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ABSTRACT One prominent issue in the application of deep learning is the failure to generalize to data
that lies on a different distribution to the training data. While many methods have been proposed to address
this, prior work has shown that when operating under the same conditions most algorithms perform almost
equally. As such, more work needs to be done to validate past and future methods before they are put into
important scenarios like medical imaging. Our work analyses eight domain generalization algorithms across
four important medical imaging classification datasets along with three standard natural image classification
problems to discover the differences in how thesemethods operate in these different contexts.We assess these
algorithms in terms of generalization capability, domain invariance, and representational sensitivity. Through
this, we show that despite the differences between domain and content variations between natural andmedical
imaging there is little deviation in the operation of each method between natural images and medical images.
Additionally, we show that all tested algorithms retain significant amounts of domain-specific information
in their feature representations despite explicit training to remove it. Thus, revealing the failure point of all
these methods is a lack of class-discriminative features extracted from out-of-distribution data. While these
results show that methods that work well on natural imaging work similarly in medical imaging, no method
outperforms baseline methods, highlighting the continuing gap of achieving adequate domain generalization.
Similarly, the results also question the efficacy of optimizing for domain invariant representations as amethod
for generalizing to unseen domains.

INDEX TERMS Deep learning, domain generalization, medical image classification, natural image classi-
fication, model analysis, domain invariant representations, representational smoothness.

I. INTRODUCTION
In the medical field, deep learning is frequently used to
aid radiologists in making diagnoses and speeding up treat-
ment times. As such, ensuring that the diagnostic methods
are based on fundamentally sound principles is a necessity.
One issue in deep learning has garnered significant attention
recently, domain shift, where the data used to train the deep
learning models differs in some way from the data found
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during use. This issue can take many forms, but one of
the most important is found in medical imaging, where a
model may be trained on data from one hospital, which uses
a certain method for capturing their scans, and when that
model is applied to a new hospital with different data capture
methodologies, the same high performing model would fail.
The most obvious solution to this problem is to gather data
from as many sources as possible to widen the variety of
training data; however, in practice it is infeasible to collect
data for every single variation possible. Instead, methods for
training models that can generalize across variations without
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access to them at training time have been developed. With
the development of new methods though comes a necessity
to properly validate them in ways that can provide a reli-
able benchmark for future users who want to put them into
practice in new environments, and to ensure fair comparison
between methods. As a result of how deep learning operates,
where model architecture, parameter choice, and many other
variables are learnt and tuned, it can be easy to acciden-
tally overfit methods to specific datasets to achieve strong
performance. To address this issue, there has been a recent
push to standardise algorithm testing methods, one such work
being the DomainBed framework [1]. Unfortunately, through
this framework it was found that when properly tuned, even
the most complex domain generalization methods very rarely
outperform baseline methods. Calling into question how the
methods developed differ from baseline methods and whether
there is merit in their approaches.

The purpose of this work is three-fold: Firstly, to provide
a framework for assessing methods in an important appli-
cation of domain generalization, namely medical imaging.
Secondly to analyze the differences between a variety of
domain generalization methods in their operations on natural
images compared to medical images, in terms of both raw
performance and underlying function of themethods. Thirdly,
to provide a framework for evaluating different properties
of models based on theoretical approaches in the domain
generalization field. Through the creation of this framework,
we encountered results that question the narrative in how the
domain generalization works in deep learning. This leads us
to the main contributions of this work:

• We provide a set of benchmark performances on state-
of-the-art algorithms on three commonly used natural
imaging datasets as well as four important modalities in
medical imaging datasets. We show that despite differ-
ences between the two contexts, algorithm performance
on medical imaging datasets correlates strongly with
performance on natural image classification datasets.
Additionally, there is no significant discrepancy between
the method’s operations between the two contexts,
despite their differences.

• We propose an initial framework (called Analysing Rep-
resentational Domain Invariance, or ARDI in short) for
analyzing domain generalization methods through the
theoretical narratives of domain invariant and smooth
representations. We also highlight the importance of
further work in developing more methods for analysing
generalization methods to encompass further general-
ization mechanisms, as well as answering the many
questions regarding the importance of invariant repre-
sentations that have been discovered within this work.

• We have used this framework to show that achieving
domain invariant representations is a large scale prob-
lem, that persists across many different mechanisms.
Both the failure to achieve domain invariance and the
lack of correlation between model performance on OOD
data and both domain invariant representations and

representational smoothness highlights the limitations of
current domain generalization methods and possibly the
theories behind generalization in deep learning models.

A. BACKGROUND
1) WHAT IS DOMAIN GENERALIZATION?
As stated previously, domain generalization is a necessity
when data undergoes a distribution shift between the training
and testing environments. One such area where this distribu-
tional shift occurs frequently is in medical imaging.

AI is used extensively in medical imaging [2], [3], and is
likely to continue to grow as more and more medical fields
are looking to use AI to achieve more accurate diagnoses and
to speed up treatment time.

While AI systems are often trained for diagnosis purposes;
due to reliability and accountability concerns AI models are
normally only used to aid a healthcare practitioner in making
a diagnosis. Typically, these models’ predictions will used in
conjunction with other tests by a healthcare practitioner who
will give the final diagnosis, hence the term ‘‘computer aided
diagnosis’’.

One barrier in the way of implementing AI in medical
imaging is domain shift. As such the importance of having a
solid benchmark for various domain generalization methods
on different modalities within medical imaging is growing.

To start with, it is important to discuss the ways in which
medical data can vary. The most common shifts being: The
modality of scan being captured (CT,MRI, X-ray, etc), source
of the data (different hospitals/centres), scanning parameters
(scanner manufacturer, resolution, contrast agents, recon-
struction algorithms), difference scanning procedures (scans
before vs after treatments, timing after contrast injection,
etc). Due to the previously mentioned difficulties in gathering
data for training, getting enough data that covers all these
variations is extraordinarily difficult. As such, most train-
ing and testing are performed on only a single set of these
varying parameters, thus the robustness problem is often not
discovered until the methods are deployed into the real-world
where these distributional shifts are encountered. This means
that having a comprehensive set of benchmarks and a testing
framework to analyse methods on varying tasks that can
apply to many practical situations is becoming increasingly
important.

The goal of domain generalization algorithms can be sum-
marized succinctly: train models that can perform the same
task across a wide variety of circumstances. Mathematically,
this is defined as having N training/source datasets made
up of inputs, x, and labels y, S = {Sn = {(xn, yn)}}Nn=1,
specifically each dataset has a different marginal distribution
of inputs/labels, PnXY on X×Y . The task is to train a predictive
model, f : X → Y , on the training data that achieves
low prediction error on unseen testing data, T = {(x t , yt )},
with similar but different marginal distribution to the training
datasets. While the goal is simple, it can be a very difficult
task due to the differing distributions. Currently, there are
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several leading theories as to why generalization fails, the
most common are: relying on domain specific information,
and learning non-robust models.

For example, in a full image cancer classification task,
it is possible for a model to learn to recognize common side
effects of cancer, such as inflammation of surrounding tissue,
and rely on that for classification instead of identifying the
root cause, the cancer. Likewise, non-robust models will fail
when even very minor previously unseen shifts in domain
occur due to poor feature extraction sensitivity.

B. RELATED WORK
This work does not aim to provide a full review of all prior
work. For a full breakdown of domain generalization work
the reviews by Zhou et al, and Wang et al, cover the field
thoroughly [4], [5].

1) DOMAIN GENERALIZATION MECHANISMS
While there are many methods for domain generalization,
most operate by attempting to address the first point of failure
of generalization: Using domain specific representations [4],
[5]. This can be addressed explicitly, with something as sim-
ple as data augmentation [6] that mimics the distributional
shift between domains, or it can be learnt explicitly with
adversarial learning [7], [8], [9], which directly optimizes a
neural network to remove all domain identifiable information
from the feature representations. In a similar vein, there are
methods that use disentangled representations [10], [11] (like
those used for style transfer networks) that separate domain
variant and domain invariant representations, which are often
learnt adversarially as well. It is also possible to regularize
networks with information bottlenecks [12], or metric learn-
ing and statistical feature alignment [13] meta-learning [14],
[15], [16], self-supervised learning [17], [18], [19], and gra-
dient matching between domains [20]. Lastly, there are also
methods that use an ensemble of models trained on different
domains to find invariant features [4], [5], [21]. The common
rationale behind all thesemethods is the goal to find ‘‘domain
invariant features’’. Logic would assume that features that
do not vary between the training domains are more likely to
also be invariant when shifting to unseen domains, and thus if
a model can learn to use only these features, the model should
have stronger generalization. It could also be assumed that
methods such as DANN [7] and MMD [8] which explicitly
trains a model to remove all domain knowledge from their
feature representations would lead to the most domain invari-
ant representations. Whether this is the case is something our
work explores.

In medical imaging, domain specific features are also
likely to be confounding elements that are only present in
fewer-than-all training domains. For example, in a cancer
detection task, if one domain contains a high proportion of
inflamed tissue surrounding the cancer while other domains
do not, then domain invariant models are unlikely to learn to
rely on inflammation as an indicator of cancer. It is currently

unexplored whether this has a significant impact on perfor-
mance or not.

Additionally, there is representational/distributional robust-
ness. Shui et al. [22] proposes that models that have learnt
only to be invariant to source domain shifts are not guaranteed
to be invariant to possible future domain shifts. They propose
that a model that has smooth representations (has more
gradual shifts in its representations when the input changes)
leads to more accurate interpolation between samples and
domains, so new samples, which may fall between or close
to the training data distribution, will be handled better. For
a practical example, as a majority of domain shifts in the
medical imaging space are small shifts in overall image style,
noise, etc., a model that is robust to small shifts in the input
space (i.e., different possible noise types) are less affected
by future possible domain shifts and thus more likely to be
better at generalizing to unseen domains. In this manner,
a method such as inter-domain Mixup training [23], [24]
which trains models on a linear mixture of samples should
lead to smoother interpolated predictions/representations,
and again, this is something our work explores.

The last form of domain generalization techniques revolve
around the learning and exploitation of domain specific
information. This is most commonly done by replicat-
ing parts of the network for each source domain: such
as having domain-specific feature extractors [25] or novel
masking layers [26]. This concept can be used further
with domain-specific regularization parameters like batch-
normalization, etc [27], [28].

These methods can be categorized into several different
mechanisms [5]:

1) Data manipulation (e.g., data augmentation, Mixup,
self-supervised learning),

2) Domain invariant representations (e.g., domain adver-
sarial training, contrastive learning, invariant risk
minimization),

3) Model regularization (e.g., meta-learning, linear-
dependency regularization, information bottleneck,
gradient matching),

4) Domain-specific models to leverage domain
information.

This work focuses on the two single-model-centric meth-
ods: domain invariant representation learning, and model
regularization.

2) DOMAIN GENERALIZATION METHODS FOR MEDICAL
IMAGING
In medical imaging there are two main types of domain
generalization, inter-modality and intra-modality generaliza-
tion; where inter-modality generalization aims to general-
ize models between multiple modalities (MRI to CT and
X-ray), whereas intra-modality aims to generalize between
images of the same modality (CT machine to a different CT
machine). In this work we are exploring intra-modality gen-
eralization. In terms of medical imaging, many methods have
been explored, however most can fit into the above categories
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with adjustments designed specifically for medical imaging
contexts. Due to the well-understood differences between
domains in medical imaging, data augmentation remains a
strong contender [5].Most methods either utilize a large num-
ber of transformations [29] or introduce targeted augmen-
tations that mimic domain differences, with handcrafted or
adversarial augmentation [9]. Other methods have been intro-
duced that rely on regularizing deep learning models, either
by regularizing the feature space itself (e.g., linear depen-
dency regularization [30]) or by regularizing the model’s
parameters, done through explicit means [4] or meta-learning
[31]. Meta-learning itself has numerous variations, with some
opting for varying forms of task augmentation [16], and
others introducing some medical-imaging-based prior [14],
[15]. In a similar vein, methods have also been extended
off self-supervised learning for domain generalization, and
domain adversarial approaches with more medical imaging
specific additions. In the case of self-supervised learning it
is possible to incorporate 3D data transformations [32], [33],
where 3D data is used in both MRI and CT scans. Likewise,
privacy may also be a concern in medical imaging contexts,
so some work has been done on modifying existing tech-
niques, like MMD for preserving data privacy [34]. The final
method uses a distinct learning paradigm of domain-oriented
features, which learns a knowledge base of domain specific
features which can be used to enhance the generalization of
unseen samples that are close to previously seen samples
[35]. All the above methods, apart from the final, can neatly
be categorized into the previously noted sets, with novel
additions or tweaks. While the tweaks may be important for
medical imaging contexts, but the generalization mechanisms
are the same.

3) VALIDATION OF DOMAIN GENERALIZATION METHODS
Once these methods have been developed, it becomes impor-
tant to validate them on many problems to discover how well
rounded the approaches are. Purely in terms of final model
evaluation, there are three different methods (as given by [1]):

1) Training domain performance (performance on inde-
pendent and identically distributed (IID) data).

2) Held-out training domain performance,
3) Real-world domain testing.
Having said that, when we are validating a methodology,

another option presents itself: Train and validate methods
using similar problems or datasets. When developing new
methods within the deep learning field, the most common
starting point is to test methods on standard datasets. The
most common for domain generalization are: DigitsDG (a
synthetic domain generalization dataset for handwritten digit
classification), PACS (photos, art, cartoon, and sketches),
and VLCS and OfficeHome datasets (natural images taken
in different scenarios). Ideally, the out-of-distribution (OOD)
performance of algorithms on these datasets would corre-
late strongly with the performance on future datasets and
problems; and thus it is worth verifying that these stan-
dard datasets do perform their function in displaying where

domain generalization methods work well, and where they
do not. This could be a significant barrier for creating
domain generalization methods in medical imaging, where
data accessibility is limited, thus being able to rely on these
standard datasets for development is crucial.

One important area where poor validation could cause
significant issues is inmedical imaging, where reliable results
after deployment is a major concern. Given the limited sup-
ply of data it is common for researchers to test repeatedly
on the same dataset, fine tuning their methods until they
achieve strong results on the testing set but in turn possibly
over-fitting their methods to said dataset. To address this most
researchers also validate their methods on natural imaging
datasets; however, given their innate differences may not hold
a significant correlation to future medical imaging contexts.
One aim of this work is to show that testing new method-
ologies on standard testing sets has a worthwhile correlation
with medical imaging problems, showing that this validating
medical imaging methods with natural imaging datasets is
feasible.

4) BENCHMARKS AND ANALYSIS OF DOMAIN
GENERALIZATION METHODS
There has already been some work in creating a frame-
work for assessing domain generalization techniques by
researchers at Facebook, who created the DomainBed frame-
work [1]. The framework contains 10 datasets and 26 dif-
ferent domain generalization algorithms. One of the most
important findings of this work was discovering that there
was little difference in generalization between all the included
algorithms. As such, understanding why these methods fail
to generalize better than baseline ‘‘do-nothing’’ methods is a
critical step in furthering domain generalization research in
all contexts.

It is important to note that DomainBed only contains
a single medical imaging dataset, WILDS Camelyon17,
a histopathological dataset. As such, the framework may not
be particularly useful for discovering which techniques will
work well in different medical imaging modalities. In order
to get a more accurate representation of algorithmic perfor-
mance in the medical imaging field, it would be necessary to
incorporate open-access domain generalization datasets for
at least the most popular medical imaging modalities such
as X-ray, computed tomography (CT), magnetic resonance
imaging (MRI), ultrasound, and positron emission tomog-
raphy (PET). It may also be worthwhile to include medical
diagnosis methods that use standard optical capturing, such
as skin cancer photography.

There has been very limited works in creating benchmarks
for medical imaging datasets, the most notable example being
the work by Zhang et al. [36]. However, this work focuses
specifically on methods that are modality agnostic and can
be applied to both tabular data and medical imaging. As such,
the methods used and analysed are limited. Additionally, only
two datasets are used to test these chosen algorithms (a tabular
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dataset ‘‘In-Hospital Mortality (eICU)’’, a combination of
four open-access Chest X-Ray datasets, and several synthetic
domain-shift augmentation methods for further testing and
training on the two previous datasets), which does not include
many key modalities mentioned earlier.

In addition to there being no benchmark for domain gen-
eralization algorithms in the most common medical imag-
ing modalities, there is also another missing component in
the literature: investigating the performance difference of
algorithms between natural imaging and medical imaging
datasets. The differences between natural and medical imag-
ing are numerous, which gives rise to a concern that algo-
rithms that perform well on one may not operate with the
same level of performance on the other. On the surface level,
medical images tend to have much lower subject matter
variety, as they are almost always only taken of a single
organ or biological component. Whereas natural images have
a significantly larger amount of variety both in the subjects,
but also the background and context in which the images
are taken in. There is also a difference between the classes
within each dataset. In medical images, the image classes are
often determined by minute discrepancies in texture or small
anomalies in the structure of the subject. Whereas in natural
images, the entire structure of the image tends to change
based on the class. For example: classifying cancer tends to
be a task in finding small lesions or changes in the texture of
an organ, as opposed to distinguishing a clock from a dog,
which has much larger structural and textural changes.

There is also a difference in the capturing mechanisms
themselves. In natural image photography, light comes from
external sources and reflects off an object into the camera’s
lens. Thus what is captured is a product of the environment
and the subject, not solely the subject itself. As opposed to
medical imaging, where the external source of ‘‘light’’ is
controlled significantly to ensure that the data being captured
is as representative of the subject as possible. In medical
images the values within the image often have a physical
meaning, in the case of a computed tomography scan the
units are Hounsfield units (HU), which represent the physical
density of the subject being captured. Whereas in natural
images, the values (often the intensity of red, green, and
blue light for each pixel) have no direct physical meaning,
beyond the amount of red, green, and blue light hitting the
sensor at the time of the photograph, which may be inaccu-
rate due to aforementioned external light sources (such as
the sun) having a distinct colour tint. Another concern is
with the purpose behind the capturing of each of the image
types. Natural images are often captured for the purpose
of human consumption, in modern photography there are
significant post-capturing processing effects performed to
alter the data captured to make the images more pleasing
to the ‘‘human eye’’, and disregarding the actual reality of
the subject being photographed. In contrast, medical images
are taken for diagnosis purposes, as such must represent
reality as closely as possible to aid the diagnosis procedure.
While post-processing is performed in medical imaging,

it is most often transformations like noise reduction which
aim to reduce the effects of an imperfect capturing process,
as opposed to making images more aesthetically pleasing.
Lastly, there are also differences in the types of domain
shifts seen between medical imaging and natural imaging.
The differences in medical imaging often come down to the
process used to capture the scans, of which everymodality has
different underlying physics that can cause different types of
shifts [37], [38], [39], but in general the shifts are often quite
small, due to the controlled nature of the scanning process.
Meanwhile, in natural images the shifts between domains can
be extremely large, with differences in background context,
the colour of the surrounding light (night time vs day time
photography) impacting how the subject is viewed, as well
as the types of camera being used which can distort the
perspective of the subject, along with many more possible
shifts.

Overall, there are many differences between medical and
natural images, that confirms the importance of affirming
that methods that have been solely tested in natural imaging
datasets will yield similar results when tested on real-world
medical imaging problems.

Likewise, there may be more differences between how
methods operate between the two contexts than just accuracy
on out-of-distribution accuracy. As stated previously, the dif-
ferences between domains in medical and natural contexts
leads to different possibilities for how models may inter-
act with them. For example: since the differences between
domains are often smaller, with little stylistic differences,
does this mean that domain invariant representations are
likely to be more effective or easier to achieve? Due to the
smaller differences between classes is the variation between
feature representations likely to be smaller as well? These are
just two possible ways in which the discrepancies between
medical and natural imaging could display themselves. This
work aims to explore the way these differences impact the
model’s feature representations, and how different general-
ization mechanisms operate on them.

This work aims to build on the foundation laid by the
works [1], [40]. Guljrani et al. in the work ‘‘In Search of Lost
Domain Generalization’’ were the first to discover and show
that under controlled circumstances the difference in perfor-
mance between domain generalization methods aggregated
around the baseline method, ERM. Secondly, Galstyan et al.
created a framework for analyzing domain generalization
techniques and their domain invariance capabilities, while
also showing most methods do not achieve adequate invari-
ance on unseen domains. The goal of this work is to unify
and expand on all of these issues. First by providing a series
of benchmarks for eight algorithms on three standard nat-
ural image object classification and four real-world medi-
cal imaging tasks. We validate that domain generalization
algorithm performance on natural imaging datasets continues
to medical imaging datasets. As well as compiling datasets
that can be used to directly assess models in the medical
imaging domain. Secondly, we combine and improve on an
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evaluation framework for domain generalization algorithms
by analyzing created models in terms of domain invariance,
distributional robustness, and representational smoothness.
Lastly, through this framework we highlight several issues
with current domain generalization methods and offer some
insight into where future work could be dedicated to improv-
ing their performance.

II. METHODS
This section provides an overview for the experimental setup
used for this work. This includeswhat datasets and algorithms
were chosen and why, as well as the methods used to analyse
the performance of the algorithms on each of the datasets.

A. DATASETS
Dataset selection process: In order to compare natural imag-
ing to medical imaging in a domain generalization context,
a representative set of datasets needs to be chosen from both
fields. To reiterate, while the datasets are chosen to be rep-
resentative of real-world applications, the goal of this work
is not to provide state-of-the-art results and/or demonstrate
strong performance on real-world problems for clinical use;
instead, the goal in using these medical datasets is to assess
domain generalization methods in a wide variety of situations
that can be used to indicate trends in how these algorithms
operate, and where future work is best to focus to improve
outcomes.

1) NATURAL IMAGING DATASETS
One of the fundamental tasks of computer vision is object
recognition: Take a photograph and try to predict what is the
subject of the image. Despite being the most common task,
it still remains difficult to do with high accuracy due to the
seemingly large variation between objects within images and
the context in which they appear, as well as things as simple
as the camera used to take the images can have a noticeable
impact [41]. Given the variety of work in this field, there are
many open-access and varied datasets used to validate new
methods, three that focus on domain generalization in natural
imaging are: PACS, VLCS, and OfficeHome. The datasets
used were included within the DomainBed framework [1].

The first dataset, PACS [1], [42] consists of four domains:
Photos (1,670 images), Art Paintings (2,048 images), Car-
toons (2,344 images) and Sketches (3,929 images). Each
domain contains seven types of objects, and has a roughly
equal distribution of samples for each class between domains.
The images are of a standard resolution, 227 × 227 pixels,
but all images are still resized to 224 × 224 with bilinear
interpolation as part of the data augmentation strategy.

VLCS [1], [43] is an amalgamation of four other natural
imaging datasets: Pascal 2007 (V), LabelMe (L), Caltech (C),
SUN09 (S), each of which has five classes of images. The
number of samples from each domain for each class varies
significantly, for example: SUN09 only has 20 bird images,
but has 1036 chairs, whereas Pascal 2007 has 330 birds but
only 428 chairs. The range of sample sizes from each domain

FIGURE 1. Sample images from each domain of the PACS dataset, from
left to right: artistic rendition, cartoon, photograph, and sketch.

for each class has a minimum of 20 and a maximum of
1499; each domain contains a different distribution of classes
as well. The images in VLCS do not have a standardized
resolution, as such all images are resized to 224× 224 pixels
with bilinear interpolation.

FIGURE 2. Sample images from each domain of the VLCS dataset: Caltech,
LabelMe, Sun09, and Pascal 2007.

The final natural imaging dataset is OfficeHome [1], [44]
which is comprised of four domains: artistic images (A), cli-
part (C), product (P, images of objects without a background),
and real-world (R, regular photographs of objects). In total
there are 15,500 images, with each of the 65 classes ranging
on average from 40 to 80 samples each. As with VLCS the
images in OfficeHome do not have a standardized resolution,
as such all images are, again, resized to 224×224 pixels with
bilinear interpolation.

FIGURE 3. OfficeHome dataset sample images: artistic image, clipart,
product, and real-world.

Ye et al [45], in their work onOoD-Bench, separate domain
variations into two axes: correlational and diversity shifts.
Correlational shifts are differences in non-causal elements of
data which can be used as shortcuts to learn classification
tasks. For example, in a horse vs camel classification task
if all images of horses have plains of grass in the back-
ground while all camels images have a desert background,
a model might learn that grass is strongly correlated with
horses and deserts for camels rely on that for classification,
as opposed to recognizing the actual animal. This can be seen
in VLCS where all Caltech images are close-up photographs
of dalmatians, thus looking for black and white spots would
somewhat accurately predict the ‘‘dog’’ class for that domain.
Whereas diversity shifts are differences that are changes in
causal features, as can be seen in the PACS dataset, where
different knowledge is required to identify the same objects
between sketches and photographs.
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The domain differences in PACS revolve around this diver-
sity shift principle. The importance of edges vary between
domains, being the most important in sketches, but are preva-
lent in cartoons as well, whereas artistic renditions and pho-
tographs rely more so on colour and texture along with
general shapes to identify objects. Both artistic renditions
and photographs have realistic backgrounds, whereas car-
toons and sketches have a flat coloured backgrounds (mostly
white). Art also tends to have additional textures from the
media that created it, for example: paint brush strokes, which
are unrelated to the content, whereas photos all textural infor-
mation is related to the class.

The domains in VLCS are more difficult to differentiate
compared to PACS, given all four datasets are photographs.
However, as Torralba et al. [43] describes each class within
the dataset contains biases, for example in the car class
some datasets contain varying numbers of each type of car
(sports, sedans, etc), or different viewing angles, and different
background/foreground elements. Similarly, the dog class in
the Caltech domain are almost entirely close-up photos of
dalmatians, with other domains having significantly more
diversity. These differences between domains do vary from
class to class, but despite all being photographs, there are
difference between them that are somewhat correlational and
almost entirely unrelated to stylistic diversity.

Given the variety in differences in domain discrepancies
between these three natural imaging datasets, while not cover-
ing every circumstance within natural imaging, cover a broad
enough spectrum of contexts to provide a suitable benchmark
for how well domain generalization for object classification
can perform in real-world applications.

2) MEDICAL IMAGING DATASETS
While the focus of medical imaging is much more limited
(images of different parts of the human body), the methods
of taking the images have higher variation and the detail
required to make classifications are more subtle, thus cap-
turing all the variation within medical imaging is a difficult
task. In an attempt to capture as much variation as possible,
we have selected different datasets from the most common
imaging modalities: CT, MRI, and histopathology. In order to
keep a consistent format (and for use in the ResNet50 model)
all 3D scans were split into individual slices, images were
resized to a resolution of 224× 224 with bicubic resampling
and were normalized to a range of 0 to 1. While this is not
useful for patient level diagnoses as required inmedical imag-
ing, it should still give an accurate representation for how
well domain generalization methods can create generalizable
models on medical imaging data.

a: CANCER METASTASES IN LYMPH NODES CHALLENGE
(Camelyon17)
The first medical dataset isWILDS Camelyon 17 [46] (which
is also included in the DomainBed framework) is a set of
96× 96 histopathological images, with the task of predicting

if the central 32× 32 region contains any tumour tissue. The
samples were collected from 5 different hospitals, each with
an equal number of positive and negative cases, though each
domain has varying numbers (ranging from 17452 to 73361).

The most common difference between capturing meth-
ods in histopathological images is the staining method for
highlight specific regions or structures of cells within the
sample [47]. To our eyes, these differences can be seen in
the saturation and intensity of the colouring of those chosen
regions/structures within the images. Generally these differ-
ences are similar across domains, given the procedures are
the same, however there still remains some variation within
domains [48]. Ye et al, [45], classifies Camelyon17 as entirely
diversity shift, as there is little domain-dependent differences
in samples conditional on classes.

FIGURE 4. Sample histopathology images from each hospital within the
WILDS Camelyon 17 dataset.

b: RETINAL OCT FLUID CHALLENGE (Retouch)
The Retinal OCT Fluid Challenge (Retouch) [49] was
designed to compare the performance of detection and seg-
mentation of various types of fluid in optical coherence
tomography images between scanner manufacturers. For the
original challenge there were 3 scanners included: Cirrus,
Spectralis, and Topcon scanners each with approximately 23
3D volumes of retinas. As the volumes provided are 3D,
to ensure the same model structure can be used between all
datasets, the scans were split into slices using the provided
segmentation masks to provide slice-level annotations for the
presence of retinal fluid. The original challenge was also
comprised of the independent detection of 3 separate fluid
types (labeled L1, L2, and L3). As the labels are independent,
the models were trained and tested on the detection of L1
fluids solely due to having the most balanced number of
positive and negative samples across domains. All samples
were also normalized to a range of 0 to 1. The original scans
also contain large amounts of black space below the retinal
layers, which was cropped out manually to a final image size
of 512 × 512.

FIGURE 5. A sample slice from a scan from each manufacturer (Cirrus,
Spectralis, and Topcon) within the Retouch dataset.

The differences in domain between each of the scanners
is much more apparent in the Retouch OCT dataset, given
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each has very different capturing parameters [50]. The most
obvious difference being the intensity shift, Topcon samples
have a higher average pixel intensity (after normalizing to
ImageNet means and standard deviations) of−0.8 as opposed
to Spectralis’ −1.3 and Cirrus’ −1.2, which leads to a much
brighter appearance. Similarly, Spectralis samples have a
higher contrast between the background and the retinal layers
(Cirrus ranges from −2.12 to 1.51, Topcon from −1.72 to
1.77, and Spectralis from −2.12 to 2.64). These differences
are highly consistent across samples within each domain,
so there is little correlation shift found in the OCT dataset.

c: CARDIAC
MRI Anomaly Detection The Multi-Disease, Multi-View &
Multi-Center segmentation challenge (MNM2) [51] was orig-
inally designed to test the segmentation of different sections
of a human heart that has different ailments. The original
dataset was comprised of three domains from different scan-
ners: GE Medical Systems, Philips, and Siemens, with 53,
88, and 219 patients, respectively. In total there are 70 nor-
mal subjects, and 290 with other heart-based issues. Due to
the distribution of illnesses across domains being unequal
(some domains containing zero samples from some illnesses)
the data was compressed to be a simpler anomaly detection
task, using the normal subjects as one class, and all other
illnesses combined into another class. Minor preprocessing
was needed to convert the data into 2D slices, namely using
the ground-truth segmentation masks of the heart to isolate
slices to the heart, the scans were clipped between 0 and
2000 then normalized to a range of 0 to 1. As the challenge
was also multi-view, only the end-systolic phase scans were
used for training and testing.

FIGURE 6. Sample slices from each domain within the MNM2 dataset: GE
Medical Systems, Philips, and Siemens scanners from left to right.

MRI scans have significantly more standardization
between manufacturers, given the possibility of using phan-
tom scans for calibrating the machines. However there still
remain slight differences in capturing resolution and field
strength [51]. By the human eye however there is little
noticeable difference between the scanner types, apart from
the Siemens scanner having a very slight increase in average
image intensity, of −1.56 compared to GE and Phillips’
−1.69, though this varies on an image-by-image basis. There
are also some slight differences in noise as well, with GE and
Siemens appearing smoother in texture compared to Philips.

d: COMPUTED TOMOGRAPHY (CT) SCANS FOR COVID-19
DETECTION
The final medical imaging dataset is 4 separate datasets
of lung CT scans comprised of COVID positive cases
and normal cases. The first is a set from Mohammad
Rahimzadeh et al. (called COVID-CTSet) [52], which con-
tains 90 covid positive lung CT scans, and 285 ‘‘normal’’
lung CT scans. The Radiological Society of North Amer-
ica (RSNA) has released an open dataset of 120 COVID
positive chest CT scans (MIDRC-RICORD-1a) [53], [54],
along side another set of 120 ‘‘normal’’ (non-COVID pos-
itive and without symptoms) chest CT scans (MIDRC-
RICORD-1b) [53], [55]. This data was released on the
Cancer Imaging archive [56]. The third dataset released by
the Research and Practical Clinical Center for Diagnos-
tics and Telemedicine Technologies of the Moscow Health
Care Department, released MosMedData [57] a dataset of
1110 chest CT scans: 856 scans having signs of COVID
within the lung of varying severity, and 254 having no
signs at all of COVID. The final dataset is a set of chest
CT scans from the China Consortium of Chest CT Image
Investigation (CC-CCII) [58] (called NCOV in this paper)
containing 1480 COVID positive scans and 1101 control
scans.

The Mosmed, MIDRC, and COVID-CTSet datasets had
voxel values clipped to a range of -1000 to 2000 HU then
normalized to a range of 0 to 1, whereas the NCOV dataset
contained images that were already normalized to an unspec-
ified range. Each dataset also required some specific prepro-
cessing: MIDRC required its dimensions to be transposed
in order for the slices to be along the axial plane, and the
MosMed samples needed to be rotated 90 degrees. NCOV
had many scans with the lungs masked already, which is a
significant difference to the other domains and cannot be
undone, but as our focus is on the internals of the lungs, the
results should not be impacted.

Initially all slices that had no lung tissue were removed.
Where possible COVID segmentation masks were used to
get slice level labels, and where they were not provided the
labelling was done manually. This process was not performed
by a medical expert, as such there is room for some error, thus
all accuracy results reported on this dataset is just an indica-
tion of general domain generalization performance. Ideally,
native slice-level annotated datasets would be used; however,
open access domain generalization datasets formedical imag-
ing are rare, so some leniency is necessary in order to explore
more modalities. These scans were also resized to 224× 224
pixels with bicubic interpolation to keep as many variables
constant as possible between datasets, as the purpose of this
work was to analyse and compare methods, not to achieve
the highest accuracy models for clinical use. This approach
was validated using unseen source domain accuracy, as can
be seen in figure 12. In all medical imaging datasets sufficient
training domain performance is achieved which implies that
224 × 224 is suitable for classifying these datasets and thus
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comparing methods to one another as is done in this work is
valid.

FIGURE 7. Sample slices from each of the chest/lung CTs for COVID
detection from each chosen public dataset.

The differences between the COVID CT datasets are
mostly small, with some notable exceptions that were pre-
viously mentioned: MOSMED were rotated 90 degrees, and
NCOV was normalized to non-standard HU values and had
the lung internals masked. Apart from these, the scans had
minimal variation in contrast and average intensity and no
noticeable discrepancy in textural details within the lungs.

B. ALGORITHMS
For this analysis eight different domain generalization algo-
rithms were selected from DomainBed. The purpose of this
work is to analyse a variety of domain generalization mech-
anisms, how they operate, and their differences in their final
model’s capabilities.

Themodel architecture was shared between all of themeth-
ods and can be described as a sequential pipeline of a feature
extractor and a classifier. The feature extractor is a function
(F) that reduces an input (X ) to a vector of ‘‘features’’ (f ) that
ideally retains as much relevant information to the selected
task (or tasks) as possible. In this work the feature extractor
is the ResNet50 backbone, which transforms images of size
3 × 224 × 224 to a vector of size 2048.

fxi = F(xi) (1)

The output of the feature extractor is then fed into a ‘‘classi-
fier’’ function (C), which returns a prediction the class label,
or set of labels, (ȳ) given a feature vector.

ȳi = C(fxi ) (2)

The aim of the selection was to capture a wide variety of
both different generalization methodologies (as outlined in
section I-B) and reported accuracy within the DomainBed
framework. The chosen methods are: ERM, IRM, DANN,
MMD, SagNet, Fish, Mixup, and SelfReg (as labeled in
the DomainBed framework). These methods were chosen by
selecting methods that operate using distinct generalization
mechanisms. ERM is the baselinemethod for comparison that
has no generalization mechanism. IRM, MMD, DANN, and
SagNet operate similarly with domain invariance constraints
but with different focuses and approaches. IRM enforces
prediction invariance, whilst MMD and DANN constrain the
feature representations, but using different tools to do so
(statistical alignment vs adversarial learning). SagNet takes a
different approach by attempting to separate domain invariant
and domain specific knowledge (content and style). While

these methods have a similar goal their mechanisms differ
greatly. These specific methods were chosen to represent
domain invariant learning based on their spread of average
out-of-distribution accuracies from the original DomainBed
paper, covering the worst performing method, MMD, to sec-
ond best, SagNet. Three additional methods were selected,
Fish, Mixup and SelfReg: Fish and Mixup use representa-
tional regularization to train models to learn smoother rep-
resentations between domains. SelfReg uses both domain
invariance and representational regularization. This selection
therefore should give a sufficient overview of how different
types of algorithms could perform in the medical imaging
context, and lead to insight from the assessment of their
failures.

All apart from one of the selected methods can be
split up into two different categories based on their main
mechanism for achieving domain generalization (either
domain invariant representations, or representation regular-
ization/smoothness):

Domain Invariance:
• Invariant Risk Minimization (IRM) [59]
• Domain Adversarial Neural Networks (DANN) [7]
• Maximum Mean Discrepancy (MMD) [8]
• Style Agnostic Network (SagNet) [11]
Representational Regularization:
• Gradient Matching for Domain Generalization
(FISH) [20]

• Inter-domain Mixup (Mixup) [23]
Empirical risk minimization (ERM) is a baseline method,

which performs no explicit training for generalization as such
it does not fit into either of the above categories. It simply
trains a model on all available training data and hence pro-
vides a useful point of comparison for other methods.

Invariant risk minimization [59] aims to learn represen-
tations that are invariant across training environments by
constraining the learning to enforce that predictors are also
invariant across training domains.

Domain adversarial neural networks [7] operate by using
an adversarial domain discriminator to enforce a degree of
domain invariance within the learnt feature representations.
Additionally; the maximum mean discrepancy (MMD) [8]
method acts as an extension of domain adversarial networks
by introducing an additional MMD regularization term to
align feature representations with a prior distribution to aid
domain invariance.

Gradient matching for domain generalization (FISH) [20]
aims to align the direction of gradients across training
domains by maximizing the inner product of each domain’s
gradients, thus moving the model towards domain invariance.

Inter-domain Mixup [23] training uses a linear interpo-
lation between images and their corresponding class labels
from different domains to generate new mixed samples to
learn from to enforce a linearity constraint between domains
enabling stronger generalization.

Self-supervised Contrastive Regularization [19] trains fea-
ture representations by mapping samples of the same class
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TABLE 1. A details summary table for the medical imaging datasets. For the COVIDCT, MNM2, and OCT datasets the cases represents a separate 3D
volumetric sample which is split along one dimension to form individual images for training (as described in each datasets section).

closer together and different classes further apart, thus lead-
ing to more smoother representations across the feature space
and hopefully more domain invariant but still class discrim-
inative features. Given this method uses similar concepts
as inter-domain Mixup to lead to smoother representations,
it also explicitly pulls representations closer together leading
for domain invariant representations as well, as such it fits
into both categories of domain generalization mechanisms.

The final method is the Style agnostic network [11] that
learns to separate content and style knowledge by training
a content-specific network through randomly swapping out
the style of input images with other images using AdaIN.
Through this separation, the SagNet reduces the model’s
reliance on textural information in input images, and becomes
more domain invariant.

While there are many more algorithms and methods for
domain generalization, these sevenmethods, plus the baseline
ERM, cover a wide variety of generalization mechanisms
and theories. We think the selection is wide enough for a
substantive analysis under the failure mode framework for
the different types of domain shift found in various medical
imaging problems.

C. ALGORITHM ASSESSMENT - FAILURE MODES OF
DOMAIN GENERALIZATION ALGORITHMS
To assess the capabilities of each algorithm a variation on the
novel Failure Modes of Domain Generalization Algorithms
framework by Galstyan et al [40], is employed. This frame-
work assesses algorithms using 7 metrics in total the mathe-
matical definitions and further visualizations and descriptions
for which can be found in the original paper [40].

The first four are classification based techniques:
Training set underfitting, called e0, measures the perfor-

mance of the entire model on unseen training domain data,
this metric highlights whether the model is underfitted and
requires more training.

Test set inseparability, e1, is a metric for how well the
feature extractor can extract meaningful information from
out-of-distribution test data, it is calculated by finding how

strong the performance of a classifier is on fixed extracted
features on the test data.

Training-test misalignment, e2, aims to find how well a
single classifier can be used to classify both training IID data
and testing OODdata. If a classifier can performwell on both,
then the training and testing distributions are aligned.

Classifier non-invariance, e3, measures the performance
of the entire model on unseen testing OOD data, i.e., the final
generalization capability of the model.

The last three metrics revolved around predicting the
domain of origin for each sample.

Domain prediction metrics:
Training domain distinguishability, d0, measures the

domain invariance of the training data representations by
training a new classifier to predict the domain of each sample
given the output of a fixed trained feature extractor on the
training domain data.

Training-test domain distinguishability, d1, measures
how well domains can be distinguished on both the training
and testing sets; This is found by training a new classifier to
predict the domain given the fixed feature representations of
both the training domain data and the OOD test data.

Training-test class-conditional domain invariance, d2,
is the final metric, which measures how well the represen-
tations from each class independently can be separated into
their respective domains.

In the original work, thesemetrics were displayed as losses.
However, in order to provide a more intuitive comparison
between a larger number of models and methods, we report
the top-1 accuracy for each of these metrics. While it is
standard to report the area under the receiver operating char-
acteristic curve (AUC-ROC) in medical imaging, it is used
in binary classification problems. Given the natural imag-
ing datasets are multi-class, we have opted to use top-1
classification accuracy to ensure valid comparison of accura-
cies between natural and medical imaging datasets. Report-
ing both metrics e0 and e3 require no further computations
beyond the calculation of accuracy on the unseen in-domain
validation set and the out-of-distribution set respectively with
the final trained model. Whereas the calculation of each of
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e1, e2, d0, d1, and d2 requires a new classifier to be trained.
For each of these metrics a new linear classifier was trained
using categorical cross entropy loss with a learning rate of
1e − 5 for 50 epochs. The input for all of them is kept the
same: The output of the (fixed) feature extractor trained for
domain generalization (though which domain’s features are
included depending on the metric being calculated) and the
label (which can either be the target class for en metrics or
the domain for dn metrics). For e1, the classifier is trained on
only the out-of-distribution test set features, and the accuracy
is calculated on an unseen subset of OOD test features, where
as e2 uses features from both the training and test domains,
and accuracy is calculated on unseen subsets of both. d0,
d1, and d2 all use the origin domain as the label instead of
the class, thus training the classifier to predict the domain
instead. d0 uses only the training domain features as input,
whereas d1 uses both training and test domain features. d2;
however, trains a new domain predicting classifier for each
class independently, and then averages the domain prediction
accuracy across each class, leading to a class-conditional
domain invariance accuracy.

The metrics e1, e2, d0, d1, and d2 were calculated using
a classifier as opposed to a simple distance metric as we
are interested in measuring the separability of the features as
opposed to the absolute distance between the representations.
This approach was used by Galstyan et al. [40]. Additionally,
the calculated metric is most applicable when the architecture
used to calculate the discrepancy is the same architecture as
what is used for the main task, given all our methods use
linear classifiers then the most important metric is how well
the same linear classifier can separate the features (both by
class and by domain.

We also add another metric to the above list in the form
of a maximum theoretical domain generalization accuracy,
which does not need any additional calculations and can
be found by calculating the average classification accuracy
of the trained models on unseen data from each training
domain. This values gives an upper bound on how well a
domain generalization algorithm can perform; e.g., if a model
trained on data cannot perform better than 80% accuracy
then a model trained on out-of-distribution dataset should not
perform better than 80%.

Metrics e0 through e3 and maximum theoretical accuracy
were class-weighted top-1 accuracy scores to account for the
variation in number of samples between classes, where as
d0 through d2 were weighted by the number of samples from
each domain for the same reason.

As with domain invariance: by having a low ability to
predict the domain of origin from a set of features, the impact
of domain shift should be lessened, thus leading to stronger
predictions on novel and unseen domains.

D. REPRESENTATION SENSITIVITY
In addition to the failure mode framework, we also introduce
a new model evaluation metric called feature/representation
sensitivity. The purpose of this metric is to indicate how

susceptible a model is to small shifts in the input space. In an
ideal world, only when the qualities of the input that are
directly causative to the class label are changed should the
feature representation shift. Thus by measuring how much
the features shift with respect to small shifts in the input,
it is possible to quantify the robustness of a feature extrac-
tor. This would be useful in analyzing methods for domain
generalization for two reasons. The first being that a model
that is susceptible to very minor shifts in the input space is
unlikely to also be robust to the larger shifts (those found
between different domains). The second is that these very
small shifts in the input are often seen in medical imaging.
This representational sensitivity then should be useful as a
part of a framework for understanding how generalizable
models are. The following equation illustrates how the values
were calculated in this work:

Sf =

√√√√ 1
N

N∑
i=1

∣∣∣∣∣∣∣∣dF(xi)dxi

∣∣∣∣∣∣∣∣2
2

(3)

The above equation is used to calculate the root-mean
squared deviation of the gradients of feature vector, F(xi),
w.r.t. the input image xi. Intuitively, this value indicates how
much the feature vector varies when the input image is
shifted. A high variance indicates that small shifts in the input
image would lead to large changes in the learned representa-
tion of that image.

With representations that are more robust to changes unre-
lated to class information, the model should be more robust
to future unseen domain shifts, leading to stronger out-of-
distribution accuracy.

E. REPRESENTATIONAL DISTANCE BETWEEN DOMAINS
While the failure mode framework uses a classifier to cal-
culate the distinguishability between domains, finding the
actual distance between the representations from different
domains may also give some insight into how domain gener-
alization methods operate. As such, we have included a brief
analysis of the average cosine distance between domains.

The average cosine distance used in this work was cal-
culated as follows. Equation 4 shows the calculation of the
cosine distance between two vector, A and B:

DistC (A,B) = 1 −
A · B

||A|| ||B||
(4)

Then the average distance between two domains (Dm and
Dn), we find the sum of the pairwise distance between all
feature representations from each domain.

DistCavg (Dm,Dn) =
1
MN

M∑
i=1

N∑
j=1

DistC (F(xm,i),F(xn,j))

(5)

For this work we use equation 5 to calculate three types of
distances. 1) OOD data to IID data, to find how far away the
OOD representations are from IID training features. 2) IID to
IID, to see how far apart the different IID training domains
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are. 3) OOD domain features to the same OOD domain’s
features, to see how much variation there is within a single
domain’s representations.

As an extension of domain distinguishability, domain dis-
tance indicates the discrepancy between the feature represen-
tations of different domains. Thus, a lower distance between
domains should indicate a general level of stronger domain
invariance.

F. TRAINING METHODOLOGY
All domain generalization methods used a ResNet50 (pre-
trained on ImageNet [60]) as a feature extractor with a linear
classifier head trained for 50 epochs with a learning rate of
1e − 5 using the ADAM optimizer, with a mini-batch size
of 64. The ResNet50 architecture was used due to it being
open source, with numerous implementations and pre-trained
weights available, as well as its strong performance in many
deep learning applications, leading it to be applicable as a
benchmark for a wide variety of problems. We use the same
data augmentation strategy (as per the DomainBed frame-
work) for all methods and datasets: Random crops and aspect
ratio adjustment, resizing all images to 224 × 224 pixels,
random horizontal flips, random colour jitter, random gray-
scaling images, and normalizing data to the ImageNet mean
and standard deviation. This resizing was kept consistent
across all datasets to keep as many variables controlled
between methods and datasets as possible. Regardless, 224×

224 was shown to be adequate for classifying all datasets,
as seen in figure 12 As not all of the chosen datasets have
enough source domains to allow for a held-out domain for
hyper-parameter tuning, all tuning and model selection was
done using held-out training domain data (named IID Valida-
tion Accuracy in the DomainBed framework). While this is
not optimal, it is rare for medical imaging datasets to contain
enough domains to learn from effectively and to perform
testing on. Likewise, given we aim to assess general perfor-
mance (and not to generate state-of-the-art results), minimal
parameter tuning/selection is required. All experiments were
conducted on an NVIDIA Quadro RTX A6000 GPU and
Intel I7-12700k.

III. RESULTS
A. OUT-OF-DISTRIBUTION PERFORMANCE
The first, and perhaps most important, set of results are the
final out-of-distribution test set accuracy, which indicate
the actual domain generalization performance each method
achieved on each dataset. As can be seen in tables 2 and 3, all
methods perform within a small margin of error (±0.015) of
the baseline (ERM), which is consistent with prior work.

To remain consistent, the class-weighted top-1 classifica-
tion accuracy was measured on the best performing model
from each run (highest in-domain validation set accuracy).
Each dataset was run across with each domain acting as the
held-out final test set three times and their results averaged
together.

TABLE 2. Average top-1 class-weighted classification accuracy on
out-of-distribution data of chosen algorithms on natural imaging object
classification datasets, across all domains.

As can be seen in table 2, most methods perform equally
with only minor variations, with outliers: DANN on PACS
and MMD on OfficeHome, both of which had poorer per-
formance across validation domains as well, which indicates
poor training set fitting.

TABLE 3. Average top-1 class-weighted classification accuracy on
out-of-distribution data of chosen algorithms on medical imaging
datasets, across all domains.

Similarly, table 3 shows the same pattern as seen in natural
imaging, overall performance stays similar regardless of what
algorithms are used. However, there is a slightly higher vari-
ation in accuracy for each dataset (though with no consistent
pattern across methods) with differences between the highest
and lowest accuracy ranging from 0.031 to 0.046 in medical
datasets as opposed to 0.016 to 0.037 (ignoring DANN on
PACS as an outlier) seen in natural imaging. Themost notable
concern is the poor performance in the COVID classification
in CT datasets. There are many possible explanations for the
poor performance though, as outlined in section II-A2.d.

Overall these findings are inline with expectations set by
the original DomainBed framework, which stated that gen-
eralization performance rarely improves significantly over
ERM.

B. CLASSIFICATION-BASED FAILURE MODE ANALYSIS
Next, we will go over the results of our implementation of
the failure modes of domain generalization framework by
Galystan et al. [40]. For the sake of brevity most figures
have been placed in appendix B. Overall, minimal difference
was found between any of the methods, this can be seen in
figure 8, which shows the average classification metrics for
all methods.

Metric e0 (figure 12) shows all algorithms are successful
in classifying the training domains in all datasets, with some
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variation based on the dataset. The variation caused by algo-
rithm selection is inconsistent, the only pattern that can be
seen is DANNconsistently has lower training set accuracy but
only slightly. Likewise, there is little correlation betweenmet-
ric e2, training-test alignment, and the domain generalization
algorithm chosen, with all methods performing equally on all
datasets within a small margin for error except for MMD and
DANN which under-perform in several cases.

FIGURE 8. Each algorithms’ e0, e1, e2, and e3 values averaged across all
datasets.

The more important classification metrics within the
framework are e3 (classifier non-invariance) and e1 (test set
separability) (table 3 and 2 for e3 and figure 13 for e1). As can
be seen in figure 15, the actual accuracy of the final created
models for each dataset by each method (and as was seen ear-
lier in tables 2 and 3) final generalization performance does
not change noticeably betweenmethods, there is no algorithm
that consistently outperforms the baseline ERM, which again
is inline with past research. In comparison to figure 13 (metric
e1, test set separability), which shows how well the test data
can be separated given the trained feature extractor, the actual
performance of the models is only slightly lower than the
highest possible accuracy given the same feature extractor by
0.04 on average. This indicates that the test set separability
of the features is the bottleneck in almost all of the tested
methods, with one exception: COVIDCT. In the COVIDCT

dataset there is a significantly greater difference between
e3 and e1. With the average difference being approximately
0.2. This indicates that there is amisalignment in the classifier
for COVIDCT, as opposed to the feature’s generated not
being generalizable. However, in order to improve the gener-
alization capability on the rest of the datasets, future methods
should focus on creating feature extractors that generate class
discriminative features in unseen domains. This goal then
points to the necessity of finding domain invariant features,
which is explored in the next section (section III-C), and is a
problem that requires further attention.

Figure 16 gives the highest achieved in-domain validation
accuracy found by all methods on all datasets across all runs.
While not a firm upper bound, it does give an indication for
the best possible classification result these methods could
achieve (i.e., with no domain shift present). On average
the difference between the actual accuracy (figure 15) and
maximum theoretical accuracy is 0.14, as seen in figure 17.
The lowest being WILDSCamelyon with an average differ-
ence of around 0.025 and the highest being COVIDCT with
approximately 0.23. Again, when looking at the methods,
there is little correlation seen in the method averages, with
all performing roughly equally to ERM, most of the variation
can be explained by the dataset instead of the method chosen.

In all the above accuracy-based metrics, no method consis-
tently outperforms any other method, which calls into ques-
tion the efficacy of the newly developed methods and theories
behind what enhances generalization capability. As such,
further investigation is needed into what actually (if anything)
separates these methods apart.

C. ANALYSIS OF DOMAIN-INVARIANCE
In order to discover differences between the chosen methods,
we explore the invariance of representations created by each
method. It is thought that methods that explicitly optimize for
domain invariant representations (IRM, MMD, DANN, and
SagNet) should have lower domain distinguishability than
other methods, but this was not shown to be the case entirely.
Overall, MMD, SagNet, and SelfReg showed noticeable and
consistent improvement in domain invariance, with MMD
being the most consistently improved. The average of all
three domain invariance metrics can be seen in figure 9 which
highlights this finding.

The first metric, d0 as seen in figure 18, shows that in all
methods on all datasets, the domain can be predicted from
training domain representations to a high degree of accuracy.
However, some methods do perform better than others. In the
natural imaging datasets MMD, DANN, SagNet, and Self-
Reg all performed slightly better than ERM and the other
methods; though still high enough that it cannot be said that
they achieved domain invariance. In medical imaging though
the story shifts. MMD, for instance, had high variability
in how well it achieved domain invariance in the training
data. Achievingmuch better domain invariant representations
in OCT, MNM2, and COVIDCT, but then being on par
with ERM in WILDSCamelyon. On the other side, DANN
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FIGURE 9. Each algorithms’ d0, d1, and d2 values averaged across all
datasets.

performs on par with ERM in COVIDCT and MNM2, but
lower in OCT and WILDSCamelyon. This trend continues in
both d1 and d2, but all values are slightly lower, as we are
including the test domain data as well in d1, and then lower
again when separating the training and calculation process by
class in d2.
In section II-B, we split up methods into those focused

on domain invariance and those that aim for representational
smoothness; specifically, IRM, DANN, MMD, and SagNet
were the methods that explicitly trained for domain invari-
ant representations. What we saw matched this expectation
mostly. IRM and DANN only achieved marginally better
domain invariance with an average of the three metrics,
d0, d1, and d2 of 0.88 and 0.84 respectively compared to
ERM’s 0.89. Whilst MMD, SagNet, and SelfReg all achieved
much stronger domain invariance scores of 0.75, 0.79, and
0.77 respectively. These results also do not correlate at all
with final OOD performance either as was expected to be the
case.

D. ANALYSIS OF REPRESENTATIONAL SMOOTHNESS
In terms of representational smoothness: it was expected
that the gradient matching, Mixup, and self-supervised con-
trastive regularization algorithms would produce the lowest

feature variation, and this was seen in the results; though,
as with domain invariant representations, to a lesser extent
than was expected.

FIGURE 10. The average feature variation score (as calculated using
equation 3) for each algorithm across all datasets normalized to ERM’s
feature variation to aid comparison.

Figure 10 shows large differences between the chosen algo-
rithms. As our baseline method, ERM’s normalized average
feature sensitivity across all datasets was defined to be 1.0,
and the other methods were normalized to be multiples of
ERM by dividing their score by ERM’s. The non-normalized
values can be seen in figure 21 in the appendix. DANN and
MMD have far higher feature representation sensitivities (at
1.83 and 1.88 times ERM’s scores respectively). On the other
side though, IRM and SelfReg have the lowest sensitivity on
average (0.22 and 0.19 respectively) to minor changes in the
input, followed closely by SagNet and Mixup at (0.40 and
0.57 respectively).

Overall these results follow as expected, Mixup and Sel-
fReg obtaining lower feature variation than the baseline;
however, IRM and SagNet, unexpectedly, also achieved lower
feature variation, and FISH which was expected to lead to
lower feature variation, had a higher variation than ERM.
What was also not expected is that despite the high differ-
ences in representational smoothness, these differences have
no obvious correlation with final OOD accuracy.
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E. ANALYSIS OF DOMAIN DISTANCE
In this section we will be looking at the average cosine
distances between the features from each domain as learnt
by each of the methods. While not as useful as measuring
the separability of the domains via a classifier, the distance
can give some interesting insights into how the model is
operating. For a truly domain invariant model, it would be
expected that the average distance between domains would
be low.

FIGURE 11. The average cosine distance between the pairings of OOD
and IID domains. ‘‘ood_to_iid ’’ shows the average cosine distance
between features from an unseen OOD domain and each of the source
domains. ‘‘ood_to_ood ’’ shows how far are the features within the same
OOD domain are spread apart. ‘‘iid_to_iid ’’ shows how far apart each of
the source domains are from each other.

Whenmeasuring the average cosine distance between each
domain’s features, it is possible to see some differences
between how the methods operate in the feature space. Partic-
ularly, MMD and DANN both appear to place features closer
together overall, whereas SelfReg appears to learn features
that are further apart from each other.

In contrast to the classification-based domain invariance
measures figure 5 shows how the methods organize their fea-
ture distributions. By both measures, MMD did achieve both
the shortest distances between features and was somewhat
inseparable; however, SelfReg also had separable features
via the classification domain invariance measurement, but

the distance between features is relatively large. This implies
that the distance between features may not be a good mea-
sure of domain invariance. While the distance between each
domain’s features may be small, they still may be separable.

This analysis shows that these methods do operate and
prioritize different things as their mechanisms would suggest.
MMD appears to value features which are closer together
in feature space; perhaps due to the distributional alignment
mechanisms. But again, this has no real correlation to actual
OOD performance questioning the efficacy of the algorithm’s
generalization mechanisms.

IV. DISCUSSION
A. DIFFERENCES IN ALGORITHM PERFORMANCE
BETWEEN NATURAL IMAGING AND MEDICAL IMAGING
TASKS
The results found through these experiments answers many
questions, but also raises some more. From the outset, it is
clear that medical imaging and natural imaging classifica-
tion problems are similar enough in terms of performance,
to the degree that if a method works well on natural image
classification problems, unless the task is significantly more
difficult, the method will also work well in medical imaging
contexts. The consistent trend can be seen in all experiments
carried out in this work: Accuracy, domain invariance, and
feature sensitivity analysis all display a degree of consistency
moving from natural to medical imaging problems.

However there are some differences to note. MMD is both
more domain invariant and has lower feature variation in
medical imaging than natural imaging. While DANN is has
higher feature variation in natural images than in medical
imaging. All other methods perform roughly equally between
contexts. Additionally, the average feature distance is lower
in medical imaging than natural imaging.

Our results show that the same trend that all tested domain
generalization methods perform very similarly follows on
medical imaging as well, reconfirming and extending what
was discovered in the original DomainBed work, albeit on a
slightly wider variance.

B. HOW DO THESE ALGORITHMS FAIL AT GENERALIZING?
While there are many observations one can make by
analysing the results of the above failure modes framework,
there are several that stand out: The impact of measuring
overall domain invariance, and where specifically these algo-
rithms fail.

The main purpose of this framework is to assess where
focus needs to be placed in order to improve the performance
for future applications. Overall, we see that the methods
chosen all perform consistently on almost all metrics and
the differences that are present are found mostly between
datasets not algorithms. While there is no simple answer to
why these methods aren’t achieving stronger OOD accuracy,
there are some clues. Firstly, metric e0 (figure 12) shows
some level of training set underfitting in VLCS, OfficeHome,
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and the COVID CT datasets, all of which are the lowest
performing datasets; so possibly training for longer periods
of time to improve the fit to the training set could improve
results. Secondly, there is only a small difference between the
metrics e1 (figure 13, test set separability) and e3 (figure 15,
classifier non-invariance) implying that the performance is
being bottle-necked by the feature extractor not extract-
ing enough useful information for classifying the testing
domains rather than a classifier that is over-fitted to the
training domains.

FIGURE 12. Failure mode metric e0 (training set underfitting) for all
algorithms and all datasets. The average classification accuracy of the
whole model on unseen training domain samples.

C. ADDRESSING THE POINTS OF FAILURE
Current research points to two main factors involved in creat-
ing generalizable model: Domain invariance, and representa-
tional smoothness. For domain invariance, the failure mode
framework already has methods of quantifying the perfor-
mance of algorithms in this respect, and with our additional
metric to measure representational smoothness has allowed
this work to understand the impact of both of these qualities
in domain generalization.

In terms of domain invariance, we show that that all algo-
rithms still retain a significant amount of domain specific
information in their feature representations in both source and
target domains. It would be expected that complete domain
invariant representations would lead to a domain prediction
accuracy of 1/nd , where nd is the number of domains (for

FIGURE 13. Failure mode metric e1 (test set separability) for all datasets
and methods. Average top-1 classification accuracy for a new classifier
trained on a static feature extractor across all domains.

most datasets this would be 1/4 = 0.25). However, even for
the most domain invariant metric (as shown in figure 9, d2,
training-test class-conditional domain invariance), the aver-
age domain invariance accuracy across all datasets is 0.75 by
MMD is much higher than the expected accuracy of 0.25 for
a fully invariant representation.

This highlights a significant problem:Why are these meth-
ods not learning to be domain invariant? During the train-
ing process it is likely that domain information is exploited
initially to achieve much stronger classification accuracy.
Ideally, then a domain invariance based loss could prompt the
network to remove domain-specific information. However,
if the domain-specific information is closely entwined with
classification-based information, it might not be possible
to remove domain knowledge without severely harming the
classification ability.

D. QUESTIONING THE EFFICACY OF DOMAIN
GENERALIZATION MECHANISMS
Another question raised by these results is: Given all the
methods perform relatively constantly across a dataset,
and MMD, SagNet, and SelfReg have significantly greater
domain invariance than other methods, what is the impact of
domain invariant representations on final generalization per-
formance? Although finding the exact answer to this question
is outside the scope of this paper, there are some possible
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FIGURE 14. Failure mode metric e2 (training-test misalignment) for all
algorithms and datasets. Average classification accuracy of a new
classifier on both training and unseen target domain features.

ideas to discuss. The large variation in domain invariance
combined with minimal variation in accuracy points to com-
plete domain invariant representations being less important
than previously attributed. A large caveat to this however is
the possibility that the features considered by a classifier to
be important for classification are domain invariant, and all
domain information is contained within features the classifier
is ignoring. Likewise, a larger amount of domain invariance
may need to bemet before seeing significant improvements in
accuracy as well, perhaps an entirely domain invariant feature
extractor would have significantly improved accuracy. On the
other side though, it is likely that learning to generate a wider
variety of features to begin with will lead to a higher chance
of discovering features that are class-discriminative on out-
of-distribution data, as opposed to optimizing for domain
invariance immediately, and possibly removing features that
may operate well on test domains.

The results regarding representational smoothness are
clearer than domain invariance given there is a much wider
variety of values. As with domain invariance, there appears
to be minimal correlation between smooth representation and
final domain generalization performances. However, there
still remains some cause for exploration. Firstly, the algo-
rithm with the highest feature variation, DANN, had overall
poorer training set fit (figure 12) and poorer final accuracy

FIGURE 15. Failure mode metric e3 (classifier non-invariance) for all
algorithms and datasets. Average classification accuracy of the original
model on unseen target domain data.

(figure 15), despite similar test set separability. Secondly,
why does OfficeHome consistently generate models with
higher feature variation, there may be a correlation between
feature sensitivity and a low number of samples per class.
As such, the benefit of representational smoothness remains
under question. Theory proposes that smooth representations
have benefits for generalization, so why is this not seen in
practice? Unfortunately, we cannot propose answers as sig-
nificantly more investigation must be undertaken. However a
starting point would be to observe the differences between
domains (as seen in Ye et al.’s work [45]) and how those
differences, and how different the OOD domains are to the
source domains, could all play a role in the importance of
representational smoothness.

It was also found that there is likely a link between feature
sensitivity and domain invariant representations, as the one
method included in this analysis that utilizes both mecha-
nisms, SelfReg, achieved both the most smooth representa-
tions as well as representations that were the most domain
invariant of all tested methods. Again though, despite this,
SelfReg still did not significantly improve the final OOD
generalization performance over ERM.

V. CONCLUSION
Throughout this paper, we have explored the problem of
domain generalization in several ways: Firstly to find the link
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FIGURE 16. Average maximum theoretical accuracy for all algorithms and
datasets. Highest IID accuracy achieved when training on each domain.

FIGURE 17. Difference between the maximum theoretical accuracy (IID
validation accuracy) and the generalization accuracy (OOD validation
accuracy) of the same domain.

between natural image classification problems and medical
imaging problems, then continuing the exploration of why
many novel algorithms fail to outperform the basic ERM

FIGURE 18. Failure mode metric d0 (training domain distinguishability)
for all datasets and methods. Average domain-weighted classification
accuracy. Shows how accurately a new classifier trained on only source
data can predict the domain of an unseen feature representation of
training data features.

method through the lens of domain invariance and represen-
tational smoothness.

Through the results gathered of eight different domain gen-
eralization algorithms operating on seven different datasets
(three natural imaging, and four medical imaging), it was
confirmed that these algorithms do not lead to different gen-
eralization performance over the baseline algorithm (ERM),
and similarly that performance of an algorithm on natural
imaging datasets correlates with performance on medical
imaging, despite the apparent differences in domain shifts.
This would imply that methods designed for natural images
ought to work on medical images as well, if not for the
apparent lack of improvement in any method on any dataset
over the baseline.

However, differences between methods were discovered
when analyzing these models for domain invariant represen-
tations and representational smoothness. Given our under-
standing of how domain generalization should be achieved
through domain invariant and smooth representations, when
assessing models through these theories we should see a clear
correlation between invariance, smoothness, and generaliza-
tion capability, but this is not what we observed. Specifically,
all methods created features that could lead to high domain
prediction accuracies. Three methods (MMD, SagNet, and
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FIGURE 19. Failure mode metric d1 (training-test domain
distinguishability) for all datasets and methods. Average
domain-weighted classification accuracy. Shows how accurately a new
classifier trained on both source and target data can predict the domain
of an unseen feature representation of features from both training and
target domains.

SelfReg) led to more domain invariant and more robust fea-
ture representations, but despite these differences there is
minimal difference in final generalization performance. This
calls into question the benefit of solely optimizing for domain
invariance. In a similar vein, there is little impact of smooth
representations on performance of these algorithms.

The findings of this work has a large implication for the
use of deep learning domain generalization algorithms for
medical imaging, specifically for clinical practice. If you
encounter a problem with generalization in practice, none of
themethods tested in this workwould lead to a better outcome
than the naive do-nothing approach (which is likely what was
already used to discover the issue). This means that there
is nothing to be gained from using domain-invariant-based
or representational-smoothness-based domain generalization
techniques, and in a clinical setting where gather more data
from varied sources is an often insurmountable problem, the
only option for improving results remains to use data-driven
techniques such as handcrafted data augmentation methods.

Overall, this work shows there is little need for validat-
ing and designing medical imaging domain generalization
methods separately from natural images. We also highlight
two important gaps in the domain generalization literature:

FIGURE 20. Failure mode metric d2 (training-test class-conditional
domain invariance) for all datasets and methods. Average
domain-weighted classification accuracy. Shows how accurately a new
classifier trained on samples from each class individually can predict the
domain of an unseen feature representation of a sample from that class.

Firstly, if methods with stronger domain invariance do not
perform better than methods with domain specific features
then how important are domain invariant representations to
domain generalization? Secondly, why do methods that aim
to find domain invariant representations fail to do so? Both
of which need to be answered if progress is to be made in the
domain generalization field.

VI. FUTURE WORK
This work shows that in terms of medical imaging, there
needs to be a deeper dive into the explicit differences between
domains for each modality. The domain differences in CT
and MRI scans appears to be more related to the image
reconstruction process, which may alter fine details and tex-
tures structurally, as opposed to pure style. Additionally, there
are many more medical imaging modalities, which requires
an open-access dataset for verifying domain generalization
algorithms, such as ultrasounds, PET scans, visible spectrum
photographs (for identifying skin issues for example), and
X-Rays. With the wider variety of datasets also leads to a
wider variety of tasks, pure image classification is limited
compared to the vast number of tasks medical practition-
ers require; image segmentation being a significant exam-
ple. Possibly the largest factor that needs to be explored
is the impact of these methods on 3D datasets. While this
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FIGURE 21. The average root mean squared deviation (as calculated
using equation 3) on features from each method on each dataset.

FIGURE 22. The average out-of-distribution accuracy and average domain
classification across all datasets for all methods.

is not within the scope of this work (as a comparison of
natural imaging to medical imaging using the same meth-
ods), a majority of important medical imaging modalities
are natively 3D, as such understanding if algorithms require
significant changes to adapt from 2D to 3D is necessary.

As stated in the previous section, this work has discov-
ered that the most noticeable section of failure with current
domain generalization algorithms appears to be the poor
extraction of features that can be used to separate testing
domain data, as opposed to ill-fitted classifiers. As such work
could be focused on designing new methods which aim to
generate a larger set of useful features. Likewise in terms of
feature extraction, this work has raised questions regarding
the importance of domain invariant features. As most meth-

ods appear to not be generating entirely domain invariant
features to begin with, while those with fewer domain spe-
cific features perform equivalently regardless. Hence future
work can be aimed at dissecting the importance of domain
invariance in domain generalization applications.

Similarly, the purpose of this work is to prompt the creation
of more analysis tools that can be used to inspect models to
discover how and why they are or are not working. Current
tools are limited in this aspect, as what differences between
models that can be found using current understandings appear
to be limited.

As stated in II-B there are more techniques which cannot
be evaluated under the premise of domain invariant repre-
sentations (such as those that leverage domain-specific com-
ponents [25], [26], [27], [28]) and thus cannot be evaluated
fairly under the framework proposed in this work. Future
work should be performed in evaluating the generalization
mechanisms of these methods, which may lead to insights
into how important domain specific information is in the
generalization process in contrast to this work’s focus on
domain invariant information.

APPENDIX A TRAINING HYPER-PARAMETERS
Shared hyper-parameters: Learning rate: 5e-5, dropout:
0.0, weight decay: 0.0.

IRM: IRM lambda: 100.0, IRM penalty anneal iterations:
500.

DANN: Discriminator steps per generator step: 1, dis-
criminator gradient penalty: 0.0, lambda: 1.0, discriminator
learning rate: 5e-5, generator learning rate: 5e-5, discrimina-
tor depth: 3, discriminator dropout: 0.0, discriminator width:
256, weight decay: 0.0, generator weight decay: 0.0.

MMD:MMD gamma: 1.0.
FISH:Meta learning rate: 0.5.
Mixup:Mixup alpha: 0.2.
SagNet: Adversarial loss weight: 0.1.
ERM and SelfReg have no method specific

hyper-parameters.

APPENDIX B FAILURE MODE METRIC FIGURES
See Figures 16–22.

ACKNOWLEDGMENT
This research was supported by grants from NVIDIA and
utilized an NVIDIA Quadro A6000 for running experiments.

REFERENCES
[1] I. Gulrajani and D. Lopez-Paz, ‘‘In search of lost domain generalization,’’

Jul. 2020, arXiv:2007.01434.
[2] A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and

H. J. W. L. Aerts, ‘‘Artificial intelligence in radiology,’’ Nature Rev.
Cancer, vol. 18, pp. 500–510, May 2018.

[3] S. Wang, G. Cao, Y. Wang, S. Liao, Q. Wang, J. Shi, C. Li, and D. Shen,
‘‘Review and prospect: Artificial intelligence in advanced medical imag-
ing,’’ Frontiers Radiol., vol. 1, Dec. 2021, Art. no. 781868.

[4] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, ‘‘Domain generaliza-
tion: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4,
pp. 4396–4415, Apr. 2023.

39370 VOLUME 11, 2023



S. Korevaar et al.: Failure to Achieve Domain Invariance With Domain Generalization Algorithms

[5] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng,
and P. S. Yu, ‘‘Generalizing to unseen domains: A survey on domain
generalization,’’ May 2022, arXiv:2103.03097.

[6] P. Li, D. Li,W. Li, S. Gong, Y. Fu, and T.M. Hospedales, ‘‘A simple feature
augmentation for domain generalization,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2021, pp. 8866–8875.

[7] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, ‘‘Domain-adversarial training of neural
networks,’’ May 2016, arXiv:1505.07818.

[8] H. Li, S. J. Pan, S. Wang, and A. C. Kot, ‘‘Domain generalization with
adversarial feature learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 5400–5409.

[9] J. Lyu, Y. Zhang, Y. Huang, L. Lin, P. Cheng, and X. Tang, ‘‘AADG:
Automatic augmentation for domain generalization on retinal image seg-
mentation,’’ IEEE Trans. Med. Imag., vol. 41, no. 12, pp. 3699–3711,
Dec. 2022.

[10] C. Lin, Z. Yuan, S. Zhao, P. Sun, C. Wang, and J. Cai, ‘‘Domain-
invariant disentangled network for generalizable object detection,’’ in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Montreal, QC, Canada,
Oct. 2021, pp. 8751–8760.

[11] H. Nam, H. Lee, J. Park, W. Yoon, and D. Yoo, ‘‘Reducing domain gap by
reducing style bias,’’ Mar. 2021, arXiv:1910.11645.

[12] B. Li, Y. Shen, Y. Wang, W. Zhu, C. Reed, D. Li, K. Keutzer, and H. Zhao,
‘‘Invariant information bottleneck for domain generalization,’’ in Proc.
AAAI Conf. Artif. Intell., vol. 36, Jun. 2022, pp. 7399–7407.

[13] F. Zhou, Z. Jiang, C. Shui, B. Wang, and B. Chaib-Draa, ‘‘Domain gen-
eralization via optimal transport with metric similarity learning,’’ Neuro-
computing, vol. 456, pp. 469–480, Oct. 2021.

[14] P. Khandelwal and P. Yushkevich, ‘‘Domain generalizer: A few-shot meta
learning framework for domain generalization in medical imaging,’’ in
Domain Adaptation and Representation Transfer, and Distributed and Col-
laborative Learning (Lecture Notes in Computer Science), S. Albarqouni,
S. Bakas, K. Kamnitsas, M. J. Cardoso, B. Landman, W. Li, F. Milletari,
N. Rieke, H. Roth, D. Xu, and Z. Xu, Eds. Cham, Switzerland: Springer,
2020, pp. 73–84.

[15] Q. Liu, C. Chen, J. Qin, Q. Dou, and P. Heng, ‘‘FedDG: Federated domain
generalization onmedical image segmentation via episodic learning in con-
tinuous frequency space,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Nashville, TN, USA, Jun. 2021, pp. 1013–1023.

[16] C. Li, X. Lin, Y. Mao, W. Lin, Q. Qi, X. Ding, Y. Huang, D. Liang, and
Y. Yu, ‘‘Domain generalization on medical imaging classification using
episodic training with task augmentation,’’ Comput. Biol. Med., vol. 141,
Feb. 2022, Art. no. 105144.

[17] I. Albuquerque, N. Naik, J. Li, N. Keskar, and R. Socher, ‘‘Improving out-
of-distribution generalization via multi-task self-supervised pretraining,’’
Mar. 2020, arXiv:2003.13525.

[18] S. Bucci, A. D’Innocente, Y. Liao, F. M. Carlucci, B. Caputo,
and T. Tommasi, ‘‘Self-supervised learning across domains,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 5516–5528,
Sep. 2022.

[19] D. Kim, S. Park, J. Kim, and J. Lee, ‘‘SelfReg: Self-supervised contrastive
regularization for domain generalization,’’ Apr. 2021, arXiv:2104.09841.

[20] Y. Shi, J. Seely, P. H. S. Torr, N. Siddharth, A. Hannun, N. Usunier, and
G. Synnaeve, ‘‘Gradient matching for domain generalization,’’ Jul. 2021,
arXiv:2104.09937.

[21] S. Yang, K. Fu, X. Yang, Y. Lin, J. Zhang, and C. Peng, ‘‘Learning
domain-invariant discriminative features for heterogeneous face recogni-
tion,’’ IEEE Access, vol. 8, pp. 209790–209801, 2020.

[22] C. Shui, B. Wang, and C. Gagné, ‘‘On the benefits of representation
regularization in invariance based domain generalization,’’ May 2021,
arXiv:2105.14529.

[23] S. Yan, H. Song, N. Li, L. Zou, and L. Ren, ‘‘Improve unsupervised domain
adaptation with mixup training,’’ Jan. 2020, arXiv:2001.00677.

[24] S. Lee, Y. Lee, G. Lee, and S. Hwang, ‘‘Supervised contrastive
embedding for medical image segmentation,’’ IEEE Access, vol. 9,
pp. 138403–138414, 2021.

[25] M. Mancini, S. R. Bulò, B. Caputo, and E. Ricci, ‘‘Best sources forward:
Domain generalization through source-specific nets,’’ in Proc. 25th IEEE
Int. Conf. Image, Oct. 2018, pp. 1353–1357.

[26] P. Chattopadhyay, Y. Balaji, and J. Hoffman, ‘‘Learning to balance speci-
ficity and invariance for in and out of domain generalization,’’ Aug. 2020,
arXiv:2008.12839.

[27] S. Seo, Y. Suh, D. Kim, G. Kim, J. Han, and B. Han, ‘‘Learning to optimize
domain specific normalization for domain generalization,’’ in Computer
Vision—ECCV 2020 (Lecture Notes in Computer Science), vol. 12367,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham, Switzerland:
Springer, 2020, pp. 68–83.

[28] M. Segu, A. Tonioni, and F. Tombari, ‘‘Batch normalization embeddings
for deep domain generalization,’’ Pattern Recognit., vol. 135, Mar. 2023,
Art. no. 109115.

[29] L. Zhang, X. Wang, D. Yang, T. Sanford, S. Harmon, B. Turkbey,
B. J. Wood, H. Roth, A. Myronenko, D. Xu, and Z. Xu, ‘‘Generalizing
deep learning for medical image segmentation to unseen domains via
deep stacked transformation,’’ IEEE Trans. Med. Imag., vol. 39, no. 7,
pp. 2531–2540, Jul. 2020.

[30] H. Li, Y. Wang, R. Wan, S. Wang, T.-Q. Li, and A. Kot, ‘‘Domain
generalization for medical imaging classification with linear-dependency
regularization,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 33. Red Hook,
NY, USA: Curran Associates, 2020, pp. 3118–3129.

[31] Q. Dou, D. C. de Castro, K. Kamnitsas, and B. Glocker, ‘‘Domain gener-
alization via model-agnostic learning of semantic features,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 32. RedHook, NY,USA: CurranAssociates,
2019, pp. 1–12.

[32] A. Taleb, W. Loetzsch, N. Danz, J. Severin, T. Gaertner, B. Bergner, and
C. Lippert, ‘‘3D self-supervised methods for medical imaging,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 33. Red Hook, NY, USA: Curran
Associates, 2020, pp. 18158–18172.

[33] S. Shurrab and R. Duwairi, ‘‘Self-supervised learning methods and appli-
cations in medical imaging analysis: A survey,’’ PeerJ Comput. Sci., vol. 8,
Jul. 2022, Art. no. e1045.

[34] C. Xing Tian, H. Li, Y. Wang, and S. Wang, ‘‘Privacy-preserving
constrained domain generalization for medical image classification,’’
May 2021, arXiv:2105.08511.

[35] S. Wang, L. Yu, K. Li, X. Yang, C.-W. Fu, and P.-A. Heng, ‘‘DoFE:
Domain-oriented feature embedding for generalizable fundus image seg-
mentation on unseen datasets,’’ IEEE Trans. Med. Imag., vol. 39, no. 12,
pp. 4237–4248, Dec. 2020.

[36] H. Zhang, N. Dullerud, L. Seyyed-Kalantari, Q. Morris, S. Joshi, and
M. Ghassemi, ‘‘An empirical framework for domain generalization in
clinical settings,’’ Apr. 2021, arXiv:2103.11163.

[37] O. Kilim, A. Olar, T. Joó, T. Palicz, P. Pollner, and I. Csabai, ‘‘Physical
imaging parameter variation drives domain shift,’’ Sci. Rep., vol. 12,
Dec. 2022, Art. no. 21302.

[38] J. Solomon, O. Christianson, and E. Samei, ‘‘Quantitative comparison
of noise texture across CT scanners from different manufacturers,’’ Med.
Phys., vol. 39, pp. 6048–6055, Oct. 2012.

[39] L. W. Goldman, ‘‘Principles of CT: Radiation dose and image quality,’’
J. Nucl. Med. Technol., vol. 35, no. 4, pp. 213–225, Dec. 2007.

[40] T. Galstyan, H. Harutyunyan, H. Khachatrian, G. V. Steeg, and
A. Galstyan, ‘‘Failure modes of domain generalization algorithms,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 19077–19086.

[41] Z. Liu, T. Lian, J. Farrell, and B. A. Wandell, ‘‘Neural network gen-
eralization: The impact of camera parameters,’’ IEEE Access, vol. 8,
pp. 10443–10454, 2020.

[42] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, ‘‘Deeper, broader and
artier domain generalization,’’ Oct. 2017, arXiv:1710.03077.

[43] A. Torralba and A. A. Efros, ‘‘Unbiased look at dataset bias,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Colorado Springs, CO, USA,
Jun. 2011, pp. 1521–1528.

[44] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan,
‘‘Deep hashing network for unsupervised domain adaptation,’’ Jun. 2017,
arXiv:1706.07522.

[45] N. Ye, K. Li, H. Bai, R. Yu, L. Hong, F. Zhou, Z. Li, and J. Zhu,
‘‘OoD-Bench: Quantifying and understanding two dimensions of out-of-
distribution generalization,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2022, pp. 7947–7958.

[46] P. Bándi et al., ‘‘From detection of individual metastases to classification
of lymph node status at the patient level: The CAMELYON17 challenge,’’
IEEE Trans. Med. Imag., vol. 38, no. 2, pp. 550–560, Feb. 2019.

[47] H. A. Alturkistani, F. M. Tashkandi, and Z. M. Mohammedsaleh, ‘‘Histo-
logical stains: A literature review and case study,’’ Global J. Health Sci.,
vol. 8, pp. 72–79, Mar. 2016.

VOLUME 11, 2023 39371



S. Korevaar et al.: Failure to Achieve Domain Invariance With Domain Generalization Algorithms

[48] K. Stacke, G. Eilertsen, J. Unger, and C. Lundstrom, ‘‘Measuring domain
shift for deep learning in histopathology,’’ IEEE J. Biomed. Health Infor-
mat., vol. 25, no. 2, pp. 325–336, Feb. 2021.

[49] H. Bogunović et al., ‘‘RETOUCH: The retinal OCT fluid detection and
segmentation benchmark and challenge,’’ IEEE Trans. Med. Imag., vol. 38,
no. 8, pp. 1858–1874, Aug. 2019.

[50] J. Mazzarella and J. Cole, ‘‘The anatomy of an OCT scan,’’ Rev.
Optometry, vol. 152, no. 9, pp. 58–66, 2015. [Online]. Available:
https://www.reviewofoptometry.com/article/the-anatomy-of-an-oct-scan

[51] V. M. Campello et al., ‘‘Multi-centre, multi-vendor and multi-disease
cardiac segmentation: The M&Ms challenge,’’ IEEE Trans. Med. Imag.,
vol. 40, no. 12, pp. 3543–3554, Dec. 2021.

[52] M. Rahimzadeh, A. Attar, and S. M. Sakhaei, ‘‘A fully automated deep
learning-based network for detecting COVID-19 from a new and large
lung CT scan dataset,’’ Biomed. Signal Process. Control, vol. 68, Jul. 2021,
Art. no. 102588.

[53] E. B. Tsai et al., ‘‘The RSNA international COVID-19 open radi-
ology database (RICORD),’’ Radiology, vol. 299, pp. E204–E213,
Apr. 2021.

[54] E. Tsai et al., ‘‘Medical imaging data resource center—RSNA
international COVID radiology database release 1a—Chest CT COVID+

(MIDRC-RICORD-1a),’’ Med. Imag. Data Resour. Center, USA,
Tech. Rep., 2020. [Online]. Available: https://www.midrc.org/ and
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=
80969742, doi: 10.7937/VTW4-X588.

[55] E. B. Tsai, ‘‘Medical imaging data resource center (MIDRC)—
RSNA international COVID open research database (RICORD) release
1b—Chest CT COVID,’’ Med. Imag. Data Resour. Center, USA,
Tech. Rep., 2021. [Online]. Available: https://www.midrc.org/ and https://
wiki.cancerimagingarchive.net/x/K4DTB, doi: 10.7937/31V8-4A40.

[56] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore,
S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and F. Prior, ‘‘The cancer
imaging archive (TCIA): Maintaining and operating a public information
repository,’’ J. Digit. Imag., vol. 26, no. 6, pp. 1045–1057, 2013.

[57] S. Morozov, A. Andreychenko, I. Blokhin, P. Gelezhe, A. Gonchar,
A. Nikolaev, N. Pavlov, V. Chernina, and V. Gombolevskiy, ‘‘MosMed-
Data: Data set of 1110 chest CT scans performed during the COVID-19
epidemic,’’ Digit. Diagnostics, vol. 1, pp. 49–59, Jan. 2021.

[58] K. Zhang, ‘‘Clinically applicable AI system for accurate diagnosis,
quantitative measurements, and prognosis of COVID-19 pneumonia
using computed tomography,’’ Cell, vol. 181, no. 6, pp. 1423–1433,
2020.

[59] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, ‘‘Invariant risk
minimization,’’ Mar. 2020, arXiv:1907.02893.

[60] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

STEVEN KOREVAAR received the double degree
(Hons.) in engineering (computer and network
engineering) and computer science from the Royal
Melbourne Institute of Technology, Australia,
in 2019. During the degree, he worked on several
research projects in the medical field which lead
into a Doctorate degree upon graduation focused
on investigating deep learning in medical imaging.

RUWAN TENNAKOON received the B.Sc.
degree (Hons.) in electrical and electronics
engineering from the University of Peradeniya,
Sri Lanka, in 2007, and the Ph.D. degree in com-
puter vision from the Swinburne University of
Technology, Australia, in 2015. He was a Research
Scientist with IBM Research, Australia. Since
2015, he has been a Research Fellow with the
RMIT School of Engineering developing com-
puter vision-based driver assist technologies for

industrial vehicles. His research interests include computer vision, machine
learning, and medical image analysis.

ALIREZA BAB-HADIASHAR (Senior Member,
IEEE) received the B.Sc. degree from the Uni-
versity of Tehran, the M.Eng. degree from The
University of Sydney, and the Ph.D. degree from
Monash University, Australia. He has held vari-
ous academic positions with Monash University,
Swinburne University of Technology, and Copen-
hagen University. He is currently a Professor
with RMIT University and leads the Intelligent
Automation Research Group. He is an expert in the

use of robust statistics methods and has a strong track record in developing
robust vision-based industrial automation solutions.

39372 VOLUME 11, 2023

http://dx.doi.org/10.7937/VTW4-X588
http://dx.doi.org/10.7937/31V8-4A40

