, and the performance of IcaGCN-Cube-3 is the
peak of the four sets of experiments.

3) IMPACT OF DROPOUT
We tested the results of IcaGCN with different dropout.
Dropout takes values in the range of [0,0.3,0.5,0.8], and when
dropout=0, it means that no nodes are discarded and all of
them are included in the next calculation. FIGURE 5 shows
our results on Movielens-1M dataset, and the following find-
ings are obtained:

• For both recall@20 and ndcg@20 metrics, they grad-
ually become smaller as the dropout increases, i.e.,
the number of nodes discarded increases. For mrr@20,
it reaches its maximum value when dropout=0.3, and
the result is similar for dropout=0. However, this result
tends to decrease when dropout is greater than or equal
to 0.5. In addition, when comparing the number of
epochs needed for training, we find that the epoch
increases gradually as dropout increases. the difference
between the epochs at dropout=0 and dropout=0.3 is
only 10 rounds, which is only 1 minute in the actual
training. Therefore, we can argue that for data sets with
sparse data and small data volume like Movielens-1M,
a larger dropout is not suitable, and all nodes should be
retained as much as possible to avoid time and metric
losses.

4) DATA ENHANCEMENT CAPABILITY
In order to further demonstrate the data enhancement abil-
ity of Coactivate Unit in the IcaGCN model, we selected
LightGCN as the basis, and then added three data enhance-
ment methods of random negative sampling (RNS) [20],
dynamic negative sampling (DNS) [31] and markov chain
monte carlo negative sampling (MCNS) [29] respectively to
conduct experiments on the two datasets. The experimental
results are shown in TABLE 3, our model maintains better
performance.

5) EFFICIENCY COMPARISON
To further demonstrate the speed advantage of the IcaGCN
model, we compare the training time and epochs of

TABLE 3. Comparison of data enhancement capabilities.

TABLE 4. Efficiency comparison of different modules runs on Yelp2018
dataset.

TABLE 5. Comparison between contrastive IcaGCN and LightGCN.

LightGCN and IcaGCN on the Yelp2018, as shown in
TABLE 4. Among them, we also compared the recommenda-
tion effect and training time of the IcaGCN model with only
3-Layer Cube Units without order and only order=3 without
Cube Unit. The IcaGCNmodel requires fewer epochs, reduc-
ing the total training time.

6) COMBINATION WITH CONTRASTIVE LEARNING
In this section, we’ll explore how our approach combines
with graphic-and-contrast learning on Amazon Books and
Gowalla. We simply apply the comparative learning tech-
niques of SGL [27] and BC-Loss [30] to IcaGCN. As shown
in the TABLE 5, the model based on comparative learning
has obtained significant benefits. Compared with contrastive
learning-based collaborative filtering methods, our model
still maintains better performance.

V. RELATED WORK
CNNs are often used to process images and speech data
with a regular Euclidean structure, and they use a weighted
summation to perform a convolutional operation that is spa-
tially invariant in the face of distorted inputs but constant
outputs. This is achieved by calculating the weighted sum
of the central pixel points and the neighboring pixel points
to form a feature map. In this case, the weight coefficients
of the convolution kernel are used as weighting coefficients,
the initial values are randomized, and then iterative optimiza-
tion is performed by back-propagating the gradient descent
according to the error function. Whether the convolution
parameters can be optimized or not is very important for
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convolutional networks [10]. With the advent of the data
era and the prosperity of social networks, we need to think
about how to handle data with non-Euclidean space structure
rationally, and GNNs and GCNs are born. GNNs play an
active role in classification, regression and association pre-
diction. When processing the next node, the information of
its neighboring nodes is also considered; when looping once,
the current node only aggregates the information of its own
neighboring nodes, but in the next loop, it needs to aggregate
the information of its neighboring nodes. In short, the input
of GNN is the characteristics of each node itself and the
relationship graph between nodes, and the output is the final
representation of each node’s characteristics after considering
the graph structure. The main difference between GCNs and
GNNs is the aggregation operation [32].

In 2018, when GAT [22] use an attention mechanism to
assign different weights to each node, learn node features and
structural features of nodes in the graph, and process local
information while paying attention to the overall information.
The core idea of GAT is to assign attention only to the first-
order neighbors of the nodes. In 2019, NGCF [25] enhances
embedding by explicitly modeling the high-order connectiv-
ity between user-item, and mining the higher-order connec-
tivity relations to capture interactions to refine the multiple
embedding propagation of embedding. Then in 2020, Light-
GCN’ success shows that deforming from the standard GCN
using a nonlinear activation function and feature transfor-
mation matrix is unuseful [7]. So it removes the nonlinear
activation function and feature transformation matrix from
NGCF, and only adds a set of weight coefficients to neighbor-
hood aggregation of embeddings output from different GCN
layers as the final embedding. Then, graph convolutional
networks become a hot research direction, the research on
heterogeneous graphs is also in full swing. For example,
BiHGH [5] is a bidirectional graph convolution algorithm,
which transfers knowledge sequentially by repeating up and
down convolution, divides the four-partite graph into three
subgraphs, and each subgraph only involves two adjacent
entity types to design double similarity preservation regular-
ization to prevent information loss in the process of hashing
learning. PFCM [4] is an entity that can unify the three
types of users, items and attributes and their relationships.
By inheriting the content of user interaction items, PFCM
learns user representation and implements metaphath-guided
heterogeneous graph learning.

In recent years, negative sampling has been studied in
the recommendation task of solving a class of problems.
Specifically, most of the interaction between users and
objects is implicit feedback. Bayesian Personalized Ranking
(BPR) [20], which is one of the most commonly used meth-
ods, adopts uniform distribution for negative distribution of
samples. Hard Negative Sampler adaptively picks the hardest
negative by the current recommender and DNS [31] selects
the negative scored highest by the recommender. MCNS [29]
derived a theory to quantify the effect of negative sampling

distribution and based on this, the positive distribution is
approximated by self-contrast approximation.

Contrastive learning is a self-supervised learning method
that learns the general characteristics of a data set by
having the model learn which data points are similar or
different. SGL [27] explores self-supervised learning on
user-item graph to alleviate the long tail effect. Through
hypergraph-enhanced cross-view contrast learning architec-
ture, HCCF [28] can jointly capture local and global coop-
erative relationships, enhance the recognition ability of the
CF paradigm based on GNN, and comprehensively capture
the complex higher-order dependency relationships between
users, effectively combining hypergraph structure coding
with self-supervised learning. BC-Loss [30] incorporates the
perceived margin of deviation into comparison losses, where
the margin is quantitatively adjusted for the degree of devi-
ation in each user-item interaction. BC-Loss can be used
not only as a debias strategy, but also as a standard loss in
recommendation models.

VI. CONCLUSION AND FUTURE WORK
In our work, we explore the high-order importance of
user and item nodes and propose a model named IcaGCN
which can efficiently model nodes’ weights in a very flex-
ible, plug-and-play way. Without losing the information
of the data itself, more important nodes are given greater
weight. Extensive experiments and ablation experiments on
four real-world datasets have shown the high efficiency
and speed of IcaGCN. To some extent, our work demon-
strates the bright future of graph convolution networks in
the field of recommendation systems and explores an effi-
cient method to calculate the weight of all nodes, and
to distinguish important and non-important nodes without
losing the influence of original data as much as possi-
ble. In future work, we will explore more plug-and-play
methods to overcome the adverse effects of some nodes,
so as to improve the performance of the recommendation
system.
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