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ABSTRACT The task of Text-to-Image synthesis is a difficult challenge, especially when dealing with low-
data regimes, where the number of training samples is limited. In order to address this challenge, the Self-
Supervision Text-to-Image Generative Adversarial Networks (SS-TiGAN) has been proposed. The method
employs a bi-level architecture, which allows for the use of self-supervision to increase the number of training
samples by generating rotation variants. This, in turn, maximizes the diversity of the model representation
and enables the exploration of high-level object information formore detailed image construction. In addition
to the use of self-supervision, SS-TiGAN also investigates various techniques to address the stability issues
that arise in Generative Adversarial Networks. By implementing these techniques, the proposed SS-TiGAN
has achieved a new state-of-the-art performance on two benchmark datasets, Oxford-102 and CUB. These
results demonstrate the effectiveness of the SS-TiGANmethod in synthesizing high-quality, realistic images
from text descriptions under low-data regimes.

INDEX TERMS Text-to-image synthesis, generative model, GAN, self-supervised learning, generative
adversarial networks.

I. INTRODUCTION
Text-to-image synthesis is a challenging field that aims to
generate visually realistic and semantically consistent images
from a text description. This task requires the integration of
image and text modalities, both of which are highly creative
and flexible. One popular approach to text-to-image synthesis
is using Generative Adversarial Networks (GANs) [1]. GANs
consist of two components: a generator and a discriminator.
The generator synthesizes images to fool the discriminator,
while the discriminator evaluates the realism of the received
images. The two networks are trained in a min-max game
where they aim to maximize their respective objectives.

In order to condition the image synthesis on a given
text description, a new variant of GANs, called Condi-
tional Generative Adversarial Networks (cGANs) [2], is often
used. cGANs can receive additional input as a conditioning
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variable, making it a suitable choice for text-to-image syn-
thesis. The use of cGANs has been a major advancement in
the field, leading to the development of various successful
text-to-image synthesis models.

The challenge of synthesizing visually realistic images
with limited training samples is addressed by exploring
self-supervision in the text-to-image synthesis field. Self-
supervision has been shown to be effective in other fields,
such as computer vision, in mitigating the effects of low-data
regimes [3]. One way self-supervision has been applied in
text-to-image synthesis is through the use of multiple rotation
variants of input images, which increases the size of the
training sample and helps the model learn better structural
features and explore the semantic content of the images. This
is especially important when synthesizing complex objects
like birds.

Multi-stage architecture is a popular approach in the
existing works due to the reason that it is better at syn-
thesizing large-scale realistic images. A new text-to-image
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synthesis approach named Self-Supervision Text-to-Image
Generative Adversarial Networks (SS-TiGAN) is proposed,
which combines self-supervision and bi-level architecture.
Unlike multi-stage architecture, bi-level architecture only uti-
lizes two-level GANs to synthesize images from 64× 64 pix-
els to 128 × 128 pixels. By integrating self-supervision,
the learned representation is diversified, leading to enhanced
visual realism in the synthesized images.

To further address the challenges in trainingGANs, various
techniques have been integrated to improve the training sta-
bility. To tackle the non-convergence issue, feature matching
is applied as an extra objective in the generator. This mecha-
nism aligns the focus of the generator from simply generating
plausible images to deceive the discriminator, to producing
images that closely match the real images, by minimizing the
difference between the features of the synthesized images and
the real images. In addition, the use of L1 distance loss can
mitigate the issue of mode collapse in GANs. The L1 distance
loss enforces the generator to reduce the discrepancy between
the synthesized images and real images, thereby preventing
the generator from learning incorrect features and producing
low output variants. To address the overconfidence issue in
the discriminator, one-sided label smoothing is introduced.
One-sided label smoothing penalizes the discriminator when
the predicted probability exceeds a certain threshold, thereby
avoiding the discriminator from becoming overly confident
in its predictions. With the above-mentioned techniques, the
main contributions of this paper are:
• A novel approach to text-to-image synthesis that uti-
lizes self-supervision and a bi-level GAN architecture to
overcome the challenges faced in low-data regimes. The
introduction of self-supervision with multiple rotation
variants of input images as part of the training sample
not only increases the data size but also forces the model
to learn better structural features and semantic content
of the images, leading to the synthesis of more complex
objects.

• Enhancement techniques to mitigate the common
problems faced during GANs training such as non-
convergence, mode collapse, and overconfidence of the
discriminator. The use of feature matching and L1 dis-
tance loss functions helps the generator to focus onmim-
icking real images and reduces the difference between
the synthesized and real images. The application of
one-sided label smoothing penalizes the discriminator
when its prediction exceeds a certain threshold, prevent-
ing it from being overconfident.

II. RELATED WORK
In recent years, text-to-image synthesis has become a pop-
ular research topic in the field of computer vision. Many
works have been proposed to address different aspects of
the problem, including generating complex scenes from text
descriptions, ensuring semantic consistency, and handling the
variance of linguistic expression for the same image.

One of the earliest models proposed for text-to-image
synthesis is GAN-INT-CLS [4]. It introduced the use of a
deep convolutional GAN (DCGAN)with additional text input
to generate images based on textual information. However,
this model had limitations in synthesizing objects in desired
locations and poses. To address this limitation, Reed et al. [5]
proposed the Generative Adversarial What-Where Network
(GAWWN) which allows for controlling the object’s location
and pose through additional inputs in the form of bounding
boxes or coordinates.

Nguyen et al. [6] presented the Plug and Play Generative
Network (PPGN), which iteratively produces a noise vector
that maximizes the diversity of the synthesized image using
a condition network. PPGN has shown promising results by
synthesizing diverse images based on various textual descrip-
tions. The role of auxiliary classification in enhancing the
image synthesis process was demonstrated in Odena et al. [7].
Dash et al. [8] further improved this by introducing the Text
Conditioned Auxiliary Classifier GAN (TAC-GAN), which
used class information to improve the structural coherence of
the generated images.

Recent models such as Text-conditioned Semantic Clas-
sifier GAN (Text-SeGAN) [9] and Dynamic Memory Gen-
erative Adversarial Networks (DM-GAN) [10] focused on
improving the visual quality of synthesized images by incor-
porating complex multi-stage architectures. Text-SeGAN
uses a triplet selection strategy during training to identify
mismatched text-image pairs between real or fake images
with different descriptions, while DM-GAN adds a memory
module to handle the image generated after the first stage of
generation.

Other recent models have also focused on improving
the architecture of text-to-image models. Gao et al. [11]
presented the Perceptual Pyramid Adversarial Networks
(PPAN) that integrated a pyramid framework into the gen-
erator architecture to produce multi-scale images. Another
architecture, Hierarchically-fused Generative Adversar-
ial Network (HfGAN) by Huang et al. [12] employed
a single discriminator and adaptively fused multi-scale
visual features from different layers to synthesize final
images.

In contrast, some works have simplified the architecture of
text-to-image models. Souza et al. [13] proposed a simpler
architecture that was trained directly on 256 × 256 images
without involving multiple generators and discriminators.
They also introduced a novel sentence interpolation strategy
for smoother conditional space.

In the realm of synthesizing complex scenes from text
descriptions, several works have been proposed to address
different aspects of the problem. Hong et al. [14] intro-
duced a hierarchical approach that infers the image lay-
out to generate scenes. Hinz et al. [15] proposed an object
pathway method that allows for the generation of complex
scenes with multiple objects using bounding boxes and object
labels. Li et al. [16] introduced the Object-driven attentive
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FIGURE 1. The overall architecture of the proposed SS-TiGAN. Lss denotes the back propagation of
self-supervision loss.

GAN (Obj-GAN), which uses attention mechanisms and
semantic layouts to focus on objects. Hinz et al. [17] lever-
aged both a global pathway and object pathway to construct
the image background structure and objects, respectively,
based on the text description. Sharma et al. [18] developed
Chatpainter, which used dialogue to generate high-quality
images with multiple objects.

To ensure semantic consistency in image generation,
Wang et al. [19] proposed an end-to-end approach that
fuses semantic layouts, text semantics, and hidden visual
features. Xu et al. [20] presented the Attentional Gener-
ative Adversarial Network (AttnGAN), which uses atten-
tion mechanisms and a multi-stage architecture to synthesize
fine-grained images with improved semantic consistency.
Qi et al. [21] developed the Multi-resolution Parallel Gen-
erative Adversarial Networks (MRP-GAN), which focuses
on ensuring semantic consistency of the generated images
in the early stage. Sah et al. [22] proposed the Multi-Modal
Vector Representation (MMVR), which involves a two-way
generation between images and text descriptions. Mirror-
GAN [23] modified AttnGAN to improve semantic con-
sistency by using a re-description from the generated
image.

Yin et al. [24] and Tan et al. [25] used a Siamese net-
work to capture semantic commonality from different text
descriptions to maintain consistency in the image genera-
tion process. Wang et al. [26] proposed the Textual-Visual
Bidirectional Generative Adversarial Network (TVBi-GAN),
which contains several semantic-related modules to utilize
exact semantic features during the image synthesis process,
thereby improving semantic consistency. Finally, to address
the limitation of limited texture information in images gen-
erated from a single caption, Cheng et al. [27] developed the
Rich Feature generation text-to-image synthesis (RiFeGAN),
which retrieves several related text descriptions and utilizes
the text features to enrich the input vector that is used to
synthesize images.

In summary, recent works have made significant progress
in text-to-image synthesis, and various approaches have been
proposed to address different challenges.

III. SELF-SUPERVISION TEXT-TO-IMAGE GENERATIVE
ADVERSARIAL NETWORKS (SS-TIGAN)
Self-Supervision Text-to-Image Generative Adversarial Net-
works (SS-TiGAN) is a generative model that leverages
Generative Adversarial Networks (GANs) to synthesize
high-quality images from textual descriptions. The architec-
ture of the SS-TiGANmodel is composed of a stacked gener-
ator G and two discriminators, D64 and D128, which produce
images with resolutions of 64× 64 pixels and 128× 128 pix-
els, respectively. Figure 1 illustrates the architecture of the
SS-TiGAN model, highlighting the generator and the two
discriminators.

A. CONDITIONING AUGMENTATION
SS-TiGAN addresses the challenge of transforming high-
dimensional text features (1024d) into a smaller latent embed-
ding (< 100d) for GANs training, which could result in a
loss of information and affect the generator’s performance,
by introducing the text conditioning augmentation function
fCA [28], [29]. fCA synthesizes more text embedding samples
from a small number of original samples by encoding the
text description t into a 1024-dimensional text embedding c
through the pre-trained char-CNN-RNN text encoder fϕ [30].
c is then transformed into two 256-dimensional mean cµ and
covariance cσ using a fully connected layer activated by the
GLU function, as depicted in Figure 2. This transformation
preserves crucial text information for the following learning
stage, alleviating the issue of data discontinuity.

FIGURE 2. The architecture of fCA.
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The augmented text embedding c̄ is computed using v,
a random variable sampled from a normal distribution, which
is element-wise multiplied with cσ before being added to cµ:

c̄ = v× cσ + cµ (1)

To ensure that semantically related text embeddings are
associated with the synthesized images, a regularization
term LCA is introduced into the generator’s objective func-
tion, which maintains the smoothness of the transformation
process:

LCA = DKL
[
N

(
cµ, cσ

)
∥ N (0, 1)

]
(2)

In GANs, the generator uses c̄ as the conditioning variable
while the discriminators use cµ as the conditioning variable.
By leveraging fCA, SS-TiGAN enhances the semantic consis-
tency performance of the generator.

B. NETWORK ARCHITECTURE
The SS-TiGAN is a network architecture designed to gen-
erate high-quality images from text descriptions, comprising
of two stacked generators: G64 and G128. Each generator
contains a learning model, Fei , and an output model, Fgi ,
with i = {64, 128}. The learning models extract the critical
features that contribute to the realism of the generated images,
while the output models convert these features into actual
images. The detailed architecture of the stacked generator is
presented in Table 1, with the notation following the format
of m × m × n, where m denotes the width and height, while
n represents the number of channels.

TABLE 1. The stacked generator architecture of the proposed SS-TiGAN.

The learning model Fe64 of G64 is composed of a fully
connected (FC) layer followed by a reshape block and four
upsampling blocks. The FC+reshape block consists of a
linear layer with 32,768 output neurons and a batch nor-
malization layer, activated by the gated linear unit (GLU)
function. This block transforms the input into a 4× 4×2048
tensor, which serves as the input for the upsampling blocks.

The upsampling blocks consist of an upsample layer, a con-
volutional layer, and a batch normalization layer, activated by
the GLU function at the end. These blocks work together to
upscale the input tensor and refine the image features.

The learning model Fe128 of G128 is designed to enhance
the image details further. It consists of a joining block, two
residual blocks, and an upsampling block. The joining block
combines the output from Fe64 with the input text embedding
and contains a convolutional layer and a batch normalization
layer activated by the GLU function. The residual blocks
capture more complex representations of the input tensor
using a deeper network architecture, as illustrated in Figure 3.
The upsampling block then refines the image details before
the final image is produced by the output model. This block
has a similar structure as the upsampling blocks in Fe64 and
is composed of an upsample layer, a convolutional layer, and
a batch normalization layer, activated by the GLU function.
Both output models Fg64 and Fg128 consist of a single con-
volutional layer activated by the hyperbolic tangent (Tanh)
function.

FIGURE 3. The architecture of the residual block fres, h denotes the input
tensor.

The discriminator comprises a feature extractor and multi-
ple classifiers, which work together to judge the authenticity
of the generated images. The feature extractor fθi plays a
critical role in extracting essential features from the generated
images, enabling the classifiers to make informed decisions.
To handle larger image sizes, D128 has six convolutional
blocks in its feature extractor, while D64 has only four.

Both classifiers in the discriminators have similar struc-
tures but differ slightly in their specific tasks. The first clas-
sifier, fcls, consists of two convolutional blocks and aims to
classify the relationship between the text and images. The
second classifier, fucls, is composed of a single convolutional
block and determines whether the image is genuine or fake.
The final classifier, fss, has two linear layers and aims to
match the generated images with their corresponding rotation
angles. The D64 discriminator has two classifiers, while the
D128 discriminator has three, as shown in Table 2.

C. PROCESS
This section explains the learning process in the proposed SS-
TiGAN. The process starts by sampling a 100-dimensional
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TABLE 2. The discriminators architecture of the proposed SS-TiGAN.

random noise vector z from a Gaussian distribution, which
is concatenated with the text embedding c̄ to form the input
for the first stage of the generator, G64. The learning model
Fe64 in G64 takes the input and produces the initial image
features h64, which are then fed into the output model Fg64
to synthesize the initial image x̄64 with a resolution of
64 × 64 pixels. The two processes in G64 can be described
as follows:

G64 :Fe64 (z, c̄)→ h64 Fg64 (h64)→ x̄64 (3)

The synthesizing process can be expressed as:

x̄64 = G64 (z, c̄) (4)

The synthesized image x̄64 is then used for the learning pro-
cess of the discriminator D64. The initial image features h64
are then concatenated with the augmented text embedding c̄
and fed into the learning model Fe128 in the second stage of
the generator, G128. The learning model Fe128 expands and
processes the input to produce the final image features h128,
which are then passed into the output model Fg128 to produce
the final image x̄128 with a resolution of 128 × 128 pixels.
The two processes in G128 can be expressed as follows:

G128 :Fe128 (h64, c̄)→ h128 Fg128 (h128)→ x̄128 (5)

The synthesizing process can be expressed as:

x̄128 = G128 (h64, c̄) (6)

Finally, the final image x̄128 is fed into the discriminator
D128 to evaluate its realism. The loss functions of the gener-
ator G64 and the discriminator D64 are updated accordingly,
then the process is repeated until convergence.

The quality of the images synthesized in text-to-image syn-
thesis is significantly impacted by the richness of the learned
representation. To enhance the learned representation and
produce more detailed images x̄128, the model incorporates
the self-supervised rotation prediction task [31]. In this task,

each image is rotated to r ∈ 90, 180, 270 degrees, expressed
as:

ˆ̄x128 = R (x̄128) (7)

whereR represents the rotation function. The resulting rotated
image tensor ˆ̄x128 is created by concatenating {x̄128, x̄90128,
x̄180128 , x̄

270
128 }. The same rotation procedure is applied to real

images x as well. To accommodate the increased number of
training images, the embedding cµ is replicated three more
times and combined to form ĉµ.
In both discriminators D64 and D128, the objective is to

determine the realism of the received images Xi ∈ {x̂i, x̂ ′i , ˆ̄xi}
with i ∈ {64, 128} and the semantic consistency between the
images and the transformed text embedding ĉµ. To achieve
these goals, the models learn from three sample pairs:

1) ĉµ paired with matched real images x̂i.
2) ĉµ paired with unmatched real images x̂ ′i .
3) ĉµ paired with synthesized images ˆ̄xi.
The task of the discriminator is to predict sample pair

(1) as a real sample pair and the rest as fake sample pairs.
The inclusion of sample pair (2) allows the discriminator
to distinguish the relationship between the image and text
description. To evaluate the performance of the models, two
classifiers are used: fcls and fucls.
fcls performs conditional classification to evaluate the

semantic consistency between the image features fθi (Xi) and
ĉµ in all three sample pairs. The conditional process is defined
as:

Di
(
Xi, ĉµ

)
= fcls

(
fθi (Xi) , ĉµ

)
(8)

fucls performs unconditional classification to evaluate the
visual realism of the received images from sample pairs (1)
and (3). The fucls discriminates whether Xi is a real or syn-
thesized image without being conditioned on the text embed-
ding. The unconditional process is defined as:

Di (Xi) = fucls
(
fθi (Xi)

)
(9)

The discriminator’s fundamental objective in conditional
and unconditional classification is expressed as:

LDi =
Lri
2
+
Lfi
3

(10)

where LDi is the overall loss for the i-th discriminator, and
Lri and Lfi are the real sample loss and fake sample loss,
respectively. These terms are computed as follows:

Lri = −log
[
Di

(
x̂i

)]
− log

[
Di

(
x̂i, ĉµ

)]
Lfi = −log

[
1− Di

(
ˆ̄xi
)]
− log

[
1− Di

(
ˆ̄xi, ĉµ

)]
− log

[
1− Di

(
x̂ ′i , ĉµ

)]
(11)

where Di(·) is the i-th discriminator function, x̂i is a real
sample, ˆ̄xi is a generated sample, x̂ ′i is a unmatched real
sample, and ĉµ is the text embedding (if available). In this
setup, the discriminator tries to maximize the real sample loss
and minimize the fake sample loss, which ultimately leads
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to the discriminator learning to distinguish between real and
generated samples. The weights of 1

2 and 1
3 in Equation 10

balance the importance of the real and fake sample losses,
respectively.

The SS-TiGANmodel is designed to handle bi-scale image
generation through a tree-like structure consisting of two gen-
erators, G64 and G128, and two discriminators, D64 and D128.
The stacked generator G = {G64,G128} and discriminators
are trained end-to-end to optimize the approximation of the
bi-scale image distribution.

The training objective is to minimize the common loss
function LG, which considers the losses of both discrimina-
tors, as follows:

LG = ϵ · LCA +
∑

i={64,128}

LGi where

LGi = −log
[
Di

(
ˆ̄xi, ĉµ

)]
− log

[
Di

(
ˆ̄xi
)]

(12)

where ϵ is the coefficient for the regularization term LCA.
The bi-scale design allows the generator and discriminator

pairs to start with lower scale images and gradually refine into
larger scale and finer images. For instance,G64 generates low
resolution images with essential features such as color and
object structure, whileG128 focuses on refining visual details
to generate high resolution images. The end-to-end training
ensures that all generators share a common understanding of
approximation across different scales, thereby stabilizing the
overall network training.

1) FEATURE MATCHING
In GANs, the generator and discriminator play a two-player
min-max game, with the goal of finding a Nash equilibrium
where both are optimized. However, the optimization process
can sometimes become unbalanced and the generator and
discriminator do not converge. To address this issue, feature
matching is introduced as a new objective to ensure that the
generator focuses on synthesizing visually realistic images.

The feature matching objective in a proposed SS-TiGAN
is defined as follows:

Lfmi =
∥∥∥fθi (x̂i)− fθi ( ˆ̄xi)∥∥∥2

2
(13)

where fθi represents the feature extraction function for the
i-th stage, x̂i is the real image, and ˆ̄xi is the generated image.
The objective calculates the L2 distance between the mean
of the feature maps of the real and generated images in all
stages. This objective encourages the generator to synthesize
images that are similar to the real images as perceived by the
discriminator in each stage.

2) L1 DISTANCE LOSS
The phenomenon where the generator repeatedly produces a
small set of similar outputs, known as mode collapse, results
in synthesized images with high similarity and low diversity.
To overcome this, the L1 distance loss is introduced as an
objective function for both generators.

This objective aims to minimize the difference between
real images xi and generated images x̄i in the pixel space. The
L1 distance is computed as follows:

LL1i =
∥∥∥x̂i − ˆ̄xi∥∥∥

1
(14)

The L1 distance loss encourages the generators to learn
features from the real images and produce more diverse out-
puts, rather than synthesizing similar outputs repeatedly. This
helps to overcome the problem of mode collapse and ensure
that the generated images are diverse and similar to the real
images.

3) ONE-SIDED LABEL SMOOTHING
GANs are prone to the issue of overconfidence, where the
discriminator relies too heavily on a small set of features to
predict the authenticity of an input image. To address this
issue, one-sided label smoothing is introduced as a way to
reduce the overconfidence of the discriminators.

One-sided label smoothing penalizes both discriminators
when the predictions of the conditional or unconditional pairs
of real images, Di(x̂i, ĉµ) or Di

(
x̂i

)
, are higher than 0.9.

Instead of using a target label of 1.0, the true target label is set
to 0.9 to introduce some uncertainty into the discriminator’s
predictions.

The objective of one-sided label smoothing is to encourage
the discriminators to not rely too heavily on a small set of
features and to consider a wider range of features in their pre-
dictions. This helps to make the discriminator’s predictions
more robust and reduces the risk of overconfidence.

4) SELF-SUPERVISION
Self-supervision is introduced into the GAN framework to
enhance the quality and diversity of the generated images.
In this approach, a classifier fss is added to the discriminator
D128 to predict the rotation degree of the input images x̂128
and ˆ̄x128.

The self-supervision loss functions are defined as follows:

LDss = −log
[
D128

(
r | x̂128

)]
LGss = −log

[
D128

(
r | ˆ̄x128

)]
(15)

where r is the rotation degree of the image.
The classifier fss takes the extracted features fθ128

(
x̂128

)
and

fθ128
(
ˆ̄x128

)
from the input images x̂128 and ˆ̄x128 as inputs, and

predicts the corresponding rotation degree r as follows:

D128
(
r | x̂128

)
= fss

(
r | fθ128

(
x̂128

))
D128

(
r | ˆ̄x128

)
= fss

(
r | fθ128

(
ˆ̄x128

))
(16)

Through this self-supervision mechanism, the discrimina-
tor D128 is able to explore high-level semantic information,
allowing the generator G128 to construct clearer object parts
during the refinement process.
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With the components mentioned, the final losses of the
discriminators D64 and D128 are defined as:

LD64 =
Lr64
2
+
Lf64
3

LD128 =
Lr128
2
+
Lf128
3
+ δ · LDss (17)

where δ is the coefficient for the self-supervision loss term.
The losses of the generators G64 and G128 are updated
as:

LG64 = LG64 + α · Lfm64 + β · LL164
LG128 = LG128 + α · Lfm128 + β · LL1128 + γ · LGss (18)

where α, β, γ are the coefficients for different loss terms.
The LGi term on the right-hand side is derived from
the fundamental loss term in Equation 12. α and β

are shared across both generators. The self-supervised
training process for SS-TiGAN is described in detail in
Algorithm 1.

IV. EXPERIMENTS AND DISCUSSIONS
This section presents the details of the datasets used, imple-
mentation specifics, and a comprehensive analysis of the
model performance compared to other existing approaches.
The experiments are conducted on a NVIDIA GeForce
RTX 2080 Ti using the Anaconda environment on aWindows
10 platform.

A. DATASETS
The evaluation of the model is performed using two pop-
ular text-to-image synthesis datasets: the Oxford-102 [32]
and CUB [33] datasets. The Oxford-102 dataset comprises
8,189 images belonging to 102 different flower categories,
with 82 classes used for training and 20 classes reserved
for testing. The CUB dataset, on the other hand, contains
11,788 images of 200 bird species, with 150 classes for
training and 50 for testing, following the established practices
in existing works [4], [28], [29].

Each image in both datasets is paired with 10 captions, and
all images are resized to either 64 × 64 or 128 × 128 pixels
based on stages. The pixel values are normalized to the range
of [−1, 1], and data augmentation is performed during the
training stage using random cropping and horizontal flipping.
Before training, the images in the CUB dataset are prepro-
cessed to ensure that the ratio of the object to the image region
is greater than 75% [4], [28], [29].

B. IMPLEMENTATION DETAILS
In this work, the deep learning model is trained using the
Adaptive Moment Estimation (Adam) optimizer. The learn-
ing rate is set to 0.0002 and is kept constant throughout the
training process, with beta1 and beta2 values of 0.5 and
0.999, respectively, following established practices in the
field [4], [20], [28], [29]. The training is conducted over
600 epochs with a batch size of 32 samples. The hyperpa-
rameters α and β are fixed at 1.0 throughout the training

Algorithm 1 The Training Flow of the Proposed SS-TiGAN.
Require: Mini batch b from the training dataset T , matched

real images xi, unmatched real images x ′i , text description
t , rotation function R, generator G, discriminators Di

1: for e iterations do
2: for b ∼ T do
3: x64, x128, x ′64, x

′

128, t ← b
4: c̄, cµ, cσ ← fCA

(
fϕ (t)

)
5: z ∼ N (0, 1); ĉµ←

{
cµ, cµ, cµ, cµ

}
6: r ← {0, 1, 2, 3}
7: x̄64, x̄128← G (z, c̄)
8: x̂64← R (x64); x̂ ′64← R

(
x ′64

)
; ˆ̄x64← R (x̄64)

9: x̂128 ← R (x128); x̂ ′128 ← R
(
x ′128

)
; ˆ̄x128 ← R (x̄128)

10: for i iterations do
11: Lri ←−log

[
Di

(
x̂i

)]
− log

[
Di

(
x̂i, ĉµ

)]
12: Lfi ← −log

[
1− Di

(
ˆ̄xi
)]

−

log
[
1− Di

(
ˆ̄xi, ĉµ

)]
− log

[
1− Di

(
x̂ ′i , ĉµ

)]
13: LDi ←

Lri
2 +

Lfi
3

14: if i is 128 then
15: LDss ←−log

[
D128

(
r | x̂128

)]
16: LD128 ← LDi + δ · LDss
17: end if
18: Di← Di −1σLDi/σDi
19: end for
20: Lfm64 ←

∥∥∥fθ64 (
x̂64

)
− fθ64

(
ˆ̄x64

)∥∥∥2
2

21: LL164 ←
∥∥∥x̂64 − ˆ̄x64∥∥∥

1

22: Lfm128 ←

∥∥∥fθ128 (
x̂128

)
− fθ128

(
ˆ̄x128

)∥∥∥2
2

23: LL1128 ←
∥∥∥x̂128 − ˆ̄x128∥∥∥

1

24: LGss ←−log
[
D128

(
r̂ | ˆ̄xr128

)]
25: LG64 ←−log

[
D64

(
ˆ̄x64, ĉµ

)]
−log

[
D64

(
ˆ̄x64

)]
+

α · Lfm64 + β · LL164
26: LG128 ← −log

[
D128

(
ˆ̄x128, ĉµ

)]
−

log
[
D128

(
ˆ̄x128

)]
+α ·Lfm128 +β ·LL1128 + δ ·LGss

27: LCA← DKL
[
N

(
cµ, cσ

)
∥ N (0, 1)

]
28: LG← LG64 + LG128 + ϵ · LCA
29: G← G−1σLG/σG
30: end for
31: end for

process. The optimal result for the Oxford-102 dataset is
achieved using ϵ = 1.0, δ = 2.0, γ = 1.5 while for the CUB
dataset, the optimal result is obtained using ϵ = 5.0, δ = 2.0,
γ = 1.0.

C. EVALUATION METRICS
This section describes the evaluation metrics used to assess
the performance of the proposed model.
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TABLE 3. The inception score and FID of comparison results.

TABLE 4. The SSIM of comparison results.

1) INCEPTION SCORE
The Inception score is a commonly used metric for evaluat-
ing the quality of images generated by generative models.
It utilizes a pre-trained Inception v3 model to compute the
score, which reflects the distinctness of the objects in each
image and the variety of objects in the image set. The Incep-
tion score is computed based on the probabilities returned
by the fine-tuned Inception v3 model from [28]. A higher
inception score indicates better object distinctness and variety
in the generated images.

2) FRÉCHET INCEPTION DISTANCE (FID)
The Fréchet Inception Distance (FID) is used to measure the
similarity between the distribution of the generated images
and the real images in the feature space. This evaluation
metric adopts the pre-trained Inception v3 model to extract
features from both sets of images and calculates the Fréchet
distance between the feature sets. The lower the FID score,
the closer the generated images are to the real images in terms
of distribution similarity.

3) STRUCTURAL SIMILARITY INDEX MATRIX (SSIM):
The Structural Similarity Index Matrix (SSIM) is a widely
used metric to evaluate the similarity between two images.
In text-to-image synthesis, SSIM can be used to indirectly
measure the semantic consistency between the generated
image and the corresponding text description. Since the
synthesized images based on the particular text description
should contain the similar visual features with the paired real
images. Higher SSIM scores indicate a better semantic con-
sistency between the generated images and the real images.

D. COMPARISON WITH EXISTING APPROACHES
The proposed SS-TiGAN method has been evaluated against
several existing text-to-image synthesis methods using the
Inception score and FID metrics on the datasets mentioned
previously. The results presented in Table 3 indicate that
SS-TiGAN outperforms most of the methods in synthe-
sizing realistic images. This is due to the deeper network
architecture that incorporates residual blocks, which helps
alleviate the low Inception score problem faced by other
approaches like GAN-INT-CLS and MLADIC when synthe-
sizing low-resolution images. Furthermore, SS-TiGAN out-
performs GAWWN, which synthesizes images at the same
resolution but without residual architecture.

Interestingly, SS-TiGAN achieves better results than prior
works such as StackGAN, StackGAN++, and FusedGAN by
synthesizing smaller images (128 × 128) instead of larger
images, which is the trend to obtain a better Inception
score. This highlights the effectiveness of self-supervision in
diversifying the model representation, allowing small-scale
images to contain more diverse and realistic visual informa-
tion. Despite the impressive performance of the proposed SS-
TiGAN, it achieved a slightly lower Inception score compared
to AttnGAN and SAM-GAN. The primary reason for this dif-
ference in performance is that both AttnGAN and SAM-GAN
utilize an attention module to synthesize large-scale images,
which results in generating fine-grained images that are more
likely to achieve higher Inception scores compared to other
methods.

Unlike Inception score, the proposed SS-TiGAN surpasses
all the existing methods in terms of FID, as indicated by the
lowest FID scores of 40.54 and 14.20 on the Oxford-102 and
CUB datasets respectively. This low FID score implies that
the synthesized images from SS-TiGAN are highly similar
to the real images in the feature space. This is achieved
through the use of self-supervision, which allows the model
to explore the semantic context from the real images and
replicate it during synthesis, as well as feature matching
and L1 distance loss, which forces the model to mimic
the real image features during synthesis. These techniques
enable SS-TiGAN to achieve the lowest FID score com-
pared to existing methods that synthesize large-scale images.
Although AttnGAN and SAM-GAN generate highly realistic
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FIGURE 4. Some images synthesised from other methods with the proposed SS-TiGAN alongside real images (Ground Truth), given the text descriptions
from CUB and Oxford-102 datasets.

FIGURE 5. A wide variety of images synthesised by the proposed SS-TiGAN.

images that outperform the proposed SS-TiGAN in terms
of Inception scores, the similarity between the synthesized
and real image sets is lower for these models. In contrast,
the proposed SS-TiGAN achieves a better FID score due to
the effectiveness of feature matching and L1 distance loss
in replicating the characteristics of the real image set. These
techniques enable SS-TiGAN to generate images that closely
resemble the real set, resulting in a better FID score.

Additionally, the proposed SS-TiGAN has achieved out-
standing results in terms of SSIM, with values of 0.7353 and
0.8195 on the Oxford-102 and CUB datasets, respectively,
as shown in Table 4. This high SSIM score indicates that
the images generated by SS-TiGAN possess a high level of
semantic consistency, making them visually appealing and
plausible.

This success can be attributed to a combination of factors,
including self-supervision which enriches the diversity of the
learned representations, the L1 distance loss that enhances
the visual realism of the images, and the use of one-sided
label smoothing and feature matching, which streamlines the

training process while simultaneously elevating the visual
realism and semantic consistency of the generated images.

The qualitative results of the comparison between the pro-
posed SS-TiGAN method and other existing text-to-image
synthesis approaches are presented in Figure 4. The figure
displays the images synthesized from randomly selected text
descriptions from the testing set of the CUB and Oxford-102
datasets.

It is evident from the results that the images synthesized
by the proposed SS-TiGAN show high semantic consistency
with the corresponding text descriptions. They also exhibit a
remarkable similarity with the real images (Ground Truth).
The proposed SS-TiGAN is able to synthesize images with
a rich diversity of heterogeneous visual content, which can
be attributed to the combination of self-supervision and other
loss functions used in the model.

When compared to existing methods like StackGAN and
SSTIS, the images synthesized by the proposed SS-TiGAN
are of higher quality and realism. Additionally, Figure 5
showcases the wide range of image contents that the
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FIGURE 6. The ablation study of the proposed SS-TiGAN on the CUB dataset.

TABLE 5. The ablation study of the proposed SS-TiGAN on the CUB
dataset.

proposed SS-TiGAN is capable of synthesizing. These results
highlight the effectiveness of the proposed SS-TiGAN in syn-
thesizing high-quality, realistic, and diverse images from text
descriptions.

E. ABLATION STUDY
The aim of the ablation study in this section is to evaluate
the impact of each component that contributes to the perfor-
mance of the proposed SS-TiGAN. The evaluation of these
components will provide insight into the key factors that drive
the success of SS-TiGAN in synthesizing high-quality images
from text descriptions.

The components evaluated in this study include the first
stage generator G64, the second stage generator G128, the
residual blocks fres, various improvement techniques T such
as feature matching, L1 distance loss, and one-sided label
smoothing, and finally, the self-supervision component Lss.
The results of the Inception score, a widely used evaluation
metric in image synthesis tasks, are presented in Table 5.
These results will provide quantitative evidence of the effec-
tiveness of each component and highlight the contributions
they make to the overall performance of SS-TiGAN.

Based on the results of the ablation study, it is evident
that each component has played a significant role in improv-
ing the performance of the proposed SS-TiGAN. The initial
stage of generator G64, which synthesizes 64 × 64 pixel
images, was not sufficient as it achieved the lowest Incep-
tion score (Model 1). However, incorporating the second
stage of generator G128, which synthesizes 128 × 128 pixel

images, improved the Inception score to 3.91 (Model 2).
The increased resolution allowed the image to carry more
visual information, but residual blocks fres were necessary
to effectively learn better features from the high-resolution
images without losing the propagated gradients (Model 3).

Further improvement was achieved through the introduc-
tion of various enhancement techniques T (Model 4), includ-
ing the L1 distance loss, feature matching, and one-sided
label smoothing. These techniques helped stabilize the per-
formance, increase the inception score to 4.00, and prevent
the model from synthesizing plausible but unrealistic images.

The highest Inception score of 4.09 was achieved by
including self-supervision Lss (Model 5). This component
allowed the model to generate more training samples and
explore high-level object information, resulting in a more
diverse learned representation. Self-supervision was particu-
larly useful in synthesizing complex objects like birds where
the various parts of the object need to be carefully rendered.
The results demonstrate the effectiveness of each component
in improving the performance of SS-TiGAN.

Besides the inception score, each combination of model
settings has synthesized some images from the text descrip-
tion, as depicted in Figure 6. It is observable that the images
are getting more visually realistic and semantically consistent
with the conditioned text description.

V. CONCLUSION
This paper introduces SSTiGAN, an innovative text-to-image
synthesis method that utilizes self-supervision to generate
vivid images. This method uses a bi-level architecture with
two separate discriminators to maintain stability throughout
the synthesis process. Self-supervision addresses the issue of
low-data regime by augmenting the training data with rotated
variants, and SSTiGAN incorporates various strategies to
overcome the limitations of GANs during training. Exper-
imental results demonstrate the superiority of SS-TiGAN
compared to existing approaches on two well-known bench-
mark datasets, the Oxford-102 and CUB, highlighting its
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effectiveness in generating high-quality images from text
descriptions.

Despite the good performance, SS-TiGAN suffers from
some limitations due to limited computing resources.
SS-TiGAN was designed with a two-stage architecture,
resulting in a maximum output resolution of 128 × 128 pix-
els. This is lower than the standard 256 × 256 pixels
used in many existing works. Additionally, due to resource
constraints, a more advanced text encoder, such as a
sentence-level and word-level encoder, could not be imple-
mented. As a result, only a sentence-level text encoder was
used to obtain the global text embedding.

However, there are advantages to the two-stage
architecture and the use of only a sentence-level encoder
in SS-TiGAN. The two-stage architecture allows for faster
training and inference times, as well as reducing the com-
plexity of the model. Additionally, using a sentence-level
encoder simplifies the text input process and can lead to more
coherent image generation as it considers the overall meaning
of the input text rather than individual words. The use of a
sentence-level encoder also makes the model more robust to
variations in word choice and grammar within the input text.
Overall, while SS-TiGAN may have some limitations, the
simplified architecture and use of a sentence-level encoder
offer several advantages that make it a promising approach
for text-to-image synthesis.
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