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ABSTRACT This paper covers model-based fault detection and isolation for linear and nonlinear distributed
parameter systems (DPS). The first part mainly deals with actuator, sensor and state fault detection and
isolation for a class of DPS represented by a set of coupled linear partial differential equations (PDE).
A filter based observer is designed based on the linear PDE representation using which a detection residual
is generated. A fault is detected when the magnitude of the detection residual exceeds a detection threshold.
Upon detection, several isolation estimators are designed using filters whose output residuals are compared
with predefined isolation thresholds. A fault on a linear DPS is declared to be of certain type if the
corresponding isolation estimator output residual is below its isolation threshold while the other fault
isolation estimator output residual is above its threshold. Next, the fault location is determined when a state
fault is identified. The second part of this paper focuses on fault detection and isolation of nonlinear DPS
by using a Luenberger type observer. Here fault isolation framework is introduced to isolate actuator, sensor
and state faults with isolability condition by using additional boundary measurements and without filters.
Finally, the effectiveness of the proposed fault detection and isolation schemes for both linear and nonlinear
DPS are demonstrated through simulation.

INDEX TERMS Fault detection, fault isolation, distributed parameter systems, partial differential equations.

I. INTRODUCTION
In order to increase system availability and reliability, fault
diagnosis has drawn significant attention in the area of
modern control systems. Usually fault diagnosis consists
of [1] (a) detection- to indicate the presence of a fault;
(b) isolation- to determine the root cause and location of
a fault; and (c) identification- to estimate the magnitude of
a fault function. Fault isolation is a crucial step in fault
diagnosis.

A variety of fault diagnosis approaches have been studied
in the past two decades and between them, model-based
methods [2] have found appealing since significant amount
of healthy and faulty data is no longer required. Model-based
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fault detection and isolation methods have been developed
for lumped parameter systems (LPS) represented by ordinary
differential equations (ODEs) by using adaptive observer [3]
sliding mode design [4] and fuzzy observers [5] fuzzy pole
placement [6], and adaptive approximation [7]. Moreover,
fault tolerant control for lumped parameter systems has
been extensively studied, for example robust adaptive fault-
tolerant consensus control [8] and fault-tolerant fuzzy
formation control [9]. Despite the comprehensive effort,
they [3], [4], [5], [6], [7], [8], [9] are only applicable for LPS.

However, many systems including heat transfer (for
example thermal power plants and internal combustion
engines), fluid flow (like oil pipelines and water treatment
systems), and chemical processes (like chemical reactors and
fuel cells) are characterized as distributed parameter systems
(DPS) or infinite dimensional systems. Because of their
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distributed nature, the ODE representation cannot describe
theDPS behavior [10] and they are usuallymodeled by partial
differential equations (PDEs). Fault diagnosis of DPS is more
complicated and challenging when compared to LPS since
the system parameters are defined over a continuous range of
both time and space [11].

In the early efforts, the DPS is approximated by finite
dimensional ODE using Gelenkin’s method [12] by assuming
that the DPS is dominated by finite dimensional system
with slow eigenvalues [13]. Subsequently, several articles
appeared in the literature including an actuator failure
detection method for DPS by identifying the actuator
input [14]. An adaptive observer is developed in [15] to
monitor the distributed parameter system and to provide
information for the diagnosis of actuator faults. A geometric
fault diagnosis approach, on the other hand, is introduced
in [16] by approximating the PDE representation with a finite
dimensional ODE. The authors of [17] use semidiscretization
to transform the PDE model to a set of ODEs and then utilize
Kalman filter and statistical decision making to diagnose
faults. Fault detection and isolation of DPS with parabolic
PDE models is investigated in [18] and [19] based on
deriving a finite-dimensional ODE model via the Galerkin
method. Despite these attractive results [14], [15], [16], [17],
[18], [19], the fault detection and isolation of DPS based
on approximated finite dimensional ODE can lead to an
inaccurate model description and thus can result in false or
missed alarms due to incorrect isolation.

Motivated by the model reduction concerns, authors
investigated fault detection of DPS directly based on
PDE representation of the system in [20], [21], and [22],
unlike [14], [15], [16], [17], [18], [19]. While [20], [21] focus
on fault diagnosis in linear DPS, [22] focuses on actuator and
sensor fault detection and failure prediction in nonlinear DPS.
Authors used an infinite dimensional adaptive observer to
detect faults in [20]. To monitor system behavior, a detection
residual signal, which is defined as the difference between the
actual and estimated output of the observer, was generated.
In the absence of a fault, this detection residual remains below
a predefined detection threshold. A fault acts as an unwanted
input to the detection residual dynamics and increasing it.
A fault is declared active when this residual crosses the
detection threshold. However, [20], [21] only consider linear
PDE models and [22] is only on fault detection. Moreover,
detectability condition for state faults and fault isolation is
not covered in [20], [21], and [22].

Therefore, this paper extends the fault detection and
prediction framework from [20], [21], and [22] to fault
isolation by utilizing the PDE representation of linear DPS.
First, the detectability condition of state faults is introduced.
Upon detection by using the detection observer from [20],
actuator and sensor fault isolation estimators are developed
to identify the fault type when the output residual of the
corresponding fault isolation estimator is below a predefined
isolation threshold while the output residual of the other fault
isolation estimator is above its threshold. In the event that

the fault type is not an actuator and sensor, several state
fault estimators located over the space are introduced to help
determine the location of the state fault by using a second
output measurement-spatial average over the sensed region.
Several state fault isolation estimator residuals at different
locations are derived and the one that is the minimum among
them will determine the location of a potential state fault.
Next, the magnitude of the fault parameter vector is estimated
upon fault identification for all the fault types.

In the case of a nonlinear DPS, a Luenberger type observer
from [23] is used for fault detection in the presence of
bounded disturbances. For nonlinear DPS, due to lack of fault
filters, isolation estimators cannot be derived and additional
measurements are needed for fault isolation. By using
additional measurements at the boundary condition and
estimated output of the detection observer, an actuator/sensor
isolation residual is generated. It will be shown that in the
presence of an actuator or sensor fault, the corresponding
isolation estimator output residual should exceed its corre-
sponding isolation threshold, respectively while the other
residual stays within its isolation threshold. To the contrary,
when both sensor and actuator fault isolation estimator
output residuals stay within their corresponding isolation
thresholds, a state fault is considered to have occurred.
Next, the isolability conditions are introduced to define the
class of faults which can be isolated using the proposed
scheme.

Note that the isolation framework for nonlinear DPS is
different from linear DPS due to lack of filters in the case
of nonlinear DPS. This weakness is overcome by using
additional boundary measurements. In the analysis, it is
shown that the proposed observer can estimate measured and
unmeasured system parameters satisfactorily under healthy
condition with limited output measurements.

The main objective of this research is to develop a reliable
scheme capable of detecting and isolating actuator, sensor,
and state faults without the use of model reduction. Novelty
and contributions of this paper can be summarized as:
(a) development of a filter-based fault isolation and location
determination for linear DPS by directly utilizing the PDE
model of the system rather than approximated ODE models;
(b) development of a Luenberger-type fault detection and
isolation scheme for nonlinear DPS without requiring any
model reduction as opposed to existing methods [14], [15],
[16], [17], [18], [19]; (c) development of fault isolability
conditions for actuator, sensor and state faults in DPS based
on the proposed scheme. Note that previous works of the
authors in the same field [20], [21], [22] only target the
detection of faults, do not cover nonlinear DPS, and do not
include fault isolation or isolability conditions, which are all
covered in this paper.

The paper is arranged as follows. First of all, a class of DPS
represented by linear parabolic PDE with actuator, sensor
and state faults is presented in Section II. A fault isolation
scheme is introduced for linear DPS in Section III. Then
fault detection and isolation of nonlinear DPS is discussed in
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Section IV. Finally, the proposed schemes are demonstrated
in simulation in Section V.

II. NOTATION AND LINEAR SYSTEM DESCRIPTION
Before introducing the system description, the notation is
briefly introduced [24]. A scalar function v1(x) ∈ L2(0, 1)
implies it is square integrable on the Hilbert space L2(0, 1)
with its corresponding norm defined by

∥v1∥2 =

√∫ 1

0
v21(x)dx. (1)

Now consider

[L2(0, 1)]n = L2(0, 1) × L2(0, 1) × . . . × L2(0, 1)︸ ︷︷ ︸
n times

, (2)

with v(x, t) = [v1(x, t), v2(x, t), . . . , vn(x, t)]T ∈ [L2(0, 1)]n

and the norm of a vector function is defined as

∥v∥2,n =

√√√√ n∑
i=1

∥vi∥22 =

√∫ 1

0
vT (x)v(x)dx. (3)

In addition, ∥·∥ denotes a Frobenius norm for a matrix or
Euclidean norm for a vector. For sake of saving space, a
vector, v(x, t) and its partial derivatives are represented as

vt (x, t) = ∂v(x, t)/∂t, vx(x, t) = ∂v(x, t)/∂x, and

vxx(x, t) = ∂2v(x, t)/∂x2.

Now, consider linear DPS expressed by the following
parabolic PDE with Dirichlet actuation

vt (x, t) = εvxx(x, t) + 3v(x, t) + d(x, t), (4)

where x ∈ [0, 1] is the space variable and t ≥ 0 is the time
variable with boundary conditions defined by

vx (0, t) = 0, v(1, t) = U (t), (5)

for x ∈ (0, 1) and t ≥ 0, where v(x, t) =

[v1(x, t), . . . , vn(x, t)]T ∈ [L2(0, 1)]n is the state vector of
the DPS, d(x, t) is a bounded disturbance vector, U (t) =

[u1(x, t), . . . , un(x, t)]T ∈ ℜ
n denotes the control input

vector, ε is a positive constant, 3 ∈ ℜ
n×n is a real valued

square matrix, and y(t) ∈ ℜ
n is the system output given by

y(t) = v(0, t). (6)

A second output will be utilized for location determination of
a state fault and it is expressed as

yi(t) =

∫ 1

0
C(x)v(x)dx, (7)

where C(x) ∈ ℜ
n×n being a known function satisfying∫ 1

0 ∥C(x)∥2dx ≤ c̄2.
Remark 1: The output defined in (6) is an ideal point

sensor and the output given by (7) represents a spatial
weighting function of sensors which is a spatial average
over the sensed region [25] The output equation (7) is

required only for location determination when a state fault
is identified. Next, the fault description is defined.

The DPS (4) with a state fault is described as

vt (x, t) = εvxx (x, t) + 3v (x, t) + d(x, t) + hc(y, xf , x, t),

(8)

and the boundary conditions with actuator and sensor faults
can be written as

vx (0, t) = 0, v (1, t) = U (t) + ha(t), (9)

y(t) = v(0, t) + hs(t). (10)

where xf is the location of a state fault, hc, ha and hs represent
state, actuator and sensor fault functions respectively. The
fault functions are described by

ha(t) = �(t − tf )8a (U (t), t) θa,

hs(t) = �(t − tf )8s(t)θs
hc

(
y, xf , x, t

)
= �(t − tf )8c (y, x, t) 1(x − xf )θc, (11)

where tf represents the time when a fault occurs, θa ∈

ℜ
n, θs ∈ ℜ

n and θc ∈ ℜ
n are the unknown actuator, sensor

and state fault parameter magnitude vector, respectively, with
8a(U (t), t) = diag(σ (a)

i (U (t), t)) ∈ ℜ
n×n is an actuator

fault basis function, 8s(t) = diag[σ (s)
i (t)] ∈ ℜ

n×n denotes a
sensor fault basis function, 1(x − xf ) = diag[δ(c)i (x − xf )] ∈

ℜ
n×n determines the location of the state fault, and 8c(t) =

diag[σ (c)
i (y, x, t)] ∈ ℜ

n×n is a state fault basis function.
The term �(t − tf ) = diag[�i(t − tf )], i = 1, 2, . . . n

represents the time profile of the fault defined by �i(τ ) ={
0, if τ < 0
1 − e−κiτ , if τ ≥ 0

with constant κi denoting the

growth rate of the fault. The following standard assumptions
are required in order to proceed.
Assumption 1: The disturbance vector is bounded above

such that ∥d(x, t)∥ ≤ d̄ for all x and t ≥ 0, where d̄ > 0 is a
known constant. A general form is given in this paper and a
more specific representation is found in [15].
Remark 2: The upper bound of the disturbance d̄ is

required to determine the fault detection threshold.
Assumption 2: The magnitude of the fault parameter

vector is considered unknown but assumed to belong to a
known compact set 2N (i.e. θN ∈ 2N ⊂ ℜ

n,N = a, s, c
where a, s, and c denote actuator, sensor and state faults
respectively), 2a represents an actuator fault, 2s represents
a sensor fault and 2c stands for a state fault, σ

(N )
i is a known

smooth function with σ
(a)
i representing an actuator fault, σ (s)

i
represents a sensor fault and σ

(c)
i stands for a state fault.

Remark 3: This assumption is needed to assist in selecting
isolation thresholds.
Assumption 3: Sensor, actuator or state fault types are

considered and only a single fault occurs at a given time.
Assumption 4: For the sake of isolating the actuator,

sensor, and state faults, it is assumed that the DPS runs longer
than the isolation time ti.
Assumption 5: The fault functions are considered bounded.
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Next a filter-based detection observer is revisited from [20]
to monitor the linear DPS and generate the detection residual.

III. FAULT DETECTION AND ISOLATION FOR LINEAR DPS
A fault detection scheme for state fault and isolation
framework will be introduced for linear DPS in this section.
In order to detect unexpected faults, an observer acting as
a model under healthy conditions is utilized to monitor
system behavior. A fault causes the residual to increase
beyond a detection threshold indicating its presence. Upon
detection, a fault isolation scheme is subsequently applied to
differentiate the actuator, sensor and state faults. The location
will be determined if a fault is identified as a state fault.

A. DETECTION OBSERVER DESIGN
A filter-based observer was designed utilizing an input and a
couple of output filters based on an observable form under
healthy conditions. The filter-based observer relaxes the
need for state vector measurements over the range of space.
Next, the detection residual was generated by comparing the
estimated outputs from the observer with measured outputs.
Since only the output y(t) = v(0, t) is available, the DPS from
(4) and (5) is first converted into the observable form by using
the transformation [26] given by

z (x, t) = v (x, t) −

∫ x

0
l (x, τ ) v (τ, t) dτ , (12)

where l (x, τ ) is the solution to the hyperbolic PDE satisfying
lxx − lττ = l(x, τ )3/ε, l(1, τ ) = 0 and l(x, x) =

3(1 − x)/(2ε). The following observable form

zt (x, t) = εzxx(x, t) + G(x)z(0, t) + dl(x, t), (13)

zx(0, t) = L0z(0, t), z(1, t) = U (t), (14)

y(t) = z(0, t), (15)

is obtained where L0 = −3/(2ε), G(x) = −εlτ (x, 0) and
dl(x, t) = d(x, t) −

∫ x
0 d(τ, t)l (x, τ ) dτ is bounded since

d(x, t) and l(x, τ ) are bounded. Notice z(0, t) is available
since v(0, t) = z(0, t). This transformation prevents the
unstable term,3v(x, t), from appearing in the design of filters
which are described next.

The system model given by (13) and (14) is a linear
PDE with G(x)z(0, t), L0z(0, t) and U (t) viewed as external
inputs. According to superposition principle, its solution can
be expressed by summing the response of the PDE due to
each external input [26] considered individually. Therefore,
z(x, t) ∈ ℜ

n can be represented by a combination of the
solution defined by

4t (x, t) = ε4xx(x, t), 4x(0, t) = 0, 4(1, t) = U (t),

(16)

where 4(x, t) is denoted as an input filter, since it is derived
from the input of the actual system U (t) [26].
Then consider

At (x, t) = εAxx(x, t), Ax(0, t) = y(t), A(1, t) = 0, (17)

FIGURE 1. Fault detection flowchart.

where A(x, t) is an output filter since it is derived from output
of the actual system y(t). It is also important to consider

5t (x, η, t) = ε5xx(x, η, t) + δ(x − η)y(t)

5x(0, η, t) = 0, 5(1, η, t) = 0, (18)

where 5(x, η, t) is a second output filter. Therefore, the
observer with its state, ẑ(x, t) ∈ ℜ

n, is defined as

ẑ(x, t) = 4(x, t) + L0A(x, t) +

∫ 1

0
G(s)5(x, s, t)ds. (19)

The estimated output and detection residual are given by
ŷ(t) = ẑ(0, t), and e(t) = y(t) − ŷ(t). Finally, fault detection
is performed by comparing the residual with a predefined
threshold. The complete process for fault detection is
illustrated in the form of a flowchart in Fig 1.

The dynamics of the observer error z̃(x, t) ∈ ℜ
n

=

z(x, t) − ẑ(x, t) under healthy condition satisfies

z̃t (x, t) = εz̃xx(x, t) + dl(x, t),

z̃x(0, t) = 0, z̃(1, t) = 0. (20)

The detectability condition for the state fault is given
next while the fault detection framework, and detectability
condition for actuator and sensor faults are reported in [20].
In the presence of a state fault, the system dynamics are
modified as (8) with boundary conditions given by (5). Take
the partial derivative of the transformation (12) with respect

45014 VOLUME 11, 2023



H. Ferdowsi et al.: Filter-Based Fault Detection and Isolation in Distributed Parameter Systems

to t as

zt (x, t) = vt (x, t) −

∫ x

0
l (x, τ ) vt (τ, t) dτ

Substitute the dynamics given by (8) to the equation above
and apply integration by parts to get

zt (x, t)

= εvxx(x, t) −

∫ x

0
l (x, τ ) [εvττ (τ, t) + 3v (τ, t)]dτ

+ λv(x, t) + d(x, t) +

∫ x

0
l(x, τ )d(τ, t)dτ

+ hc(y, x, xf , t) −

∫ x

0
l(x, τ )hc(y, τ, xf , t)dτ

= εvxx(x, t) + 3v(x, t) + εl (x, 0) vx (0, t)

− εlx(x, x)v(x, t) + εlτ (x, x)v(x, t) − εlτ (x, 0)v(0, t)

− ε

∫ x

0
lττ (x, τ ) v (τ, t) dτ −

∫ x

0
l (x, τ ) 3v (τ, t) dτ

+ dl(x, t) + hc(y, x, xf , t) −

∫ x

0
l(x, τ )hc(y, τ, xf , t)dτ .

(21)

Differentiate the transformation (12) with respect to x to get

zx(x, t) = vx (x, t) − l(x, x)v(x, t) −

∫ x

0
lx (x, τ ) v (τ, t) dτ ,

(22)

zxx(x, t) = vxx (x, t) −
dl(x, x)
dx

v(x, t) − l(x, x)vx(x, t)

− lx(x, x)v(x, t) −

∫ x

0
lxx (x, τ ) v (τ, t) dτ .

(23)

Subtracting ε× (23) from (21) and applying the dynamics (8)
yields

zt (x, t) − εzxx(x, t)

=

[
3 − 2ε

dl(x, x)
dx

]
v(x, t) − εlτ (x, 0)v(0, t)

+ dl(x, t) + hc(y, x, xf , t) −

∫ x

0
l(x, τ )hc(y, τ, xf , t)dτ

+

∫ x

0
[εlxx (x, τ ) − εlττ (x, τ ) − l (x, τ ) 3] v (τ, t) dτ.

By using the fact that lxx − lττ = l(x, τ )3/ε, l(1, τ ) = 0 and
l(x, x) = 3(1 − x)/(2ε) we get

zt (x, t) = εzxx(x, t) + G(x)z(0, t) + dl(x, t)

+ hc(y, x, xf , t) −

∫ x

0
l(x, τ )hc(y, τ, xf , t)dτ ,

(24)

with boundary conditions (14) and (15) where G(x) is
defined after equation (15). Next, the following theorem
will introduce a detectability condition for a state fault by
using (24).
Theorem 1 (State Fault Detectability Condition):

Consider the observer defined by (19) is utilized to monitor

FIGURE 2. Fault isolation scheme.

(24) and (14–15). A state fault initiated at the time instant, tf ,
and location, xf , is detectable if there exists a time T ≥ tf
such that for all t > T , the following condition∥∥∥∥∥

∞∑
n=0

∫ t

tf

{
2

∫ 1

0
[hc(y, x, xf , τ ) −

∫ x

0
l(x, η) hc(y, η, xf , τ )

× dη] cos[(n+ 0.5)πx]dx} e−ε[(n+0.5)π]2(t−τ )dτ

∥∥∥ > 2ρ,

(25)

is satisfied where n = 0, 1, 2, . . . is an integer.
Proof: See Appendix.

Remark 4: The proof shown in the Appendix demon-
strates that a state fault satisfying this condition given by (25)
can be detectable by using the observer from (19).

The next step is to determine the type and location of the
fault.

B. FAULT ISOLATION SCHEME
Upon detecting a fault, the fault type must be identified
followed by fault magnitude estimation. In the case of a state
fault, the location has to be found.

To determine the fault type, first an additive actuator and
sensor fault isolation estimators, to be presented next, are
activated as shown in Fig. 2 to generate the corresponding
time-varying estimator actuator and sensor output residuals,
ea(t) = y(t) − ya(t) and es(t) = y(t) − ŷs(t), respectively.
The actuator and sensor fault locations are trivial since the
locations are automatically determined.

The isolation scheme in Fig 2 shows that when one of the
isolation residuals stays below its isolation threshold ρa or
ρs for actuator or sensor respectively (to be defined later in
(30) and (37)) and the other exceeds its threshold, the fault is
considered to be of that type. A fault is categorized a state
fault when both the sensor and actuator isolation residuals
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exceed their thresholds. The situation that both of the actuator
and sensor isolation residuals keep below their thresholds will
not happen due to the assumption that only one type of faults
can occur at one time. Next, the actuator and sensor isolation
estimators will be introduced.

1) ACTUATOR FAULT ISOLATION ESTIMATOR
Upon detection of a fault, for an additive actuator fault, a fault
filter given by

Ft (x, t) = εFxx(x, t), Fx(0, t) = 0, (26)

F(1, t) = [σ (a)
1 (U (t), t), . . . , σ (a)

n (U (t), t)]T , (27)

is incorporated into the observer (19) to construct an actuator
fault isolation estimator where F(x, t) ∈ ℜ

n is utilized to
estimate the fault function with initial condition F(x, td ) = 0.
To match the dimension of 8a(U (t), t) ∈ ℜ

n×n, Fa(x, t) =

diag[F(x, t)] is used to estimate the fault function. The next
theorem will cover the performance of an actuator isolation
estimator.
Remark 5: By representing 8a(U (t), t) in (27) as a

diagonal matrix to derive the actuator fault filter, the number
of PDE equations can be reduced from n× n to n. In addition,
if [σ (a)

1 (U (t), t), . . . , σ (a)
n (U (t), t)]T = U (t), the fault filter

given by (26) and (27) will be same as the input filter
described by (16).
Theorem 2 (Actuator Fault Isolation Estimator Perfor-

mance): Once detecting a fault at time td , consider

ẑa(x, t) = ẑ(x, t) + Fa(x, t)θ̂a(t), ŷa(t) = ẑa(0, t), (28)

as the estimator at t ≥ td for the state and output of the system
in the presence of a bounded actuator fault, where ẑ(x, t) is
given by (19), and θ̂a(t) ∈ ℜ

n is the estimated actuator fault
parameter vector. Consider the projection algorithm given by

˙̂
θa(t) = P2a{βFa(0, t)e(t)}, (29)

to tune the parameter vector where β > 0 is the adaptation
rate andP2a {·} is the projection operator. The actuator output
isolation residual, ea(t), will remain bounded and stays within
an fault isolation threshold ρa.

Proof: See Appendix.
Remark 6: By defining the actuator fault isolation thresh-

old ρa as

ρa(t) = ρ + κa(t) ∥Fa(0, t)∥ + D̄, (30)

it can be shown in the Appendix that ∥ea(t)∥ ≤ ρa(t) by
using estimator defined by (28) with parameter vector tuned
by (29). This ensures that an actuator fault can be isolated.

Similarly, a sensor fault isolation estimator will be
proposed next.

2) SENSOR FAULT ISOLATION ESTIMATOR
The presence of a sensor fault changes the value of y(t)
and thus causes the dynamics of two output filters given by
(17) and (18) to provide inaccurate state estimates. Two fault

filters are needed in order to mitigate the changes. Upon
detecting the fault, consider

F1t (x, t) = εF1xx(x, t), F1x(0) = [σ (s)
1 , . . . , σ (s)

n ]T ,

F1(1, t) = 0, (31)

F2t (x, η, t) = εF2xx(x, η, t) + δ(x − η)[σ1, . . . , σn(t)]T ,

(32)

F2x(0, η, t) = 0, F2(1, η, t) = 0, (33)

where F1(x, t) and F2(x, t) ∈ ℜ
n are states of fault filters.

Then the following theorem will establish a sensor fault
isolation estimator and define its performance based on these
fault filters given by equations above.
Theorem 3 (Sensor Fault Isolation Estimator Perfor-

mance): Upon detecting a fault, consider the sensor fault
isolation estimator for t ≥ td given by

ẑs(x, t) = ẑ(x, t) − [L0M (x, t)+
∫ 1

0
G(s)9(x, s, t)ds]θ̂s(t),

(34)

with

ŷs(t) = ẑs(0, t) + 8s(t)θ̂s(t), (35)

to estimate the state and output of DPS, where
M(x, t) = diag(F1(x, t)), 9(x, s, t) = diag(F2(x, s, t)) and
θ̂s(t) ∈ ℜ

n represent the estimated sensor fault parameter
vector. Consider the parameter tuning law given by

˙̂
θs(t) = P2s{βF

T
s (0, t)e(t)}, (36)

where Fs(0, t) = 8s(t) − [L0M(0, t) +
∫ 1
0 G(s)9(0, s, t)ds],

L0 is defined after the equation (15) and β > 0 is the
adaptation rate. Then for t > td , the sensor fault estimator
output isolation residual, es(t), will be bounded and remains
below a predefined sensor fault isolation threshold ρs.

Proof: Refer to Appendix.
Remark 7: Define the sensor fault isolation threshold as

ρs(t) = ρ + κs(t) ∥Fs(0, t)∥ + D̄. (37)

By utilizing the sensor fault estimator given by (34) and
output defined by (35) along with the parameter tuned by
(36), we can show ∥es(t)∥ ≤ ρs(t) in the Appendix.
Remark 8: It is shown that in the presence of an actuator

or sensor fault, the corresponding isolation estimator output
residual should be within its corresponding isolation thresh-
old ρa or ρs, respectively while the other residual exceeds
its isolation threshold. To the contrary, when both sensor and
actuator fault isolation estimator output residuals exceed their
corresponding isolation thresholds, a state fault is considered
to have occurred.

Note the difference between the time-varying isolation
thresholds ρa or ρs and the constant detection threshold ρ.
The isolation thresholds (30) and (37) are generally higher
than the detection threshold. For example, as shown in
Fig 3 (a) the magnitude of the actuator estimator output
residual ea(t) will cross the detection threshold ρ and
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FIGURE 3. Isolation results in the presence of: (a) an actuator fault, (b) a
sensor fault, and (c) a state fault.

yet always stay within the isolation threshold of the actuator
fault estimator ρa(t) in the presence of an actuator fault.
The identification of a state fault requires location

determination, which is introduced next.

3) LOCATION DETERMINATION OF A STATE FAULT
First, several state fault filters i = 1, 2, 3, . . . , p, will be
designed next with p representing the number of filters,
divide the system space x ∈ (0, 1) into p + 1 identical
segments, to construct the state fault estimator. By comparing
the estimated isolation outputs given by estimators with that
of the measured output, p isolation estimator errors will
be generated. The estimator generating the minimum error
magnitude is believed to be closest to the actual state fault
position. Notice that placing more estimators, p, will result
in the determination of accurate fault location but this will
increase the computational cost.

After introducing the state fault filters and the estimator,
the performance of the estimator will be demonstrated and the
isolability condition which defines the class of isolable faults
will be given. Next, the state fault filters will be introduced.

The system dynamics with a state fault can be written as

zt (x, t) = εzxx(x, t) + G(x)z(0, t)

+ 8̄c(y, x, xf , t)θc + dl(v, x, t), (38)

with boundary conditions given by (14) and (15) where

8̄c(y, x, xf , t) = 8c(y, x, t)1(x − xf )

−

∫ x

0
l (x, τ ) 8c(y, τ, t)1(τ − xf )dτ.

(39)

In order to construct the state fault isolation estimators, fault
filters are incorporated into the observer (19). The state of
the estimator, ẑ(i)(x, t) at location x = xi with corresponding
estimated output ŷ(i)(t) can be represented as

ẑ(i)(x, t) = ẑ(x, t) + F (i)
c (x, t)θ̂ (i)c (t), (40)

ŷ(i)(t) = ẑ(i)(0, t). (41)

where F (i)
c (x, t) represents ith fault filter at position x = xi for

xi ∈ (0, 1) with i = 1, . . . p. The fault filter is designed using

∂F (i)
c (x, t)/∂t = ε∂2F (i)

c (x, t)/∂x2 + 8̄c(y, x, xi, t), (42)

∂F (i)
c (0, t)/∂x = 0, F (i)(1, t) = 0, (43)

with

8̄c(y, x, xi, t) = 8c(y, x, t)1(x − xi)

−

∫ x

0
l (x, τ ) 8c(y, τ, t)1(τ − xi)dτ

where F (i)
c (x, t) ∈ ℜ

n×n is the ith fault filter state, θ̂ (i)(t) is
the adaptive parameter vector of ith state fault estimator. The
state estimation error is defined as

z̃(i)(x, t) = z(x, t) − ẑ(i)(x, t), (44)

whereas the output residual is given by e(i)(t) = y(t)− ŷ(i)(t).
In order to study the performance of the estimation error
z̃(i)(x, t), define

z̄(i)(x, t) = ẑ(x, t) + F (i)
c (x, t)θc. (45)

It can be observed that as θ̂
(i)
c (t) → θc, the estimator state

defined by (40) is the same as (45).
Define µ(i)(x, t) = z(x, t) − z̄(i)(x, t) and its dynamics are

given by

µ
(i)
t (x, t) = εµ(i)

xx(x, t) + dl(x, t)

+ [8̄c(y, x, xf , t) − 8̄c(y, x, xi, t)]θc, (46)

µ(i)
x (0, t) = 0, µ(i)(1, t) = 0. (47)

From the definition of z̃(i)(x, t) and µ(i)(x, t) we can get
z̃(i)(x, t) = µ(i)(x, t) + F (i)

c (x, t)θ̃ (i)c (t). If the estimator is
located at the same position as the actual fault, i.e. xi =

xf , µ(i)(x, t) will have same dynamics as the one given by (20)
which is bounded for all x ∈ [0, 1], t ≥ td and the bound only
depends on the upper bound of the disturbance. An adaptive
update law is proposed to tune the adaptive parameter and
an identifiable condition, which defines the class of state
faults whose location can be identified using the proposed
estimators, is included in the next theorem.
Theorem 4 (State Fault Estimator Performance): Let the

state fault estimator be defined by (40) and (41) with
parameter update law be presented as

˙̂
θ (i)c (t) = β[F (i)

c (0, t)]T e(i)(t) − γ θ̂ (i)c (t), (48)

where γ is a positive constant and 0 < β < (π2
− 4)/2 is the

adaptation rate parameter to be used to estimate the system
state described by (38) and (14) upon detecting a state fault.
By comparing the actual isolation output defined in (7) with
the estimated isolation output defined by

ŷi(t) =

∫ 1

0
C(x)v̂(i)(x)dx, (49)

where v̂(i) is the estimated system state given by v̂(i) (x, t) =

ẑ(i) (x, t) +
∫ x
0 K (x, τ ) ẑ(i) (τ, t) dτ with k̄ = ∥K (x, τ )∥

x∈[0,1]
and

K (x, τ ) being the kennel matrix of the inverse transformation

v(i) (x, t) = z(i) (x, t) +

∫ x

0
K (x, τ ) z(i) (τ, t) dτ , (50)

the location of a state fault occurred at position x = xf
is identifiable provided the state fault mismatch function
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ηi(x) = 8̄c(y, x, xf , t) − 8̄c(y, x, xi, t) and fault filters
defined by (42) and (43) satisfy

∥ηs∥ > ∥ηr∥ and χs

∫ 1

0

∥∥∥F (s)
c (x, t)

∥∥∥dx
> χr

∫ 1

0

∥∥∥F (r)
c (x, t)

∥∥∥dx when
∣∣xs − xf

∣∣
>

∣∣xr − xf
∣∣ for s and r ∈ 1, . . . p, (51)

where χi =

√
(∥ηi∥2 + d2l )/εγ + θ2cmax, i = r, s.

Proof: See Appendix.
Remark 9: It is shown in the Appendix that the isolation

output residual defined by ỹ(i)i (t) = yi(t) − ŷ(i)i (t) is bounded
by∥∥∥ỹ(i)i (t)

∥∥∥ ≤ c̄
√
(2 + 4k̄2)[

√
2γ θ2cmax + 2[∥ηi∥2 + d2l ]/ε

+ χi

∫ 1

0

∥∥∥F (i)
c (x, t)

∥∥∥dx], (52)

when (51) holds and it is clear that the less the distance
between the actual fault and filter location given by
Si =

∣∣xf − xi
∣∣, the smaller will be the bound given by (52).

Therefore, the true fault location is determined as the one that
is closest to the state fault estimator generating a residual that
is minimum over others.
Remark 10: The identifiable condition defined by (51) has

two parts because from the isolation output residual given by
(52), we can obtained that the magnitude of the residual is
determined by the value of both ∥ηi∥ and χi

∫ 1
0

∥∥∥F (i)
c (x, t)

∥∥∥.
In order to isolate an actuator, sensor and state fault,

an isolable condition is required which will be introduced
next.

4) FAULT ISOLABILITY CONDITION
In this part, a fault isolability condition is derived on the basis
of the proposed fault isolation scheme to define the class of
faults that can be isolated. Faults which can produce enough
difference on the measurements are simpler to isolate. For the
sake of expressing this difference, define a fault mismatch
function

hrm(t) ≜ Fr (0, t)θr − Fm(0, t)θ̂m(t), (53)

where r = a, s, c and Fr (0, t)θr represents the change of
the measured output caused by an actuator fault, sensor fault
or state fault respectively, m = a, s and Fm(0, t) denotes
effect caused by an estimated actuator fault or sensor fault
on the output and r ̸= m. The fault mismatch function can
be viewed as the difference between the actual change of the
output Fr (0, t)θr due to the fault and estimated change of the
output Fm(0, t)θm given by any other fault estimatormwhose
framework does not match with the actual fault r .
Theorem 5 (Isolability Condition for Linear DPS):A fault

r that has been detected is isolable if for each estimator
m ∈ {a, s}\{r}, there exists a time ti > td such that the fault

mismatch function defined by (53) satisfies the following
inequality∥∥hrm(t)∥∥ > 2ρ + κm(t) ∥Fm(0, t)∥ + D̄. (54)

Proof: See Appendix.
Next the fault isolation of nonlinear DPS is introduced.

IV. NONLINEAR SYSTEM DESCRIPTION
A class of DPS represented by a bank of nonlinear PDEs will
be introduced in this section. The system description under
healthy conditions will be presented first and with actuator
and sensor faults will be given in the second part.

A. SYSTEM DESCRIPTION WITHOUT FAULTS
The state representation of a class of nonlinear DPS is
expressed as

∂v(x, t)
∂t

= c
∂2v(x, t)

x2
+ f (v, x) + d(v, x, t), (55)

with boundary conditions given by

vx (0, t) = Qv(0, t), v(1, t) = u(t), (56)

and

y(t) = v(0, t), ys(t) = vx(0, t), ya(t) = v(1, t), (57)

where x ∈ [0, 1] is the space variable, t ≥ 0 is the time
variable, v(x, t) ∈ ℜ

n represents the state vector, y(t) is
the measured output for observer design and fault detection,
ys(t) is an additional required measurement for sensor fault
isolation while ya(t) is the required measurement for an
actuator fault isolation, f (v, x) ∈ ℜ

n is the nonlinear vector
function, d(x, t) ∈ ℜ

n denotes the disturbance, Q ∈ ℜ
n×n is

a nonzero square matrix, and c > 0 is a constant.
Assumption 6: The nonlinear vector function f (v, x) satis-

fies the following conditions
a. f (v, x) is Lipschit continuous in v, C0 in x, C1 in t and
v for x ∈ [0, 1], t ≥ 0 and v(x) ∈ L2(0, 1).

b. f (v, x) should satisfy

f (v+ 1v, x) − f (v, x) =
∂f (v, x)

∂v
1v+ εf (1v, x),

where 1v represents a small change in v and εf (1v, x)
is the approximation error satisfying

∥∥εf
∥∥
2,n ≤ ε̄f .

Remark 11: Assumption 6 (a) indicates that ∂f (v,x)
∂v is

bounded.
Remark 12: In order to meet the requirement

∥∥εf
∥∥
2,n ≤

ε̄f in Assumption 6 (b), 1v needs to be small enough
implying that the initial condition of the observer which will
be introduced in Section IV-B should be close to the initial
condition of the system described by (55) and (56).

In the presence of a state fault, the state representation
given by (55) is modified as

∂v(x, t)
∂t

= c
∂2v(x, t)

x2
+ f (v, x) + d(x, t) + hc(u, y). (58)
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Similarly, the boundary conditions are changed as

vx (0, t) = 0, v (1, t) = u(t) + ha(u), (59)

in the presence of an actuator fault and

y(t) = v(0, t) + hs(t), (60)

in the presence of a sensor fault.
Assumption 7: The fault type considered in the nonlinear

system is state, actuator or sensor faults and only one fault
occurs at any time.

Next, a detection observer will be first presented and then
a fault isolation scheme for differentiating state, actuator and
sensor faults will be proposed.

B. OBSERVER DESIGN
First the design of the observer will be introduced. Next
for the sake of selecting suitable gains of the observer, the
observer error dynamics will be considered. It will be shown
that by appropriately selecting observer gains, the error
dynamics will be bounded. To monitor the system behavior
described by (55), (56) and (57), a detection observer is
proposed as

∂ v̂(x, t)
∂t

= c
∂2v̂(x, t)

∂x2
+ f (v̂, x) + P1(x, t)(y− ŷ), (61)

∂ v̂(0, t)
∂t

= Qy(t) + P10(t)(y− ŷ), v̂ (1, t) = u(t), (62)

ŷ(t) = v̂(0, t), (63)

where v̂(x, t) ∈ ℜ
n represents the observer state,

P1(x) ∈ ℜ
n×n and P10 ∈ ℜ

n×n are observer gains and
ŷ(t) ∈ ℜ

n is the estimated output.
Define detection residual as e(t) ∈ ℜ

n
= y(t) − ŷ(t),

and the observer error is given by ṽ ∈ ℜ
n

= v − v̂. Then,
by applying Assumption 6, the dynamics of the observer error
can be obtained as

ṽt (x, t) = cṽxx (x, t) + A(t)ṽ (x, t) + εf (ṽ, x)

−P1(x, t)e(t) + d(x, t), (64)

subject to the boundary conditions given by

ṽx (0, t) = −P10(t)e(t), ṽ (1, t) = 0, (65)

where A(t) =
f (v,x,t)
vT

∣∣∣
v=v̂

. It can be shown that when the
observer gains are selected as [23]

P1(x, t) = c
∂L (x, 0, t)

∂τ
, P10(t) = L(0, 0, t), (66)

then by applying the transformation

ṽ (x, t) = 4 (x, t) −

∫ x

0
L (x, τ, t) 4 (τ, t) dτ , (67)

to the observer error dynamics described by (64) and (65),
it will be converted into a stable system given by

∂4 (x, t)
∂t

= c
∂24 (x, t)

∂x2
− b(t)4 (x, t)

+ εfM (ṽ, x) + dM (x, t), (68)
∂4(0, t)

∂x
= 0, 4 (1, t) = 0. (69)

where L(x, τ, t) is the unique solution to the well-posed
PDE [23] given by

∂L(x, τ, t)
∂t

= A(t)L(x, τ, t) + b(t)L(x, τ, t)

+ c[
∂2L(x, τ, t)

∂τ 2
−

∂2L(x, τ, t)
∂x2

], (70)

L (1, τ, t) = 0, L (x, x, t) =
(x − 1)
2c

[A(t) + b(t)In×n],

(71)

4(x, t) ∈ ℜ
n, L(x, τ, t) ∈ ℜ

n×n, and b(t) ≥ 0 is an
arbitrary scalar, dM (x, t) = d(x, t) +

∫ x
0 M (x, η, t)d(η, t)dη

and εfM (ṽ, x) = εf (ṽ, x) +
∫ x
0 M (x, η, t)εf (ṽ, η)dη with

M (x, η, t) ∈ ℜ
n×n is the kennel matrix of the inverse

transformation given by

4 (x, t) = ṽ (x, t) +

∫ x

0
M (x, η, t) ṽ (η, t) dη. (72)

The following theorem shows the performance of the
detection observer defined by (61), (62) and (63).
Theorem 6 (Detection Observer Performance): Let the

observer defined by (61), (62), and (63) to estimate the
unmeasured states and measured output of the DPS given by
(55), (56) and (57). In the absence of a fault, detection residual
e(t) will be bounded and maintained below a detection
threshold ρ. A fault can cause e(t) to increase and exceed
the threshold ρ.

Proof: Refer to Appendix.
Remark 13: It is shown in the Appendix that under healthy

conditions the detection residual defined as e(t) = v(0, t) is
bounded by

∥e(t)∥ ≤ 2

√
17c3

√
2[c+ 2b(t)][16b(t) + 1]

(d̄M + ε̄fM ),

and the bound depends upon the disturbance bound. Based
on this bound, a predefined threshold ρ is selected, and in the
absence of any fault, the magnitude of the detection residual
should be below the threshold. In the presence of any type
of fault (Fig. 4), the measured output will deviate from the
estimated output and thereby cause the detection residual to
increase and exceed the predefined threshold. In that case,
a fault is declared to be active.

C. FAULT ISOLATION SCHEME
Once a fault is detected by using the proposed observer as
shown in Section III-B, the fault type needs to be identified.
In order to isolate these faults, it is assumed that the system
operates longer than the isolation time ti.
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FIGURE 4. Fault detection scheme.

FIGURE 5. Fault isolation scheme.

The isolation scheme given by Fig. 5 indicates that after
detecting a fault, by using the measurements defined by
(57) and the estimated output given by the observer, the
actuator and sensor fault isolation residuals defined by
ea = ya(t)− v̂(1, t) and es(t) = ys(t)−Qy(t) respectively are
generated. Because the presence of an actuator/sensor fault
can only cause the corresponding fault isolation residual to
increase, if the actuator fault isolation residual ea exceeds
its isolation threshold ρa and the other isolation residual
keeps below its isolation threshold, an actuator fault will be
declared; similar a sensor fault is declared. If neither of the
residuals exceeds their corresponding thresholds, the fault is
considered as a state fault.
Theorem 7 (Fault Isolability Condition): Upon detecting

a fault at t = td , let the additional measurements ya and
ys defined by (57) be used to generate actuator and sensor
fault isolation residuals defined as ea(t) = ya(t)− v̂(1, t) and
es(t) = ys(t) − Qy(t). Then

I. An actuator fault will be isolable if there exists a time
ta > td such that the magnitude of the actuator fault
satisfies ∥ha(u; ta)∥ > ρa;

II. A sensor fault will be isolable if there exists a time
ts > td that the magnitude of the sensor fault satisfies
∥Qhs(ts)∥ > ρs;

III. A state fault will be identified if ∥ea(t)∥ < ρa and
∥es(t)∥ < ρs for all td < t ≤ ti.

Proof: See Appendix.
Remark 14: Based on the analysis in the Appendix, it is

known that either the actuator fault or the sensor fault
will cause the fault residual to exceed its corresponding
isolation threshold. Therefore, if a fault is detected at td and
∥ea(t)∥ < ρa, ∥es(t)∥ < ρs for all td < t ≤ ti,
a state fault will be considered to occur. The selection of
ρa and ρs can be based on the upper bound of the sensor
noise.

V. SIMULATION RESULTS
The proposed fault detection and isolation scheme for
linear DPS will be demonstrated in the first part of this
section in the simulations by using MATLAB, and the
verification of the scheme for nonlinear DPS will be
introduced in the second part with a normalized heat
equation.

A. FAULT ISOLATION OF A LINEAR SYSTEM
The linear DPS described by linear parabolic PDEs are given
by

∂v(x, t)
∂t

=
∂2v(x, t)

∂x2
+

[
8 1
2 10

]
v(x, t) + d(x, t), (73)

∂v(0, t)
∂x

= [0; 0], v(1, t) = u(t), (74)

y(t) = [y1(t), y2(t)]T = v(0, t), (75)

for x ∈ [0, 1] and t > 0 where v(x, t) ∈ ℜ
2×1 represents the

system state, d(x, t) =

[
0.05e−.5(x−0.2)2 sin(t)
0.06e−.3(x−0.4)2 sin(2t)

]
denotes

the disturbance, u(t) is the control input implemented at the
position x = 1, and the output, y(t), is measured at the
opposite end.

To simulate the system represented by PDE (73) - (74) and
the detection observer using MATLAB, the space and time
intervals are selected as 1x = 0.05 and 1t = 0.01. Upon
detection of a fault, the actuator and sensor fault estimator
with outputs given by (28), (34) and (35) are employed to
isolate faults. Fig 6 shows that the sensor fault residual stays
under its threshold all the time while an actuator fault residual
exceeds its threshold. Combining the isolation results with the
fault isolation scheme described in Fig 2 indicates a sensor
fault. Once a sensor fault is identified, the update law given
by (36) will be utilized to estimate fault parameters. After
an initial adaptation, as shown in Fig 7(b) and (c), the fault
parameter vector can be estimated satisfactorily, whichmeans
the detection residual is reduced below the threshold again as
shown in Fig 7 (a).

Next, a state fault seeded at xf = 0.2 is considered and the
fault function is characterized as

hc (y, x, t) = diag[y21(t), y
2
2(t)]θc(t)δ(x − 0.2), (76)

where θc(t) = �(t − 6)
[
1.2
2.3

]
represents the state fault

parameter vector and �(t − 6) = diag(�i(t − 6)) for
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FIGURE 6. Fault isolation of a sensor fault.

FIGURE 7. Fault detection and estimation results.

i = 1, 2 which is the time profile of the state fault where

�i(t − 6) =

{
0, if t < 6
1 − e−κi(t−6), if t ≥ 6

with κ1 = 0.3 and

κ2 = 0.6. As noted previously, once a fault is detected, the
actuator and sensor fault estimators are utilized to generate
the corresponding fault residuals. It is obvious from Fig 8
that both the actuator and sensor fault residuals cross their
thresholds implying a state fault.

After the identification of a state fault, the next step is to
determine the fault location. In order to achieve this, four fault
filters seeded at four different locations xi = 0.2, 0.4, 0.6, 0.8
(see Fig. 9) will be applied with isolation output selected
as (notice that the isolation output is not limited to the one
defined next)

yi(t) = [v(0.1, t) + v(0.3, t) + v(0.5, t)]/3. (77)

Each fault filter can generate an estimated isolation output
and using which four isolation residuals are generated by
taking the difference between the actual and estimated
isolation outputs. The state fault location is determined as
xf = 0.2 since Fig 9 shows that the magnitude of the isolation
error generated by adding the fault filter at position xi = 0.2 is
the minimum.

FIGURE 8. Fault isolation of a state fault.

FIGURE 9. Location determination of a state fault.

B. FAULT ISOLATION OF A NONLINEAR SYSTEM
A heat equation with a nonlinear term is expressed as

∂v (x, t)
∂t

=
∂2v (x, t)

∂x2
+ 4v (x, t) + 20e−

5
1+v(x,t) + d(x, t),

(78)

subject to the boundary conditions

∂v(0, t)
∂x

= 0.5v(0, t), v(1, t) = u(t), (79)

where v(x, t) is the system state, u(t) represents the control
input, and d(x, t) = 0.01 sin(t)e−100(x−0.5)2 denotes the
disturbance and the measured output for observer design
defined as

y(0, t) = v(0, t). (80)

The observer is developed based on (61)-(63) to monitor sys-
tem behavior. A fault is declared activated when the detection
residual exceeds the detection threshold. Next, the actuator,
sensor and state fault are incorporated into the system,
respectively, and only one fault is considered at one specific
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FIGURE 10. Fault detection of an actuator fault.

FIGURE 11. Fault isolation results of an actuator fault.

FIGURE 12. Fault detection result of a sensor fault.

time. The fault functions are expressed as

ha = −0.5(1 − e−0.8(t−0.6))u(t),

hs(t) = 1.5(1 − e−0.5(t−8))yd (t),

hc(t) = 0.8(1 − e−0.9(t−tf ))(1 + y(t))2e−15(x−0.3)2 ,

where yd (t) = 0.3 sin(1.5t) + 0.5, which is the desired
trajectory of the output. To differentiate these three types of
faults, two measurements at different locations are utilized
which are defined as ya(t) = v(1, t) and ys(t) = vx(0, t).

In the presence of an actuator fault seeded at tf = 6s,
it can be observed from Fig. 10 that the fault can be detected
within 2.5 s. Fig. 11 shows that only the actuator fault residual
exceeded its threshold; thus, an actuator fault is identified.
In the case of a sensor fault, it can be seen from Fig 12 and 13
that only the sensor fault isolation residual goes across the
threshold indicating a sensor fault.

FIGURE 13. Fault isolation results of a sensor fault.

TABLE 1. Performance comparison between the proposed method in this
paper and a conventional method from [19].

FIGURE 14. Fault detection result of a state fault.

In the case of state fault, detection occurs around 9 seconds
into the simulation as shown in Fig 14. The isolation results
as shown in the Fig 15 indicates that neither of the actuator
and sensor fault isolation residuals exceed their isolation
thresholds so according to the fault isolation scheme of
nonlinear DPS, a state fault is identified. Above all, the
actuator, sensor, and state faults can be isolated by checking
the status of the actuator and sensor fault isolation residuals.

In order to compare the effectiveness of the proposed
approach with the existing methods that require model
reduction, one of the most recent works in this field
was selected [19]. The scheme presented in [19] was
slightly modified to fit the system under consideration here.
Simulations were performed under identical circumstances
using the proposed approach in this paper and the method
presented in [19]. Simulations were repeated 100 times with
randomized fault locations, magnitudes, rates, and initiation
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FIGURE 15. Fault isolation results of a state fault.

times. 5 metrics including true positive ratio (TPR), false
positive ratio (FPR), average time to detection, percentage of
correctly isolated faults, and average time to isolation were
selected to evaluate the performance of the methods. Note
that in calculation of the average time to detection/isolation,
only cases where faults are correctly detected/isolated were
included. The results are summarized in Table 1. As expected,
the proposed method clearly outperforms the conventional
ODE-based method in terms of TPR, FPR, and percentage
of correctly isolated faults, which is due to the fact that the
proposed method is directly based on the PDE model of
the system and thus is more accurate. On the other hand,
the conventional method appears to be faster in detecting and
isolating of faults. The longer detection time could be due
to the conservative selection of detection threshold in this
paper, which can be revisited in a future work by employing a
time-varying threshold.When the longer time to isolationwas
investigated, it was found to be rooted mainly in the isolation
of state faults. In fact, when it comes to actuator or sensor
faults, the average time to isolation of the proposed method is
about 0.6 seconds which is well better than the conventional
method. The state fault takes longer to be isolated with the
proposed method due to the method of isolation that requires
a longer wait time to make sure none of the fault residuals
are going to exceed their threshold. While this may be a
downside, it is possible to alleviate the problem by setting
multiple isolation thresholds and monitoring the rate of
change of the isolation thresholds after detection. Please note
that in the simulations, both methods were implemented at
the same sampling rate which was sufficient in this example.
However, it must be mentioned that the proposed method has
more computational complexity due to the involvement of
multiple PDEs that need to be solved in real time and parallel
to the actual system without a lag. As a result, the proposed
method may require more computational resources compared

to conventional methods based on model reduction. This may
not be an issue considering the substantial advancement of
processing power in the past couple of decades, but still worth
mentioning.

VI. CONCLUSION
Fault isolation for DPS is more involved when compared
to LPS because the system state in DPS is defined by
spatial variations besides temporal variations. The devel-
oped actuator and sensor fault estimators for linear DPS
with boundary measurement can be utilized to assist in
differentiating actuator, sensor and state faults occurring on
linear DPS. In addition, the proposed location determination
scheme along with the isolation measurement is useful for
identifying the location of a state fault provided enough
estimators are utilized. To mitigate the lack of fault filters,
a Luenberger type observer can be applied to monitor the
abnormal behavior of nonlinear DPS. The proposed fault
isolation scheme is capable of isolating actuator, sensor,
and state faults with additional measurements at boundary
conditions to overcome the need for fault filters. The
determined fault type and location developed in this research
can provide useful information for fault estimation and
accommodation. The proposed scheme does have some
limitations; (a) it is only suitable for DPS that can be
modeled by a parabolic PDE; (b) Although fault detection
only requires one boundary measurement, for successful
fault isolation three measurements are needed; (c) multiple
faults happening at the same time is not supported; (d) more
computational power is needed compared to conventional
models which must be considered when implementing in
real-time on systems with higher dimensions. As future work,
the authors plan to address some of these limitations to further
enhance the effectiveness and practicality of the proposed
scheme.

APPENDIX
Proof of Theorem 1: In the presence of a state fault, the

dynamics of the observer error becomes

z̃t (x, t) = εz̃xx(x, t) + dl(x, t)

+ hc(y, x, xf , t) −

∫ x

0
l(x, τ )hc(y, τ, xf , t)dτ ,

z̃x(0, t) = 0, z̃(0, t) = 0.

Solving the PDE defined above yields [27]

z̃(x, t)

=

∞∑
n=0

e−ε[(n+0.5)π]2(t−tf )z̃n(tf ) cos[(n+ 0.5)πx]

+

∞∑
n=0

∫ t

tf
dm(τ )e−ε[(n+0.5)π]2(t−τ )dτ cos[(n+ 0.5)πx]

+

∞∑
n=0

∫ t

tf
e−ε[(n+0.5)π]2(t−τ )hm(τ )dτ cos[(n+ 0.5)πx],
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where z̃n(tf ) ∈ ℜ
n depends upon the initial condition

e(tf ), dm(t) = 2
∫ 1
0 dl(x, t) cos[(n+ 0.5)πx]dx and hm(t) =

2
∫ 1
0 [hc(y, x, xf , t) −

∫ x
0 l(x, η)hc(y, η, xf , t)dη] × cos[(n +

0.5)πx]dx. The first term in the above equation is the
response due to initial condition and the second one is the
response due to the fault function and bounded disturbance.
By noting detection residual being e(t) = z̃(0, t), the solution
to the detection residual is obtained by substituting x = 0 in
the above equation as

e(t) =

∞∑
n=0

{
z̃n(tf )e−ε[(n+0.5)π]2(t−tf )

+

∫ t

tf
dm(τ )e−ε[(n+0.5)π]2(t−τ )dτ

}

+

∞∑
n=0

∫ t

tf
hm(τ )e−ε[(n+0.5)π]2(t−τ )dτ .

According to triangle inequality (∥a1 + a2∥ ≥

∥a2∥ − ∥a1∥) and the equation above we can get

∥e(t)∥ ≥

∥∥∥∥∥
∞∑
n=0

∫ t

tf
hm(τ )e−ε[(n+0.5)π]2(t−τ )dτ

∥∥∥∥∥
−

∥∥∥∥∥
∞∑
n=0

{
z̃n(tf )e−ε[(n+0.5)π]2(t−tf )

+

∫ t

tf
dm(τ )e−ε[(n+0.5)π]2(t−τ )dτ

}∥∥∥∥∥
> 2ρ − κρ

{∥∥∥∥∥
∞∑
n=0

{
e−ε[(n+0.5)π]2(t−tf )z̃n(tf )

+

∫ t

tf
dm(τ )e−ε[(n+0.5)π]2(t−τ )dτ

∥∥∥∥∥
}

= 2ρ − ρ = ρ,

when (25) holds and the detection threshold is selected as

ρ = κρ

{∥∥∥∥∥
∞∑
n=0

{
z̃n(tf )e−ε[(n+0.5)π]2(t−tf )

+

∫ t

tf
dm(τ )e−ε[(n+0.5)π]2(t−τ )dτ

∥∥∥∥∥
}

,

where κρ > 1 is a constant, thus assuring the detection of a
state fault.

Proof of Theorem 2: The actuator isolation estimator
state residual, z̃a (x, t) = z (x, t) − ẑa(x, t), can be written as
z̃a (x, t) = µ (x, t) + Fa (x, t) θa(t). Then, the actuator fault
estimator output isolation residual can be expressed as

ea(t) = z̃a(0, t) = µ(0, t) + Fa(0, t)θ̃a(t), (81)

where µ(x, t) = z(x, t) − z̄a(x, t) with z̄a(x, t) defined as

z̄a(x, t) = ẑ(x, t) + Fa(x, t)θa.

The equation above is viewed as the ultimate target of ẑa(x, t)
when θ̂a is being tuned by (29) and it has the same initial

condition as ẑa(x, t) i.e. ẑa(td ) = z̄a(td ). In the presence of an
actuator fault, the system dynamics is described by (13) and
(15) with modified boundary conditions given by

zx(0, t) = L0z(0, t), z(1, t) = U (t) + 8a(U (t), t)θa.

(82)

By using the system dynamics given by (13), (15) and (82)
and the observer defined by (19), we can obtain the dynamics
of µ(x, t) as

µt (x, t) = εµxx(x, t) + dl(v, x, t),

µx(0, t) = 0, µ(1, t) = 0, (83)

where dl(v, x, t) is defined after (15). The error dynamics
defined in (83) is same as the observer error dynamics given
by (20) whose stability has been shown in [20] and [28]. Now
to obtain the isolation residual, recall (81), when t ≥ td , and
take the norm on both sides to get

∥ea(t)∥ ≤ ∥µ(0, t)∥ +

∥∥∥θ̃a(t)
∥∥∥ ∥Fa(0, t)∥ . (84)

By solving the PDE given by (83) and substituting x = 0 to
the solution we can get for t ≥ td ,

µ(0, t) =

∞∑
n=0

e−ε[(n+0.5)π]2(t−td )µn(td )

+

∞∑
n=0

∫ t

td
dm(τ )e−ε[(n+0.5)π]2(t−τ )dτ .

Substituting ∥µ(0, td )∥ = ∥e(0, td )∥ = ρ in the equation
above provides

∥µ(0, t)∥ ≤ ρ +

∥∥∥∥∥
∞∑
n=0

∫ t

td
dm(τ )e−ε[(n+0.5)π]2(t−τ )dτ

∥∥∥∥∥
= ρ + D̄.

where D̄ =

∥∥∥∥ ∞∑
n=0

∫ t
td
dm(τ )e−ε[(n+0.5)π]2(t−τ )dτ

∥∥∥∥. Recalling
the inequality given by (84) we can obtain

∥ea(t)∥ ≤ ∥µ(0, t)∥ +

∥∥∥θ̃a(t)
∥∥∥ ∥Fa(0, t)∥

≤ ρ + D̄+ κa(t) ∥Fa(0, t)∥ ,

where κa(t) ≥

∥∥∥θ̃a(t)
∥∥∥ depends upon the geometric properties

of the compact set 2a. Recall the actuator fault isolation
threshold ρa defined by (30) to get ∥ea(t)∥ ≤ ρa(t), which
completes the proof.

Proof of Theorem 3: The sensor fault estimator output
error is expressed as

es(t) = y(t) − ŷs(t)

= z̃s(0, t) + 8s(t)θ̃s(t) = µ(0, t) + Fs(0, t)θ̃s(t), (85)

where z̃s(x, t) = z(x, t) − ẑs(x, t) is the sensor fault isolation
estimator state residual,µ(x, t) = z(x, t)−z̄s(x, t) with z̄(x, t)
is defined as

z̄s(x, t) = ẑ(x, t) − [L0M(x, t) +

∫ 1

0
G(s)9(x, s, t)ds]θs,
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which is viewed as the ultimate target of ẑs(x, t) when θ̂s
is being tuned by (36) and has the same initial condition as
ẑs(x, t). In the presence of a sensor fault, the system dynamics
becomes (13) and (14) with output expressed as

y(t) = z(0, t) + 8s(t)θs,

By taking partial derivative of µ(x, t) with respective to t
and x, we can get that the dynamics of µ(x, t) satisfying (83)
indicating the stability of µ(x, t). Thus, for t > td taking the
norm on both sides of (85) we can obtain

∥es(t)∥ ≤ ∥µ(0, t)∥ + κs ∥Fs(0, t)∥

≤ ρ + κs(t) ∥Fs(0, t)∥ + D̄,

where ∥µ(0, t)∥ ≤ ρ + D̄ for t > td and κs(t) ≥

∥∥∥θs − θ̂s(t)
∥∥∥

relies on the geometric properties of the compact set 2s and
D̄ is decided by disturbance or uncertainty bound. Substitute
the sensor fault isolation threshold defined by (37) to the
inequality above yielding ∥es(t)∥ ≤ ρs(t), which completes
the proof.

Proof of Theorem 4: Define a Lyapunov function
candidate

V =

∫ 1

0
[µ(i)(x, t)]Tµ(i)(x, t)dx/2 + (θ̃ (i)c )T θ̃ (i)c /2,

the derivative of this Lyapunov function with respect to time
is given by V̇ =

∫ 1
0 [µ(i)(x, t)]T ∂µ(i)(x,t)

∂t dx + [θ̃ (i)c ]T ˙̃
θ
(c)
c .

By substituting (48) to get

V̇ = ε

∫ 1

0
[µ(i)(x, t)]Tµ(i)

xx(x, t)dx

+

∫ 1

0
[µ(i)(x, t)]T dl(x, t)dx

+

∫ 1

0
[µ(i)(x, t)]T [8̄c(y, x, xf , t) − 8̄c(y, x, xi, t)]θcdx

+ [θ̃ (i)c ]T ˙̃
θ (i)c ,

By using integration by parts and Poincare inequality [29]∥∥µ(i)
∥∥2
2,n ≤

4
π2

∥∥∥µ
(i)
x

∥∥∥2
2,n

and using the adaptive update law

(48), we obtain

V̇ ≤ −
επ2

4

∫ 1

0
[µ(i)(x, t)]Tµ(i)(x, t)dx

+

∫ 1

0
[µ(i)(x, t)]T dl(x, t)dx

+

∫ 1

0
[µ(i)(x, t)]T [8̄c(y, x, xf , t) − 8̄c(y, x, xi, t)]θcdx

− β[θ̃ (i)c ]T [F (i)
c (0, t)]T e(i)(t) + γ [θ̃ (i)c ]T θ̂ (i)c .

Because e(i)(t) = z̃(i)(0, t) = µ(i)(0, t) + F (i)
c (0, t)θ̃ (i)c (t) the

above inequality can be rewritten as

V̇ = −επ2
∫ 1

0
[µ(i)(x, t)]Tµ(i)(x, t)dx/4

+

∫ 1

0
[µ(i)(x, t)]T dl(x, t)dx +

∫ 1

0
[µ(i)(x, t)]Tηi(x)dx

− β[e(i)(t) − µ(i)(0, t)]T e(i)(t) + γ [θ̃ (i)c ]T θ̂ (i)c

≤ −επ2
∫ 1

0
[µ(i)(x, t)]Tµ(i)(x, t)dx/4

+

∫ 1

0
[µ(i)(x, t)]T dl(x, t)dx +

∫ 1

0
[µ(i)(x, t)]Tηi(x)dx

− β[e(i)(t)]T e(i)(t)/2 + β[µ(i)(0, t)]Tµ(i)(0, t)/2

− γ [θ̃ (i)c ]T θ̃ (i)c /2 + γ θ2cmax/2

≤ −[
επ2

4
−

ε(β + 2)
2

]
∫ 1

0
[µ(i)(x, t)]Tµ(i)(x, t)dx

− γ [θ̃ (i)c ]T θ̃ (i)c /2 + γ θ2cmax/2 + (d̄2l + ∥ηi∥
2)/2ε

where θcmax ≥ ∥θc∥. Therefore, the derivative of Lyapunov
function will be less than zero if∥∥∥µ(i)

∥∥∥ >

√
2γ θ2cmax +

2[∥ηi∥2 + d2l ]

ε
or

∥∥∥θ̃ (i)c

∥∥∥ >

√
∥ηi∥

2
+ d2l

εγ
+ θ2cmax. (86)

With the bounds given by (86), the bound of isolation
output residual defined by ỹ(i)i (t) = yi(t) − ŷ(i)i (t) can be
obtained as∥∥∥ỹ(i)i (t)

∥∥∥
=

∥∥∥yi(t) − ŷ(i)i (t)
∥∥∥ =

∥∥∥∥∫ 1

0
C(x)[v(x) − v̂(i)(x)]dx

∥∥∥∥
=

∥∥∥∥∫ 1

0
C(x)ṽ(i)(x)dx

∥∥∥∥ ≤ c̄
√
(2 + 4k̄2)

∥∥∥z̃(i)(x)∥∥∥
2,n

≤ c̄
√
(2 + 4k̄2)[

∥∥∥µ(i)(x)
∥∥∥
2,n

+

∥∥∥θ̃ (i)c

∥∥∥ ∫ 1

0

∥∥∥F (i)
c (x, t)

∥∥∥dx]
≤ c̄

√
(2 + 4k̄2)[

√
2γ θ2cmax + 2[∥ηi∥2 + d2l ]/ε

+

√
(∥ηi∥2 + d2l )/εγ + θ2cmax

∫ 1

0

∥∥∥F (i)
c (x, t)

∥∥∥dx],
where ṽ(i)(x) = v(x) − v̂(i)(x) is the state error. The bound
on the magnitude of the isolation output error of the state
fault estimator ỹ(i)i depends upon the value of ∥ηi∥ and

χi
∫ 1
0

∥∥∥F (i)
c (x, t)

∥∥∥dx. Because the mismatch function ∥ηi∥

and χi
∫ 1
0

∥∥∥F (i)
c (x, t)

∥∥∥dx varies with the distance between the
actual fault and filter location given by Si =

∣∣xf − xi
∣∣ yielding

the magnitude of ỹ(i)i changes with the distance Si. When
the condition (51) is satisfied, the location of the state fault
will be identified by comparing the isolation output residual
generated by state fault estimators at different locations. The
true fault location is determined as the one that is closest to
the state fault estimator generating a residual that is minimum
over others.

Proof of Theorem 5: Upon detecting a fault, recalling
equations given by (81) and (85) the actuator/sensor fault
estimator error satisfies em(t) = µ(0, t) + hrm(t). According
to triangle inequality ∥a1 + a2∥ ≥ ∥a2∥ − ∥a1∥ and the
equation above we can get ∥em(t)∥ ≥ ∥hrm(t)∥ − ∥µ(0, t)∥.
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If the (55) is satisfied and recall that ∥µ(0, t)∥ ≤ ρ + D̄, it is
clear that

∥em(t)∥ > 2ρ + κm(t) ∥Fm(0, t)∥ + D− ∥µ(0, t)∥

≥ ρ + κm(t) ∥Fm(0, t)∥ = ρm(t)

where ρm is the threshold used for fault isolation defined
by (30) and (37).

Proof of Theorem 6: Define a Lyapunov function
candidate V (t) = ∥4(t)∥22,n /2c + ∥4x(t)∥22,n /2c whose
derivative with respective to t is obtained as

V̇ (t)

=

∫ 1

0
4T (x, t)4t (x, t)dx/c+

∫ 1

0
4T
x (x, t)4xt (x, t)dx/c

=

∫ 1

0
4T (x, t)4xx(x, t)dx − b(t)

∫ 1

0
4T (x, t)4(x, t)dx/c

+

∫ 1

0
4T (x, t)[dM (x, t) + εfM (ṽ, x)]dx/c

+

∫ 1

0
4T
x (x, t)d4t (x, t)/c,

Substitute the dynamics described by (68) and (69) to the
equation above to get

V̇ (t)

≤ − ∥4x(t)∥22,n − b(t) ∥4(t)∥22,n /c

+

∫ 1

0
4T (x, t)[dM (x, t) + εfM (ṽ, x)]dx/c

− ∥4xx(t)∥22,n + b(t)
∫ 1

0
4T
xx(x, t)4(x, t)dx/c

−

∫ 1

0
4T
xx(x, t)[dM (x, t) + εfM (ṽ, x)]dx/c

≤ −b(t) ∥4(t)∥22,n /c− [c+ b(t)] ∥4x(t)∥22,n /c

− ∥4xx(t)∥22,n +
(d̄M + ε̄fM )

c

×

∫ 1

0

[√
4T (x, t)4(x, t) +

√
4T
xx(x, t)4xx(x, t)

]
dx

≤ −
1 + 16b(t)

16c
∥4(t)∥22,n −

c+ 2b(t)
2c

∥4x(t)∥22,n

+
17c2(d̄M + ε̄fM )2

4
,

where d̄M ≥ ∥dM∥ and ε̄fM ≥
∥∥εfM

∥∥. Therefore, V̇ (t) < 0 if
one of the following conditions is satisfied

∥4(t)∥2,n > 2(d̄M + ε̄fM )

√
17c3

16b(t) + 1
, or

∥4x(t)∥2,n >

√
17c3

2[c+ 2b(t)]
(d̄M + ε̄fM ).

By Agmon’s inequality

max
x∈[0,1]

∥4(x, t)∥22 ≤ 2 ∥4(t)∥2,n ∥4x(t)∥2,n ,

we can get ∥e(t)∥ ≤ 2
√

17c3
√
2[c+2b(t)][16b(t)+1]

(d̄M + ε̄fM ).
Therefore, the detection residual is bounded and based on the
bound defined above, a detection threshold ρ can be selected
to assure that in the absence of faults the magnitude of the
detection residual remains below the threshold. A fault can
cause the magnitude of the detection residual to increase and
eventually exceed the threshold which leads to detection of
the fault.

Proof of Theorem 7: In the presence of an actuator fault,
the boundary conditions are modified as (59), and we can get
ea(t) = ha(u; t) for t ≥ tf . If ∥ha(u; ta)∥ > ρa, then it can be
guaranteed that ∥ea(ta)∥ > ρa and thus, an actuator fault is
isolated. On the hand, the presence of a sensor fault or state
fault will not cause ∥ea(t)∥ to go across the isolation threshold
ρa for all td < t ≤ ti.
In the case of a sensor fault, the sensor fault residual will

become as es(t) = Qv(0, t) − Q[v(0, t) + hs(t)] = −Qhs(t)
for t > tf due to the sensor fault. It is obvious that if
∥Qhs(ts)∥ > ρs then ∥es(ts)∥ > ρs and thus a sensor fault
is isolated. However, the occurrence of an actuator or state
faults will not make the magnitude of the sensor fault residual
to exceed its threshold for all td < t ≤ ti.
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