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ABSTRACT In this paper, the proposed work implements and tests the computer vision applications to
perform the skill and emotion assessment of children with Autism Spectrum Disorder (ASD) by extracting
various bio-behaviors, human activities, child-therapist interactions, and joint pose estimations from the
recorded videos of interactive single- or two-person play-based intervention sessions. A comprehensive
data set of 300 videos is amassed from ASD children engaged in social interaction, and three novel deep
learning-based vision models are developed, which are explained as follows: (i) activity comprehension
to analyze child-play partner interactions (activity comprehension model); (ii) an automatic joint attention
recognition framework using head and hand pose; and (iii) emotion and facial expression recognition. The
proposed models are also tested on children’s real-world, 68 unseen videos captured from the clinic, and
public datasets. The activity comprehension model has an overall accuracy of 72.32%, the joint attention
recognition models have an accuracy of 97% for follow eye gaze and 93.4% for hand pointing, and the
facial expression recognition model has an overall accuracy of 95.1%. The proposed models could extract
behaviors of interest, events of activities, emotions, and social skills from free-play and intervention session
videos of long duration and provide temporal plots for session monitoring and assessment, thus empowering
clinicians with insightful data useful in diagnosis, assessment, treatment formulation, and monitoring ASD
children with limited supervision.

INDEX TERMS Autism spectrum disorder, activity comprehension, facial expressions, joint attention, ASD
screening, applied behavior analysis.

I. INTRODUCTION
Children with Autism Spectrum Disorder (ASD) typically
exhibit biobehavioral patterns such as repetitive behavior,
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difficulty in establishing friends, poor social communication
abilities, and limited understanding and expression of emo-
tions [1]. Traditional diagnostic methods such as blood tests,
genetic testing, and brain imaging have limited success in
establishing diagnoses, severity degree, and skill assessments
of ASD children.
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Behavioral methods are the gold standard for diagnosing
ASD in children, which entails the physician documenting
the patient’s medical history, interviewing the parents, and
manually observing the children’s behavior. These observa-
tions are recorded as detailed in the instruction guidelines
for diagnostic rating scale instruments such as the Autism
Diagnostic Observation Schedule (ADOS) and the Childhood
Autism Rating Scale (CARS-2) [2], [3]. The rating scale
usually suggests a child’s skills in social engagement, joint
attention, emotional expressions, instruction following, play
and life skills, imitation abilities, and visual attention. The
diagnosis is established if the observation scores cumula-
tively exceed a predetermined threshold. After diagnosis,
a functional assessment is conducted utilizing the instruments
such as VBMAPP [4] to build a personalized intervention
program that can improve the necessary skills of ASD chil-
dren for their school and societal inclusion. The functional
assessment includes detailed observations and measurements
of children’s skills in various domains such as independent
play, social communication, self-stimulatory behavior, joint
attention, imitation, and understanding of emotions through
facial expressions [5], and other necessary skills of ASD
children [6].

However, there are various limitations when using conven-
tional diagnostic and functional assessment methods. Firstly,
the interpretative coding of a child’s behavior observed is
manual and time-consuming. Secondly, a clinician’s obser-
vations may not always be reliable or valid due to differences
in professional training, experience, available resources, and
cultural backgrounds. Thirdly, there is a huge demand-supply
mismatch between the number of professionals available to
treat nearly 2% of newborn children diagnosed with ASD [1].
These challenges are exaggerated in Low andMiddle-Income
Countries (LMICs) [1], [7], [8] where there is a severe short-
age of clinicians and poor infrastructure to manage ASD con-
ditions. Therefore, new technological methods for rapid and
automatic data collection and analysis can enhance clinician
capacity and improve quality, affordability, and accessibility
in ASD detection and assessments.

Technology has demonstrated significant benefits by
employing Machine Learning (ML) and Deep Learning (DL)
for early diagnosis and functional assessments of ASD
[9], [10]. ML has uncovered essential and minimal fea-
tures [11], [12] of ASD diagnostic instruments such as
the Autism Diagnostic Observation Schedule (ADOS) [2],
and the Autism Diagnostic Interview-Revised (ADI-R) [13],
thereby accelerating the diagnosis procedure without com-
promising accuracy [14], [15]. ML and DL methods can
analyze an unprecedented quantity of multimodal and mul-
tidimensional clinical data from videos, images, texts, voice
messages, and sensors due to the rapid evolution of technol-
ogy and digitization [9]. The analysis can suggest patterns,
aid in the development of clinical decision support systems to
diagnose ASD or developmental delays, and provide sugges-
tions for treatment and personalization, enhancing the clini-
cian’s capacity. Earlier studies on ASD screening developed

a multimodel approach with video annotation performed by
humans [12], [39], [45], however, very little work has been
done on the automatic extraction and classification of human
actions from untrimmed videos for ASD detection [46]. The
state-of-the-art ML and DL methods have improved quality,
outcomes, and access to ASD screening, diagnosis [12], and
assessments [39]. Researchers have trained supervised learn-
ingMLmodels onmultimodal data to developASD screening
and diagnosis [39] solutions with moderate to high psycho-
metric outcomes in minimal time, ensuring their internal
validity. These solutions have focused on detecting children
with ASD and ODD [12] on cross-cultural datasets.

In the past decade, computer vision-based behavior imag-
ing and facial analysis have shown promising results in
assisting clinicians with the diagnosis of multiple medi-
cal conditions including ASD [16], [17], [18]. Moreover,
computer vision-based methods can offer an accurate, low-
cost, and non-invasive alternative compared to traditional
labor-intensive manual assessments and invasive methods
such as electroencephalogram (EEG) [19].

Even though computer vision has demonstrated many
promising solutions, its application in assessing behavior,
play, imitation and life skills, posture, and gait analysis to
assess the joint attention of ASD children has not yet been
explored [20], [21], [22]. In addition to these, there are no
large-scale efforts to develop facial expression recognition
models or detect joint attention skills of young children
from real-time videos. Therefore, we address these issues
by developing novel computer vision models to extract and
classify the joint attention skills, facial expressions, and life
skills from untrimmed videos of ASD children and assist the
clinician in diagnosing ASD or establishing the functional
assessment for ASD children.
(i) To assess children’s joint attention skills automatically,

we developed computer vision models by analyzing
postural changes in response to instruction or stimuli
given by the clinician.

(ii) To recognize nine emotional expressions, namely
anger, disgust, fear, happiness, sadness, surprise, laugh-
ter, crying, and neutral for children aged 1 to 5,
we developed the Facial Expression Recognition (FER)
model by gathering extensive facial images from
diverse ethical and cultural backgrounds.

(iii) To perform an automatic functional assessment of
children from their intervention video sessions, their
engagement duration, and frequency with clinicians,
parents, or play partners on ten life skill activities,
namely run, sit, stand, engagement, instruction engage-
ment, hit or fight someone, watch someone, hold an
object or oblique toys, walk, and answer the phone, are
assessed.

The paper is organized as follows: Section II briefly
describes state-of-the-art computer vision methods used in
ASD management. In Section III, we provide the details
of the study procedure, and Sub-section III-A provides a
detailed description of the problem and answers the questions
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raised in developing video-driven assessments. Section IV
describes the data collection procedure and the technological
methodology to realize the study aims. Section V provides
a detailed evaluation and results of our models on real-time
videos; in Section VI, we discuss the results interpretations,
practical implications, limitations, and future directions; and
in Section VII we provide the conclusion.

II. LITERATURE REVIEW
This section discusses relevant studies, state-of-the-art
computer vision methods, implementation challenges, and
improvement options. Sub-section II-A summarizes the cur-
rent state of ASD assessment and intervention methods and
new studies incorporating ML and DL models into ASD
diagnosis and therapy. Sub-section II-B discusses state-of-
the-art computer vision methods deployed for Human Pose
Estimation. Sub-section II-C discusses the importance of
joint attention skills and data-driven assessment techniques.
Sub-section II-D describes the significance of facial expres-
sion recognition in ASD assessment and treatment planning.
Finally, Sub-section II-E summarizes the state-of-the-art
human action recognition methods and their applications in
assessment and treatment formulation for ASD.

A. ASD TREATMENT
Most evidence-based ASD intervention methods can enhance
the child’s ability, especially in the first three years [23].
However, the demand for professionally trained therapists
has outpaced the supply; consequently, clinicians’ availabil-
ity and cost-effectiveness are crucial for promoting treat-
ment accessibility. Cognitive Behavioral Therapy (CBT) is
a behavioral intervention that can help individuals with
ASD to achieve their goals and change their lifestyles
[21], [24], [25].

Applied behavioral analysis (ABA) is a gold-standard
intervention widely used to assist ASD individuals with
behavioral and communication challenges by promoting
desirable social behaviors [26] such as overcoming food
intolerance, improving intelligence quotient (IQ), social com-
munication, and teaching play and life skills using principles
of reinforcement [27]. A higher quality of life for ASD
children can be foreseen through early diagnosis followed
by evidence-based treatment methods [20], [28]. An accurate
diagnostic and functional evaluation is essential to evaluate
the child’s area of strength for customizing an intervention
program to the child’s unique needs. ADOS [2], ADI-R [13],
The Modified Checklist for Autism in Toddlers, Revised,
with Follow-Up (M-CHAT-R/F) [29], and The Childhood
Autism Rating Scale-2 (CARS-2) [30] are a few widely used
gold-standard ASD diagnostic and screening instruments
developed in Western countries [31], [32], [33]. Therefore,
the outcomes of these assessments have limited efficacywhen
employed in LMICs due to a lack of training and cultural
disparities [34], [35], [36], [37].

Artificial intelligence (AI) technology especially ML and
DL can address these limitations due to its unique facets such
as increased processing power of computer hardware and
multimodal data availability, thereby leading to faster ASD
diagnosis [38]. Recently, the clinical study of multi-modular
ML-based ASD diagnosis based on questionnaires and home
videos has demonstrated a sensitivity of 90% towards ASD
detection [39]. Some of the other improvements that have
been witnessed with the application of AI are: (i) Detection of
ASD at an early age, (ii) Reduction in the number of assess-
ment items as a result of implementing the feature reduction
method, (iii) Effective classification between different ASD,
Typically Developing (TD), and other neurodevelopmental
disorders, (iv) Automatic feature extraction of bio-behaviors
from multimodal data [9], [40].

Due to the availability ofmultimodal data from diverse bio-
behavioral sources, such as videos including ASD behavioral
features [12], [41], audio [42], facial expressions [43], and
Electronic Health Record (EHR) data [44], DL applications
trained on unstructured data have accelerated the detection
and management of ASD and can be implemented at the
point of care [9], [12], [41], [45], [46], [47]. The feasi-
bility of the therapeutic intervention and prognosis lever-
aging AI has shown reasonable success [48] for ASD and
other neurodevelopmental disorders. Furthermore, individu-
alized socially assistive robotic intervention and automation
based on engagement analysis has aided in the development
of a low-cost, robot-based therapeutic framework for ASD
children [49].

However, most studies focus on one of the seven key data
categories, such as stereotyped behaviors, eye gaze, facial
expressions, postural analyses, motor movements, auditory,
and electronic health records [9] adopting ML and DL tech-
niques with Graphical Processing Units (GPU) and high pro-
cessing cloud capabilities [9]. To the best of our knowledge,
this is the first study to employ computer vision to extract
data from various bio-behaviors, including play, engagement,
facial expression, and joint-attention abilities.

B. HUMAN POSE ESTIMATION
Computer-vision-based Human Pose Estimation (HPE)
methods including conventional and instance-based pose esti-
mation models to novel deep network architectures can detect
human body poses in 2D or 3D space by regressing skeletal
joint angles or critical points using a single view or several
view cameras with monocular or depth modalities [50], [51],
[52], [53], [54], [55]. In addition, developing computer vision
applications for specific task measurements involves accurate
measurements of both human body joints and their parts.
Head pose estimation involves the prediction of head orienta-
tion and assessing human attention and head pose. Similarly,
hand detection and tracking provide a fine-grained estimation
of hand posture for regressing skeletal finger points and ges-
ture recognition tasks [50]. However, most pose estimation
algorithms are designed for adults or pedestrians, and few
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solutions have focussed on special needs children or pediatric
healthcare [56], [57]. Several significant constraints prevail
in the development and deployment of the HPE methods for
various child-specific problems in managing ASD conditions
as follows: (i) data security, privacy, and ethical challenges,
(ii) expensive data collection, (iii) manual data annotation
process, and (iv) camera calibration and setup, and (v) sin-
gle and targeted solutions to a specific problem [52]. The
current methods for human pose estimation are designed to
track specific movements and activities and may not be able
to capture a broad variety of child behaviors or activities.
For instance, head pose estimation may be ineffective for
monitoring social engagement or other nonverbal indicators.
Human pose estimationmethods are not always accurate, par-
ticularly when monitoring the movements of children, who
have smaller, more rapid movements. Additionally, children
are more likely to make sudden, unpredictable movements
that can be difficult to accurately monitor. To circumvent
these problems, our goal is to develop dedicated models for
tracking hands and heads that work well for adults as well as
toddlers.

C. JOINT ATTENTION
Joint attention (JA) is a social communication method of
engaging one’s attention with another person using objects
and gestures. Limited JA skills are one of the earliest indi-
cators of ASD which JA necessitates capturing, sustain-
ing, and transferring attention and fostering the growth of
essential social abilities, such as engaging with others and
understanding their perspective [14]. Similarly, few works
implemented a DL classification model for evaluating joint
attention in individuals with ASD by utilizing short video
clips of joint attention initiation. The system evaluates joint
attention aids in the early detection and intervention of ASD.
Similarly, a vision-based joint attention detection system
for ASD using eye-tracking technology showed good accu-
racy in detecting joint attention among non-ASD adults.
An automated tool called RJAfinder has been developed
that quantifies responding to joint attention behaviors in
ASD using eye-tracking data. RJAfinder can compare RJA
events among ASD children, typically developing children,
and adults and finds fewer RJA events that ASD children
display than the other two groups. Cazzato et al. [58] have
examined how robot-assisted therapy affected the social inter-
actions of children with ASD and used expensive depth
cameras to aid in non-invasive JA evaluation. Few studies
have used eye-tracking technology to investigate eye gaze
accuracy, fixation, eye transition, and eye movement dur-
ing technology-aided JA assessments [15], [59], [60], [61]
methods.

D. FACIAL EXPRESSION RECOGNITION AND EYE CONTACT
The intensity and frequency of eye contact and facial
expressions can facilitate verbal and non-verbal communi-
cation between individuals. Maintaining eye contact can be

distressing for some ASD individuals leading to social anx-
iety. Subsequently, the capacity to imitate and comprehend
facial emotions is crucial for the social functioning of any
individual. ASD children have difficulty understanding and
responding to nonverbal cues and recognizing and compre-
hending facial expressions and emotions. Carpenter et al.
[43] have extracted positive, neutral, and other facial land-
marks from a database of 3D facial expressions utilizing
a trained computer vision model and have discovered that
children with ASD have more neutral facial expressions,
which corresponds to the fact that facial expression imitation
is an essential indicator of social interaction skills. Zhao
et al. [62] have implemented a DL model to recognize facial
expressions by utilizing multiple databases while training it
with the facial expressions of sixteen Chinese children. The
experimental results of Zhao et al. have shown that the ASD
group’s average imitation expression is found to be less than
60%, a significant deterministic threshold for ASD.

Alvari et al. [63] have examined facial expressions using
the Facial Action Coding System (FACS) and extracted the
intricate dynamics of ASD and TD children’s social smiles
from home recordings. The findings of Alvari et al. have
suggested that ASD children exhibit less happiness than TD
children in their first years, confirming that ASD children
have difficulty distinguishing faces and take a long time to
comprehend facial expressions. Deep learning-based facial
expression recognition (FER) has been explored in numer-
ous architectures such as convolutional neural networks,
deep belief networks, autoencoders, generative adversarial
networks, and ensembles of networks. These architectures
performed the best on a variety of benchmark datasets as
they focused on the two important issues of overfitting and
expression-unrelated variations.

E. ACTIVITY RECOGNITION
Activity recognition identifies significant events of interest in
vast video datasets [64], [65], [66], [67]. Earlier techniques
employed human posture traits [68], feature descriptors [69],
and dense trajectories [70] based on the appearance from
camera movement. However, ML and computer vision (CV)
have improved various aspects of human visual perception
to find clinically meaningful patterns from the images and
videos and classify activities of interest to diagnose and func-
tionally assess ASD children [12], [71], [72], [73]. However,
one of the obstacles associated with applying CV in ASD
detection and its management is the high labor cost and
downtime associated with the manual annotation of video.
Furthermore, due to the computationally intensive descrip-
tion and monitoring of motion data from the real-time feed,
activity monitoring can result in low generalizability because
of potential tracking failure in non-neural network-based
systems. Hence, we propose a novel DL model to address
these limitations by training the model on a limited publicly
available dataset of action classes relevant to ASD diagnosis
and assessments.
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Researchers have developed neural network architectures
such as two-stream Inflated 3D [74] and C3D [75], [76],
which incorporate optical flow and RGB image proper-
ties for capturing person features and movements. In addi-
tion to the standard bag-of-visual-words method [77], these
architectures have strengthened the activity recognition
framework. In terms of capturing the temporal patterns and
simplifying parameter learning for underlying architectures,
3D convolutional layers are superior to 2D ones [74]. How-
ever, these methods work only for short, trimmed videos
and do not perform well with longer untrimmed videos con-
taining simultaneous multi-person actions. Temporal action
localization-based methods have solved this limitation by
slicing a long-duration video into manageable time segments.
A single-stage end-to-end network suggests action intervals
and also classifies potential actions [76], [78].

In contrast, two-stagemethods use distinct neural networks
for making suggestions on the occurrence of significant
human movements and then classifying those activities [79],
[80]. However, these methods perform poorly with videos
similar in actions or outside the training data distribution.
Also, activity recognition systems must be resistant to occlu-
sions and capable of handling crowded scenarios with mul-
tiple people and actions. Several contemporary paradigms
simultaneously investigate spatial-temporal characteristics to
identify and mark the location of activities. Tublet generation
[81], human- and object-centric learning [78], [82], skeleton-
basedmethod [83], and graph convolution networks [84] have
enabled the incorporation of various human and environmen-
tal features for accurate activity recognition. As part of this
paper, we aim to develop a general video activity classi-
fier to detect multiple actions of interest in natural videos
accurately.

III. STUDY PROCEDURE
1) The children are recruited from SM Learning Skills

Academy Pvt. Ltd., India, a special needs clinic, and
the National Institute of Mental Health and Neuro-
Sciences (NIMHANS), Bangalore, India. All partic-
ipants’ consent is recorded. The children who have
already been diagnosed with ASD participate in play-
based interactions.

2) The study objectives and details of data capture
are explained to potential participants’ parents or
caregivers, and any doubts regarding the same are
clarified. Finally, their consent for data usage is
recorded.

3) Video recordings of interactive ABA therapy sessions
between a child and the therapist are recorded.

The principles of ABA have demonstrated its utility for
promoting learning and behavior change in children with
ASD. In the following sections, we describe the general
concerns with conventional ABA sessions and outline our
primary goals for enhancing three areas of ABA intervention
namely general interaction and life skills, emotion recogni-
tion, and joint attention analysis.

A. PROBLEM FORMULATION
This study focuses on the following areas,

1) Activity Comprehension: Developmental concerns
raised by parents are the first reporting point for per-
forming diagnosis or age-level skill assessment. Clin-
icians engage children in play-based sessions, provide
them with various stimuli, and ask them to undertake
various activities to test their age-appropriate skills
while diagnosing or assessing their functional skills for
ASD. These evaluations also include monitoring the
children engaged in independent play in an unsuper-
vised session. During post-ASD diagnosis, the children
are engaged in intervention sessions where they are
taught various motor and life skills and activities of
daily living, including child interaction with the parent,
toys, or clinicians during the session. These diagnostic,
functional assessment, and intervention sessions are
manually analyzed by clinicians, where behaviors of
interest and actions of interest are analyzed, spending
significant man hours to establish the diagnosis and
functional assessment. In order to circumvent manual
observation and treatment monitoring, there is a need
to adopt automatic treatment monitoring and analysis.
Therefore, we propose to use computer vision in the
video-recorded session to capture children’s activity
performance and skill levels.With the help of computer
vision, massive engagement video data can be utilized
to train a system to identify children’s engagement.
As part of the general engagement, we measure ten
activities as listed in Table 1.

2) Facial expressions: The facial expressions of chil-
dren with ASD can significantly differentiate from
TD children in response to various external stimuli.
Further, children’s motivation during assessments and
the ABA intervention session system can be tracked
by analyzing children’s emotions during and after the
intervention. The emotion and facial expressions can
give insights into a precursor of maladaptive behav-
iors or unusual responses to visual or auditory stimuli
and investigate the potential causes of these responses.
In addition, there are limited datasets of ASD chil-
dren; therefore, we augment existing datasets by col-
lecting publicly available facial expressions of children
and adolescents of diverse ethnicity, culture, and geo-
graphic location, thereby conforming to fairness and
decreasing bias. Also, we intend to identify nine facial
expressions in children using a deep learning model.

3) Joint attention: The JA assessment involves a human
observer who records the child’s responses and the
observation data leading to longer wait times, requir-
ing additional therapists, and burdening clinicians’
work. Now, it is possible to automate this process
and provide an assessment report by developing algo-
rithms to process RGB videos recorded on any cam-
era without requiring expensive sensors attached to
children or human observers in treatment scenes.
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The JA assessment report comprises marked times-
tamps at which the child’s responses to stimuli are
observed, enabling them to conduct their intervention
plan effectively.

The study procedure of model development, real-
world testing, and performance evaluation is illustrated in
Fig. 1.

TABLE 1. Ten activities of interest predicted by the model.

IV. METHODS
A. DATA COLLECTION AND PROCESSING
The video data of 300 children with ASD diagnosis of varied
age groups (1-5 years) are collected. The average duration
of collected videos is 20 minutes. The model outcomes are
blind-tested on 68 videos (see Section V-A).

The following prerequisites are completed before data col-
lection at each site.

1) Researchers have finalized a set of behavioral markers
exhibited prominently by ASD children such as poor
eye contact, motor, and joint attention, imitation skills,
absence of play, and self-stimulatory behavior to per-
form diagnosis or functional assessments by referring
to literature and expert discussions.

2) We developed a web application used by expert annota-
tors to traverse temporally across a video and perform
frame-by-frame annotations on preselected multi-level
video clinical landmarks. The annotators performed
the annotations by capturing eye contact, joint atten-
tion, imitation, and activities of interest, and their
respective metadata as features. For instance, depend-
ing on the therapist-child interaction, the annotator
would add metadata such as ‘‘yes’’ or ‘‘no’’ for
the ‘Joint Attention’ and ‘Social Behavior’ categories
for the follow gaze, finger pointing, and eye con-
tact classes, and additional information if responses
are spontaneous or elicited. Similarly, the annotators
mark all the activities of interest (see Table 1) for
both the child and the play partner in the videos.
Each video’s annotations are saved in an XML file
containing the child’s age, gender, ground-truth diag-
nosis, audio or video annotations, metadata, and
timestamps.

3) Annotators examine publicly available videos collected
fromYouTube andVimeo for good resolution of at least
240p before annotation.

B. ACTIVITY COMPREHENSION MODEL
In this section, we provide an overview of our Activity Com-
prehension model, and technological methods of implemen-
tation are explained in the subsequent subsections. We define
the ABA enrollment and assessment pipeline as shown in
Fig. 2. The flow diagram also shows the steps involved in
the real-world deployment of the Activity Comprehension
model. These video sessions capture ABA intervention ses-
sions in which the child is engaged with the therapist in
a play-based scenario (see Section III). The video is then
inferred into our Activity Comprehension model to provide
predictions. Fig. 3 shows the plots of temporal events of
interest (activities) and an automatic pie chart generation
where each point on the child/play partner interaction plot
belongs to one of the activity classes (see Table 1) at a given
time step.

Spatio-temporal action recognition methods [82], [83],
[85], [86], [87] have been developed to train actions simulta-
neously with spatial and temporal annotations, i.e., where the
action is and what the action is about in a given image. How-
ever, these methods require dense annotations at the frame
level, which is difficult and time-consuming in a clinical
setting. Therefore, we utilize open-sourced spatiotemporal
transformer approach [88] to analyze person-person inter-
action. We also aim to understand child-play partner inter-
actions efficiently and thereby provide actionable insights
from the ABA video assessments. We propose our Activity
Comprehension model approach in Fig. 4 which comprises
child-play partner activity prediction and activity separation,
described in the following sections.

1) ACTIVITY PREDICTION
The Activity Comprehension model is trained on the AVA
dataset [64]which contains 235 trainingmovie videos, 64 val-
idation videos, and 131 test movie videos (see Table 2) from
which 10 out of 80 action categories are utilized for our
study. The Activity Comprehension model localizes peo-
ple’s actions in both space and time and recognizes actions
with a novel asynchronous interaction aggregation method
[88]. The action recognition system uses the object detec-
tion model [89] for localizing people. However, the object
detection model misses detecting several people/children in
the dense crowd and occlusions cases. Hence, we utilized
Yolo-v5 [90] for real-time person detection in videos with
significant improvements over Yolo-v3 [89]. The input to the
Activity Comprehension model is an ABA video (approxi-
mately 10 minutes in length) containing scenes of engage-
ment/activity between a child and their play partner and
the model predicts the activities (see Table 1) of both the
child and the play partner temporally. We record and store
the detected bounding boxes, model predictions, and time
intervals of the child and the play partner. However, it should
be noted that the model does not explicitly make distinc-
tions concerning the people in the scene as children or play
partners. We only know the number of people in the scene
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FIGURE 1. An overview of study procedures for model development, real-world testing, and
performance evaluation.

(by counting the number of person bounding boxes) and
their associated activities. Hence, there is a need to segregate
the activities of the child and play partner to make logical
conclusions for the assessment by implementing the activity
separation method which is explained in the next section.

2) ACTIVITY SEPARATION
To distinguish a child from a play partner, we develop a
child detector model. Knowing the child’s location is neces-
sary because we infer its actions from the features extracted
from subsequent frames. The child detector model is trained
using 3027 annotated images of children (see Table 2) by
fine-tuning weights from Faster R-CNN with Resnet-50 (v1)
[91] to obtain a mAP@0.5IOU score of 0.94. As a result,
a child is distinguished from a play partner, and child features
are extracted. Table 3 summarizes the hyperparameters used
and the results of the detector model evaluation. The child
detection model predicts the child’s location in each video
frame and produces a bounding box for the child. We store
the detected bounding boxes along with the time interval.

We perform Intersection over Union (IoU) of detected
boxes on the person detection boxes (accumulated child and
play partner bounding boxes from subsection IV-B1) and
child detection box (from subsection IV-B2). The IoU of two
detection boxes is defined as the ratio of the overlapped area

to the area of the union of two bounding boxes (Equation 1).

IoU =
Area of Overlap
Area of Union

(1)

We compute the IoUs between each pair of axis-aligned
bounding boxes which are one IoU between the child detec-
tor bounding box and one of the bounding boxes from the
person detection bounding boxes. We select the IoU score
of ≥ 0.75 as a good threshold for locating the child and
perform the following two checks to ensure that the located
bounding box is correct out of several other bounding boxes
obtained from the activity prediction model. At first, the
center coordinates pixel values of both the bounding boxes,
having a good IoU match are calculated. Then we check
whether the center coordinate lies in either of the two quad-
rants of the image (distinguished as left and right with the
center axis) and compare the quadrants in which the center
coordinate lies and record it. Next, we calculate the Euclidean
distance dc between the center coordinates of a good IoU
match (Equation 2). The lesser the distance score between
two center coordinates, the higher the chance that the person’s
bounding box encompasses the child. From the experiments,
we choose a distance threshold of 20 pixels and then select
the person bounding box with a good IoU match that agrees
with the quadrant rule and the distance measure. We now
know the child’s location and, therefore, it is easy to recover
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TABLE 2. Data details of models for computer vision-based assessment.

FIGURE 2. Flow diagram of ABA enrollment and assessment using activity
comprehension model.

the predictions and time intervals from the person detection
list obtained from the action prediction model. Similarly,
we recover activity predictions and time intervals from all

TABLE 3. Child detector model hyperparameters and results.

non-child detection boxes belonging to the play partner. With
these results, we can explain an automatic ABA activity
assessment in detail in the next section.

The distance between the two center coordinates

(cx1 , cy1 ), (cx2 , cy2 ) = dc =

√
(cx1 − cx2 )2 + (cy1 − cy2 )2

(2)

where (cx1 , cy1 ) and (cx2 , cy2 ) are the center coordinates of
two bounding boxes.

3) ABA VIDEO ASSESSMENT
We collected 21 videos from Clinic (No. 3.05/30th Insti-
tutional Ethics Meeting of Behavioral Sciences Division,
National Institute of Mental Health and Neuro-Sciences
(NIMHANS), Bangalore, India - Approved on 26/06/2021),
and 27 publicly available ABA videos for testing our ABA
Activity Comprehension model on one NVIDIA V100 GPU,
and predictions of videos are in the form of output plots
as illustrated in Fig. 4. The ABA Activity Comprehension
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FIGURE 3. Session monitoring and assessment with activity comprehension model.

FIGURE 4. Implementation of spatio-temporal activity comprehension model for ABA assessment.

model is used to understand a child’s interactions, activity
level, and attention with a play partner by analyzing ten
activities, including running, sitting, standing, engagement,
instruction engagement, hitting/fighting someone, watching
someone, holding objects/oblique toys, walking, and answer-
ing the phone. Any user who wants to assess engagement
and understand the ABA session can upload an ABA video
and gets predictions. These predictions are different activ-
ity classes predicted by a spatiotemporal action recognition
model (subsection IV-B1 and IV-B2). We get predictions
for the entire video length with specific activities shown
as a scatter plot at time intervals of seconds. The model
can efficiently assess videos from a camera with a tripod
stand in clinical sessions and from a mobile camera with-
out a stable tripod stands from home videos. The ABA
sessions with the Activity Comprehension model will help
the learners concentrate on learning goals and the clinicians
or therapists to augment their decisions on ABA session
outcomes.

The model also assesses the play partner and learner for
various activities shown in Table 1. A video can be uploaded
to analyze any of these activities, and a scatter plot of
engagement and non-engagement with time intervals would
be generated for the respective inputs. This scatter plot tells
crucial information with a frame-by-frame analysis of the
learner and the play partner’s activities during the session.
Each point shows the action class with a timestamp. The
discontinuities in the scatter plot indicate the time intervals
of no particular interest to the ABA outcomes. Therefore,
these scatter plot patterns can be used to trace the success
of therapy and intervention delivery by the therapist easily.
The assessment recordings and scatter plot predictions of the
model can predict a child’s skill level, leading to the line
of treatment. For instance, the therapist would be prepared
to deal with a violent child if the model had predictions
of hitting activity (see Fig. 5). The therapist can then work
closely on various attributes of the child’s behavior with prior
predictions reported from the model. The scatter plot not only
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FIGURE 5. Scatter plot of a child indicating hitting and running behavior.

highlights the presence of a particular class of activity but
marks the absence (if any) in a learner’s or therapist’s behav-
ior. In a child showing less attentive behavior towards the
play partner’s commands (i.e., lower engagement), the thera-
pist can be proactive to work on weaker behavior attributes,
strengthen them in the upcoming sessions, and track progress
for specific class activities. In this way, the ABA video
activity recognition model is of great clinical and therapeutic
significance.

The activities such as hitting, running, walking, and repet-
itive behavior indicate a low level of attention by the learner
towards commands of the play partner. Thus, with a plot
indicating such results, the customization and prognosis of
the therapy can be decided (see Fig. 6). Similarly, if the plot
of the play partner/therapist points towards using a phone, the
play partner could be replaced or evaluated for their actions
accordingly. Fig. 7 shows the pie charts of percentages of
activities for a child and therapist after conducting the ABA
session. To conclude, the model aids in diagnosis, prognosis,
customization of the therapy, and evaluation of the learner and
therapist’s progress/activities and so it is vital for the ABA
sessions and treatment of ASD children.

C. FACIAL EXPRESSION RECOGNITION MODEL
The experiments are conducted on the well-known FER2013
public dataset which has a collection of 35887 greyscales
(48×48) images in total [92] and other publicly accumulated
datasets. In the FER2013 dataset, each image gathered by
the Google image search API is labeled with one of seven
categories: anger, disgust, fear, happy, sad, surprise, and neu-
tral. However, the dataset contains several faulty samples

(e.g., non-face photos or images with faces wrongly cropped),
and the distribution of images among emotion categories is
not uniform. There are almost 6,000 photographs depicting
happiness, but only about 500 depict disgust. Additionally,
as none of the datasets had images of teenagers and tod-
dlers crying or laughing, we, therefore, compiled images
from the popular action recognition datasets (Kinetics [67],
Moments in Time [93], HMDB [66]), and from our video
dataset with 300 ASD children. We accumulate 9882 images
of toddlers and teenagers crying and 10268 images of them
laughing. The final enhanced dataset contains 51037 training
images, 3000 images for validation, and 2000 images for
testing (see Table 2). We trained a Resnet-34 backbone-
based facial expression recognition model for nine output
expression classes namely anger, disgust, fear, happy, sad,
surprise, laugh, cry, and neutral. We train a residual mask-
ing network of four primary residual masking blocks. Each
Residual Masking Block is comprised of a Residual Layer
and a Masking Block which acts on different feature sizes.
A 3×3 convolutional layer will first process a 224×224 input
image with stride 2 followed by a 2 × 2 max-pooling layer,
resulting in a spatial size reduction to 56 × 56. The cor-
responding forward layers of four residual masking blocks
generate feature maps of four spatial sizes (56× 56, 28× 28,
14 × 14, and 7 × 7) from the feature maps produced by the
preceding pooling layer. The network ends with an average
pooling layer and a 9-way fully-connected softmax layer
producing outputs for 9 facial expression classes (‘‘Angry,’’
‘‘Sad,’’ ‘‘Fear,’’ ‘‘Happy,’’ ‘‘Surprise,’’ ‘‘Cry,’’ ‘‘Disgust,’’
‘‘Laugh,’’ ‘‘Neutral’’). The model is trained for 250 epochs
with a batch size of 48, with the SGD optimizer, with a
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FIGURE 6. A regular output scatter plot of child and play partner to analyze per
session response.

FIGURE 7. Assessment output of child and play partner interactions.

learning decay rate of 0.9 and weight decay of 5e−4. The
learning rate is set to 0.001. Before the training process,
the original training images are resized to 224 × 224 and
transformed to RGB to support ImageNet pre-trainedmodels.
In addition, the training photos are enhanced to prevent over-
fitting. The dataset augmentation techniques included left-
right flipping, brightness variation, and rotation inside the
interval [-30, 30] degrees.

The accuracy measure is the evaluation metric for the
classification tasks (see Appendix Table 13). The accuracy

of the model on the validation set images is 74.4% and the
accuracy of the model on the test images is 73.9%. The con-
fusion matrix is shown in Fig. 8. The classes with the highest
scores are Happy, Sad, Surprise, and Neutral, while those
with the lowest scores were Laughing, Fear, and Disgust. The
evaluation scores per class for the 20 ASD test videos are
listed in Table 4.

Themodel is deployed on a Linux server with one NVIDIA
V100 GPU to provide real-time facial expression assess-
ment. Fig. 9 illustrates a child’s monitoring and assessment
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TABLE 4. Evaluation metrics per class on the test set of the facial expression recognition model.

FIGURE 8. Confusion matrix scores on the test set of the facial expression
recognition model.

approach. The FER model processes the video data stream
and outputs predictions of emotions along with time stamps
of their occurrence in a scatter plot. The therapist can view
the emotional assessment of the child using a pie chart,
as shown in Fig. 10. During our experiments, it is observed
that the detection of laughing or crying is more accurate for
numerous consecutive frames over a short duration than for a
single frame. The confidence of the network predictions for
sad/cry and happy/laugh is visually similar if a single frame is
processed. Hence, we grouped 20 consecutive frames of the
images and determined whether the confidence of the crying
or laughing class increased during subsequent frame predic-
tions, indicating greater and longer persistence of sadness or
happiness. Given the volatile nature of emotions in children
with ASD, understanding of the child’s emotions enables bet-
ter planning of activities suited to the child’s needs and remote
management and monitoring of the children with ASD.

D. JOINT ATTENTION DETECTION MODELS
Fig. 11 illustrates the methodology of our joint attention
detection model. We implemented two deep neural network
models for two crucial types of joint attention that therapists
frequently use to differentiate ASD from typically developing
children. First, joint attention follow-gaze is an activity in
which the therapist indicates to a child to look at somewhere
or something with his or her eyes, and the child must then
follow the therapist’s gaze. Successful joint attention
indicates that the child actively responded to the therapist’s

gaze by turning their head and trying to look in the same
direction. Another critical skill assessment in JA is hand
pointing.

1) JOINT ATTENTION — FOLLOW GAZE
The task of determining the orientation of people’s heads
from images or videos is known as Head Pose Estimation
(HPE). HPE has garnered a lot of attention [94], [95] with the
development of a variety of methods such as appearance tem-
plates, detector arrays, geometric, regression models, track-
ing, and hybrid methods. In low-resource clinical settings,
the use of costly, complex sensor systems such as magnetic
sensors, inertial sensors, lasers, and optical motion capture
systems makes it difficult not only to collect ground truth
data for developing effective HPE methods but also makes it
impossible in the deployed applications without these sensor
systems. However, RGB video cameras are cheap, easy to
use, and can be installed in clinics. The data collected from
the cameras provide novel paths to explore HPE methods
that can work on real-world videos. Existing methods are
effective for frontal views but not always for head poses
from all angles. Additionally, we need to identify the full
range of yaw angles for follow gaze detection. Full-range
yaw estimation is significantly less common than narrow-
range estimation, as most known HPE datasets concentrate
mainly on frontal to profile views. To determine yaw, recent
approaches classify poses into coarse-grained bins/classes
[96], [97], [98]. The limitations of using these existing meth-
ods are mentioned as follows: they do not predict pitch and
roll; full-range yaw estimation is not robust to occlusions;
unreliable pose estimation in heavy noise and jitter environ-
ments; low-resolution video; and utilization of multi-camera
over monocular images. Therefore, we aim to implement
a deep network to predict Euler angles over a single RGB
image’s entire range of head yaws.

In our clinical setting, a play partner interacts with a child.
One of the goals of ABA therapy is to improve a child’s joint
attention (JA) skills. A child is considered to have good JA
follow gaze skills if they respond and actively interact with
their play partner’s stimuli. For the JA follow gaze stimulus,
the play partner performs a subtle gesture with their eyes or
pointing hand, asking the child to look towards a direction,
typically behind or beyond the sight of the child, so that the
effectiveness of the JA follow gaze can be observed. As a
response to the stimulus, an attentive child would turn their
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FIGURE 9. Session monitoring and assessment with facial expression recognition model.

FIGURE 10. Assessment output of child’s emotions.

head and look in that direction, following their play partner’s
gaze.We automatically identify andmark these key JA scenes
in the video. To solve the problem of detecting the follow
gaze, initially, we need to identify people’s heads, track the
Euler angles predicted by the pose estimation model, and
then detect a full-range yaw rotation. Fig. 11 illustrates our
Joint Attention Follow Gaze block. The input video consists
of a play-based interaction of a child with a play partner.
First, head detection datasets [99], [100] are used to train a
YOLO-v3 object detector [89]. With the location of the spa-
tially identified heads, we track the Euler angles with a model
trained on the network that predicts pitch, yaw, and roll using
a multi-loss metric [101]. In computer vision, Euler angles
are commonly used to define any three-dimensional object’s
rotation by combining three sequential elemental rotations
along three distinct axes (X, Y, and Z) which represent the
rotation by three parameters: yaw, pitch, and roll. In human
head posture, roll computes the amount of X-axis rotation.
In head movement, it is the same as moving your head to the
left or right. The amount of rotation about the Y-axis is com-
puted via pitch which is comparable to glancing up or down
at a person’s head. Yaw determines the amount of rotation
about the Z-axis. For the human head, it might be interpreted
as either looking left or right. Fig. 11 illustrates head pose
predictions of successive images. The pose predictions help

track a human rotating through a complete revolution of yaw
but do not distinguish between a child, a play partner, or other
people in the video.

Since we are primarily interested in the full-range yaw
rotation of the child, we develop a child detector model
using 3274 annotated images of children (see Table 2) by
fine-tuning weights from Faster R-CNN with Resnet-50 (v1)
[91]. Table 3 summarizes detector model training parameters
and evaluation. The child detection model predicts the child’s
location in each video frame and generates a bounding box for
the child. We store the detected bounding boxes alongside the
time interval and compare whether the x and y coordinates of
the Origin (O) of the yaw, pitch, and roll axes are within the
child detector’s bounding box. We collect all the yaw values
with the child’s timestamps for the entire video duration.
We develop an algorithm for detecting the rotation based on
yaw values. The sign change in the yaw angles is a clear
indication of the rotation of the head from left to right or
vice versa when a child follows the gaze of a play partner.
Upon analyzing each frame of the video, a sign change from
positive to negative or vice versa indicating that the child
turned from one side to the other. The magnitude of the
sign change indicates the degree or magnitude of rotation
(a smaller magnitude of change indicates a slight head turn
and a larger magnitude indicates a complete head turn).
We record the time interval during which a child responds to
a follow-gaze stimulus, and detecting a change in the child’s
head position indicates a successful follow-gaze response.

2) JOINT ATTENTION — POINTING TO SOMEONE OR
SOMETHING
One of the goals of the JA assessments is to improve a
child’s JA hand-pointing skills to understand how well they
recognize and interact in their environment. For the JA hand-
pointing stimulus, the play partner verbally asks the child a
simple question to elicit an expected response of pointing
fingers toward a particular direction, typically in front or
behind the sight of the child, so that the effectiveness of JA
finger-pointing can be observed. As a response to the stim-
ulus, the child points a finger in that direction to answer the
question. For example, the play partner might ask, ‘‘Where is
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FIGURE 11. Illustration of joint attention models with follow gaze and hand pointing
blocks.

your mother?’’, ‘‘Where is the toy?’’ or ‘‘Where is the animal
picture in the book?’’ and the child will either point with their
index finger and a closed thumb finger or point with their
index finger and an open thumb finger. Fig. 11 illustrates
different orientations of finger pointing in the Joint Atten-
tion Pointing to someone/something block. We collected
only hand/finger pointing from various hand gestures and
hand-pointing annotated datasets [102], [103], [104], [105].
We trained a finger-pointing detector using 24369 annotated
images with their bounding boxes (see Table 2) by fine-tuning
weights from Faster R-CNN with Resnet-50 (v1) [91] to
obtain a mAP@0.5IOU score of 0.917 and an average recall
of 77%. Table 5 summarizes the hyperparameters used and
the results of the hand-pointing detector model evaluation.
Whenever the child points to someone or something, the
model detects it, and we record all the time stamps of the
detection in the entire video.

TABLE 5. Finger pointing detector model hyperparameters and results.

V. RESULTS
In this section, we describe our experiments conducted on
previously unseen test data, alongwith evaluationmetrics and
results.

A. TEST DATA
The procedure for clinical and publicly available data pro-
cessing for all the models during testing is the same as
described in Section IV-A.

1) Activity Comprehension model: 48 Videos (21 videos
from Clinic, 27 publicly available)

2) Facial Expression Recognition model: 10 Videos
3) Joint Attention Recognition model: 10 Videos

All the videos are collected and annotated at the frame level
and these human annotations will be used as ground-truth
labels for comparison of the results.

B. FACIAL EXPRESSION RECOGNITION MODEL
Ten videos of children exhibiting any of the nine facial
expressions were gathered. The facial expression recogni-
tion (FER) model, when inferred, stores the predictions for
each video frame. For each frame, we compare the model
prediction to the ground truth. A prediction is considered
as correct if it is of the same class as the ground truth
and has a confidence level of at least 85%. The confusion
matrix of the FER model is shown in Fig. 12. Table 6 shows
the evaluation scores per class for all ten videos. The class
‘‘None’’ comprises the frames of the background and the
times when no face is visible. From the experimental results,
it is observed that the accuracy is above 93% for all the
expression categories.

C. ACTIVITY COMPREHENSION MODEL
1) CLINICAL AND PUBLICLY AVAILABLE ABA VIDEOS
Twenty-one recordings of children participating in ABA
sessions are collected and evaluated using computer vision
(Activity Comprehension model) for the activities mentioned
in Table 1. The videos are inferred utilizing the Activity
Comprehension model, and the predictions for each video
frame are compared to the ground truth. The prediction is

47920 VOLUME 11, 2023



V. G. Prakash et al.: Computer Vision-Based Assessment of Autistic Children

TABLE 6. Evaluation metrics per class on unseen test videos of children using the facial expression recognition model.

FIGURE 12. Confusion matrix scores on unseen test videos of children
with the facial expression recognition model.

considered correct if the class prediction is similar to the
ground truth and has a confidence level of ≥ 50 percent. The
evaluation scores per class for all 21 videos of the children are
listed in Table 7. The model can detect most of the children’s
activities with at least 70% accuracy. Precision, recall, and
accuracy are highest for actions such as sitting and holding
objects or oblique toys for children. The per-class metrics
corresponding to the play partners in the videos are shown
in Table 8. Since the child or the play partner may have
more than one label class (sitting and instruction engagement,
sitting and holding objects) at each instant, it is necessary to
evaluate the temporal alignment of different actions against
the ground truth. We define the temporal Intersection over
Union (t-IoU) metric [106] for evaluating the action predic-
tion metrics considering each class’s start and end of time
instants. t-IoU is the sum of the intersections between the
predicted and observed time intervals for each predicted class,
divided by the sum of their unions. The true-positive t-IoU
threshold is set at 0.30. mt-IOU@0.3 is the mean t-IOU
across all test videos with a threshold of 0.3 or above. The
mt-IoU@0.3 metric severely penalizes any temporal mis-
alignment when examining the model’s true performance.
Many false positives and false negatives are observed, and
some actions, such as hitting and answering the phone, are
not captured on video, and their evaluations are represented
as null (-).

Similarly, we test the performance of twenty-seven pub-
licly available ABA videos of children collected from

YouTube and Vimeo video search engines. Unlike the previ-
ous videos, these videos do not conform to play-based activ-
ities and include multiperson interactions other than child
and play partner interactions, and significantly vary from
the training video samples of the AVA dataset [64]. Hence,
testing our Activity Comprehension model on these videos
will also be helpful to evaluate the robustness of adversarial
attacks and provide insights to address out-of-distribution
detection. Tables 9 and 10 show the evaluation scores for
each class of the children and play partners across all the
videos. Themodel identifies potentially dangerous behaviors,
such as hitting or fighting, and performs best when rec-
ognizing children’s actions, such as holding objects, sitting
down, and following instructions and is also capable of deter-
mining whether a play partner uses a phone, how engaged
they are with children, and how they interact with toys and
objects.

D. JOINT ATTENTION
1) PUBLICLY AVAILABLE VIDEOS
We gather ten videos of children participating in ABA ses-
sions from publicly accessible videos of children on JA
gaze following and finger-pointing skills. Table 11 lists the
evaluation scores of joint attention (follow gaze and joint
attention - pointing to someone or something) models for all
ten videos. The experimental results reveal that both models
of joint attention are accurate to millisecond levels in terms
of detecting the instant at which joint attention is successful.
The majority of errors are false negatives caused by different
configurations of the finger pointing away from the camera’s
line of sight.

E. EVALUATION ON BASELINE METHODS
We evaluate the performance of our FER model on the most
competitive well-known baselines on our enhanced image
data with 2000 images used in our test set and on the public
dataset FER2013 test images. Since the FER2013 does not
have the cry and laugh classes, both classes are mapped to sad
and happy, respectively, for a fair comparison. Ourmodel out-
performs all the models in the baselines on our test set with an
accuracy of 73.9% followed by the Ensemble 8-CNN frame-
work with 73.50% and Ensemble ResMasknet with 73.20%.
Additionally, our model is competitive with ensemble-based
methods for the FER2013 dataset. Table 12 lists the baseline
methods and compares the accuracy between our test set
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TABLE 7. Evaluation metrics per class of children on the clinical test set using the activity comprehension model.

TABLE 8. Evaluation metrics per class of play partners on the clinical test set using the activity comprehension model.

TABLE 9. Evaluation metrics per class of children on the publicly available videos using the activity comprehension model.

TABLE 10. Evaluation metrics per class of play partners on the publicly available videos using the activity comprehension model.

and the FER2013 dataset. The baseline implementations are
evaluated in TensorFlow, and the rest of them are imple-
mented with the code provided in the studies. The method
Ensemble ResMasknet outperforms with 76.82% accuracy,

followed by the method CNNs and BOVWwith SVM having
75.42% followed by Ensemble 8 CNN-based method with
an accuracy of 75.20% and our model with an accuracy
of 74.15%.
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TABLE 11. Evaluation metrics of joint attention models on ten publicly
available videos.

TABLE 12. Evaluation of the performance of the FER model using
well-known methods on 2000 images in our test set and test set of
FER2013 dataset.

For the activity comprehension model, we only utilized
10 of the 80 action categories, and we are only interested
in two-person interactions. Since popular baseline models
evaluate multi-person interactions and also due to resource
constraints, we only performed the evaluation on 48 real-
world videos, and these results are listed in Tables 7-10. More
details on competitive baselines can be found in detail in the
study [88].

Joint Attention Follow Gaze detection requires a pipeline
of multiple models involving head detection, child detection,
and finally head pose estimation via Euler angle prediction;
therefore, there is no direct comparison in the clinical liter-
ature for a fair evaluation. We are only interested in real-
time, long-duration videos, so a comparison of individual
blocks to popular image datasets is outside the scope of
this paper due to hardware resource constraints. However,
details on full-range head pose estimation and comparison
on specific head-image datasets are described in the studies
[96], [97], [98], [101]. For Joint Attention Hand pointing
estimation, we do not compare against 2D or 3D gesture
recognition datasets because our model is distinct from the
majority of conventional approaches, where our model is
trained using images collected and curated from four hand-
or finger-pointing datasets (see section IV-D2).

VI. DISCUSSION
Three independent vision-based paradigms are designed
as follows: a model for Activity Comprehension for

child-therapist interaction, a model for FER of children, and a
real-time approach for automatic joint attention recognition.
The demand for low-cost diagnostics, universal screening
guidelines, and research funding availability have prompted
endeavors to create technology-based ASD screening [9],
[39], [48]. Technological advances and the availability of
low-cost cloud infrastructure have motivated researchers to
automate the creation and processing of video data by con-
structing data pipelines. Integrating data pipelines with ML
technology has advanced the development of cost-effective
ASD detection and assessment methods [31], [38], [47].
However, ASD diagnostic services are not always accessible,
cost-effective, or data-driven. Our findings indicate that the
technology-based ASD approaches can be generalized to the
broader population with neurodevelopmental disorders along
with few technological modifications and can serve wider
population groups with enhanced quality, access, and afford-
ability. In addition, technology-enabled innovations are antic-
ipated to supplement traditional detection methods for the
following reasons: Diagnostic methods based on ML and DL
can be trained on a large volume of involuntary multimodal
data generated from various activities to detect children at
risk for ASD. Few diagnostic techniques, such as CARS-2
[30], can diagnose children older than two years. Moreover,
children do not develop social communication, language, and
other crucial milestones until the second or third year of life.
An untrained clinician may therefore receive contradictory
results when evaluating ASD risk in infants under two years
of age [1], [33]. Abbas et al. [39], Gupta et al. [38], Kohli
et al. [9], and Uddin et al. [48] have highlighted the novel ML
methods and their feasibility of analysis on ASD and other
neurodevelopmental landmarks from behavioral, eye gaze,
audio, facial expression, postural, and EHR assessment data
to identify children at risk of ASD at an early age, circum-
venting the age restrictions and limitations of the traditional
diagnostic instruments.

Researchers have collected multimodal data from hospi-
tal EHRs and constructed enormous multimodal data lakes
which enable DL and ML algorithms to discover clinically
significant patterns for recognizing ASD, tracking patients
over time, prescribing and tailoring treatments, and alleviat-
ing ASD severity [39], [47].

A. PRACTICAL IMPLICATIONS
The ABA treatment enhancement efforts described in this
research can advance the field of neuroscience by increasing
early identification and consequently expanding access to
early intervention treatments which can be used by clini-
cians accessible via mobile or web applications, significantly
enhancing their capacity and meeting the needs of children
with ASD and other developmental delays (speech, devel-
opment, and intellectual delay). By supporting the adoption
of these technologies through controlled pilots with stake-
holders such as parents, doctors, and schools and digitizing
downstream detection processes, evaluations, and thera-
pies, a computerized, human-supported ASD diagnosis, and
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management framework can be launched and migrated to
an autonomous and personalized digital model to optimize
cost, maximize scale, and fast-track access to referrals and
intervention. According to our knowledge, this is the first
attempt to create an automated, integrated ABA assessment
framework deployed on the cloud for real-time assessment
using video data.

Moreover, to decrease bias and ensure the internal and
external validity of the implemented models, there is an
urgent need to undertake large clinical trials, including the
participation of researchers and doctors from many nations
with diverse backgrounds, and ethnicity. The purpose of
the partnership is to validate the results, determine effi-
cacy, address potential technology edge cases, and design
approaches to incorporate children from various backgrounds
into research investigations. Our experimental results from
testing joint attention, Activity Comprehension, and facial
expression models with YouTube videos demonstrate robust-
ness in chaotic and natural videos.

It is appropriate for medical experts in the ABA and clini-
cal psychology fields to evaluate the findings’ validity. The
study’s strengths include the use of 68 real-world clinical
videos and comparisons against ground-truth video annota-
tions provided by clinicians. However, medical professionals
have the expertise and experience to interpret the findings
and provide additional insights that may not be immediately
apparent to those outside the clinical context. In our case,
we cross-reviewed the annotations provided by a clinician
to ensure a coherent interpretation of video annotations and
minimize annotator bias. In addition, medical professionals
assessed the study’s methodology, identified a few possible
limitations, and made suggestions for future research, such as
in the case of multiple children handled by a single therapist
for Activity Comprehension models. Involving medical pro-
fessionals in the evaluation of the study’s findings increased
the study’s rigor and credibility and ensured that the results
were appropriately interpreted and implemented in clinical
practice.

B. LIMITATIONS AND FUTURE DIRECTIONS
While developing the Activity Comprehension model, the
current study provides solutions to only a subset of the many
activities performed during ABA therapy; many other action
classes specific to children can be incorporated if sufficient
resources are allocated to model development. As ML tech-
nology develops, it is possible to reduce false positives and
negatives in the FERmodel, thereby increasing its sensitivity,
precision, and specificity. Even though we have collected
as many images of children’s faces as possible to train an
online FER model, there is still room for additional data and
microexpressions. In addition, each model assumes a partic-
ular video data distribution: (i) the Activity Comprehension
model assumes person-person or person-object interactions,
(ii) the FER model assumes frontal face visibility, and joint
attention models perform sub-optimally in crowded scenar-
ios. Most of the children’s videos we collected lack clinical

diagnosis information for ASD or other neurodevelopmental
disorders. Future work should include a large clinical trial
testing the models on grouped cohorts of ASD, neurotypical,
and other developmental disorders that can reveal the level of
efficacy and identify areas for further development. Lastly,
more real-world test cases may uncover unforeseen edge
cases that hamper model performance and generalizability.
Future studies can incorporate clinicians’ survey responses to
determine the efficacy of computer vision models that aid in
accurate, timely diagnosis and treatment monitoring. Future
studies can integrate various methods into a single pipeline or
architecture with a unified model that is trained in a multitask
fashion for analyzing human behavior, joint attention, social
communication skills, facial expression and motor imitation
recognition, and eye contact detection. Further, speech and
auditory features can be incorporated that provide rich fea-
tures in the case of social interaction and communication to
develop a multimodal vision-speech model that can identify
abnormalities in speech and social behaviors.

VII. CONCLUSION
The paper investigates the viability of a computer vision
and deep learning-based ABA treatment and assessment that
experts or non-experts can use to detect important behavioral
activities, emotions, and JA using videos. Experiments with
68 clinical and public videos from the real world reveal that
the activity comprehension model reports an overall accu-
racy of 72.32%, the joint attention models show an accuracy
of 97% for gaze following and 93.4% for hand pointing,
and the facial expression recognition model has an overall
accuracy of 95.1%. During the development of the activity
comprehension and facial expression recognition model, the
proposed methodology incorporates diversity and fairness
to low-income and middle-income populations by collecting
videos of children of different ages, socioeconomic statuses,
and ethnicity. The models’ predictions help to make real-time
monitoring and assessment reports that help clinicians to
make decisions about ABA services.

APPENDIX A
A. MODEL EVALUATION METRICS
The robustness of the machine learning model can be evalu-
ated on various metrics items listed below.

a) Accuracy is the number of correct predictions divided
by the total number of predictions.

b) True Positive (TP) signifies how many positive class
samples the model predicted correctly.

c) True Negative (TN) signifies how many negative class
samples the model predicted correctly.

d) False Positive (FP) signifies how many negative class
samples the model predicted incorrectly.

e) False Negative (FN) signifies how many positive class
samples the model predicted incorrectly.

f) Precision is the ratio of true positives and total positives
predicted.
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g) Recall or Sensitivity is the ratio of true positives to all
the positives in the ground truth.

h) Specificity is defined as the proportion of actual neg-
ative class samples, which got predicted as the true
negatives.

i) F1 Score is the harmonic mean of precision and recall.
j) Negative Predictive Value is the ratio of the number of

true negatives to the total number of class samples that
test negative.

Table 13 lists evaluationmetrics withmathematical notations.

TABLE 13. Machine learning model performance metrics.
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