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ABSTRACT Lag signal problems occur in acquiring X-ray image sequences from dynamic flat-panel
detectors due to amorphous pixel photodiodes and incomplete readouts. Based on a linear, time-invariant
systemwith a multiple exponential moving average model for the lag signal, Hsieh et al. proposed a recursive
deconvolution algorithm for lag corrections, and Starman et al. proposed a nonlinear correction algorithm to
cope with nonlinear lag properties. In this paper, we consider an autoregressive model of order 1 to describe
lag signals and conduct lag corrections through simple linear and nonlinear decorrelation schemes for the
exposure-dependent lag signals. In order to correct the current image frame, using only the previous frame
is enough for the autoregressive model. We also evaluate the lag correction performance of the proposed
lag correction algorithms by measuring the lag correction factor to show the successful removal of the lag
signals with low computational complexities.

INDEX TERMS Autoregressive model, fluoroscopic imaging, lag correction, lag correction factor (LCF),
power spectral density (PSD), spectral flatness measure.

NOMENCLATURE
a Autoregressive coefficient in AR(1).
a(µ) Exposure-dependent coefficient.
D,R Difference and the ratio of line mean

curves.
fn, gn Signal with lag and independent signal.
g′
n Decorrelated signal.
g′′
n Recursive deconvolution signal.
qn Acquired signal with the electronic

noise.
r Lag correction factor (LCF).
U Number of pixels per one of an axis.
u1 Number of pixels per width image.
uo X-ray exposure turn-off position in the

n=0 frame.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingli Li .

α, ν Frame gap and the signal per pixel
period.

µ Signal mean.
λ0, λ1 Line means of n = 0 (X-ray off) and 1.
8f , 8g, 8ξ Temporal power spectral density (PSD).
ξn, ξ ′

n Electronic noise.
σ 2
g , σ

2
ξ Variances of g and ξ .

I. INTRODUCTION
Fluoroscopy is a type of medical imaging that shows an
X-ray image sequence on a monitor using a direct or indirect
dynamic flat-panel detector (FPD) [1]. An indirect dynamic
FPD consists of a CsI(Tl)-scintillator layer and photodiodes
controlled by an amorphous Si (a-Si) or amorphous InGaZnO
(a-IGZO) thin-film transistor (TFT) panel. The charges gen-
erated from the X-ray photons are accumulated or stored in
the photodiodes and discharged in the scanning step through
the TFT array to acquire an image [2]. Here, the accumulated
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charges from the previous image frame should be removed
from each pixel of the TFT array. However, the lag signal is
produced due to the charges trapped in the depletion layer of
the amorphous photodiodes [3], [4] and incomplete readouts
of the indirect dynamic FPD [5], [6]. The lag signal causes
artifacts, such as temporal blurring and image ghosting in
the following image frames, and reduces temporal resolutions
when an image sequence is acquired [6]. Current dynamic
FPDs offer about 1% image mean in the first frame. A certain
amount of the lag signal can reduce the noise due to blur-
ring [7]. In this case, using an FPD with no lag and employ-
ing digital image processing methods, such as real-time
recursive deconvolution [8], can optimize the trade-off
between the required temporal resolution and low image
noise. Therefore, it is necessary to research and develop a
dynamic FPD that generates small lag signals in fluoroscopic
imaging.

Hardware approaches also exist to remove the lag signals
from an a-Si FPD. The first approach is to insert empty frames
at the X-ray source turned off between acquired X-ray frames
to remove the lag signal out of the FPD during acquisition [9].
Even though many lag signals can be removed in this way
because the lag signal decays exponentially, empty frames
increase the image scan time. Furthermore, the charge trapped
at deeper energy levels in the band gap will not have emptied
and may still contribute to the FPD output. We can use the
light-emitting diodes in the second approach to illuminate the
TFT panel and saturate the traps between X-ray illumination
and FPD readout [10]. With this approach, the lag signal
increases in the panel but is made into a uniform offset and
causes temporal blurring. Starman et al. [11] investigated a
new hardware-based approach to reduce the lag signal in
an a-Si FPD based on photodiode biasing and to evaluate
its effectiveness at removing shading artifacts in the cone
beam computerized tomography reconstructions. They also
examined the feasibility of a partially hardware-based solu-
tion. However, these methods could not correct the temporal
behavior of the scintillator and required hardware redesigns
with increased dark currents.

Software approaches can model and correct the lag signals.
Most approaches determine a temporal impulse response
function (IRF) based on the linear, time-invariant (LTI) mov-
ing average (MA) model and then deconvolve it from the
raw FPD signal to remove the lag portion from the input
signal [3], [12], [13], [14]. Hsieh et al. [3] represented the
temporal IRF for afterglows as a multi-exponential signal,
where the time constants and coefficients were known a priori
for the underlying continuous process [15]. However, when
an IRF assumes an LTI system, the measured IRF is highly
sensitive to the measurement technique [10]. Furthermore,
the residual error still exists in the LTI restorations because of
a nonlinearity property that the lag mean portion increases as
the exposure decreases [16]. Starman et al. [4] introduced an
exposure-dependent lag model and developed the nonlinear
consistent stored charge (NLCSC) method to account for
the IRF measurement technique and exposure dependencies.

FIGURE 1. AR(1) model for lag signals and the lag correction based on
decorrelation signal. (a) AR(1) model with the autoregressive coefficient a
and electronic noise ξn. (b) Decorrelation step for a lag correction.

Even though NLCSC does not require intimate knowledge
of the semiconductor parameters specific to the FPD, the
implementation complexity is high to acquire the nonlinear
model.

In this paper, we first introduce an autoregressive model of
order 1 (AR(1)) to characterize the lag signals instead of the
MAmodel [7], [17].We next propose linear and nonlinear lag
correction algorithms through a simple decorrelation scheme
and conduct the lag corrections for X-ray image sequences
practically acquired from dynamic FPDs [18]. Lag correc-
tions based on theMAmodel require iterative deconvolutions
in the spatial domain [3]. However, based on the AR(1)
model, the proposed algorithm can conduct the lag correc-
tion by estimating the autoregressive coefficient and using
only the previous frame, which can be conveniently imple-
mented at the field-programmable gate array (FPGA) level.
Furthermore, the nonlinear property can be managed using an
exposure-dependent autoregressive coefficient. To evaluate
the lag correction performance of the developed dynamic
FPD, measuring the magnitude of the lag signal is impor-
tant. We assess its correction performance by measuring the
lag correction factor (LCF) [5]. Here, we consider low-lag
dynamic FPDs with relatively low lag signals in the first
frame as small as below 5%, corresponding to an LCF of 0.9.

This paper is organized in the following way. In Section II,
we introduce the lag signals based on the AR(1) lag model
and propose techniques for measuring the model parameters
based on mean and correlation, respectively. We then propose
linear and nonlinear decorrelation algorithms in Section III.
Performance evaluations of the lag correction algorithms
are conducted in Section IV. Simulations and experimental
results using X-ray images acquired from dynamic FPDs are
shown in SectionV. The paper is concluded in the last section.

II. LAG AUTOREGRESSIVE MODEL
In this section, we introduce an AR(1) model for the lag sig-
nals in dynamic FPDs. For the AR(1) lag signals, we consider
various techniques to estimate the autoregressive coefficients.
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FIGURE 2. Image mean curves with respect to the image frame.

A. AUTOREGRESSIVE MODEL FOR THE LAG SIGNALS
We consider an AR(1) model for lag signals of dynamic
FPDs with an autoregressive coefficient a (0 ≤ a < 1)
[17, p. 62]. Letting U be the number of pixels on each axis,
a discrete pixel position u can be denoted as u := (u1, u2) ∈

{0, · · · ,U − 1}2. The resultant image fn with the lag signal
can be defined as an AR(1) stationary sequence:

fn[u] := afn−1[u] + (1 − a)gn[u], (1)

where gn denotes an independent, identically distributed sig-
nal from the photon noise of X-rays. We assume that gn has a
Poisson distribution with mean µ [19]. In (1), afn−1 implies
the lag signal from the previous image frame fn−1. If we
consider the electronic noise ξn, then the acquired image qn
can be defined as

qn[u] := fn[u] + ξn[u], (2)

where ξn is an independent, identically distributed signal with
mean zero and variance σ 2

ξ as shown in Fig. 1(a).

B. MEAN-BASED ESTIMATION
In Fig. 2, due to the trapped charges and incomplete readouts
from the amorphous photodiodes, the image mean is not zero
even after the X-ray is turned off [20]. The autoregressive
coefficient a in (1) can be estimated from a ratio of the block
image mean of qn [7], [21] using a transient decaying image
sequence of Fig. 2. Here, a can be estimated by

a =
E{q1}
E{q0}

, (3)

where E{q0} and E{q1} are acquired at fully X-ray exposed
and turn-off conditions, respectively. In (3), the effluence of
the electronic noise ξn can be ignored because of its zero
mean. Note that a pulsed X-ray source should be used with
the pulsed fluoroscopy mode in the dynamic FPD to use the
relationship of (3) [16], [22], [23].

In an FPD, an X-ray image is acquired from reading out
the signal of data lines u1 while scanning the gate line u2.
If we use a continuous X-ray source with the continuous
fluoroscopy mode, then due to the scanning process of read-
ing charges [24], the line-mean curve, denoted as λ0(u1) and
λ1(u1), obtained along the data-line direction of u2, shows a
linearly decreasing shape after a gate-line position of u1 =

uo, where the X-ray turns off, as shown in Fig. 3. Hence,
special consideration is required to obtain a similar to the line
mean [24], [25]. For a continuous fluoroscopy mode under an
X-ray tube with a constant potential generator [26], a pixel

FIGURE 3. Decaying line means, λ0 and λ1, of two transient image frames
when the X-ray tube turns off at u = uo of n = 0 and 1 in a dynamic FPD.

FIGURE 4. Estimations of the autoregressive coefficients a based on the
line mean for the AR(1) model. (a) Line mean difference method in (5).
(b) Line mean ratio method in (7).

integrates charges during the image frame period of U + α

pixels, where α represents the frame gap. Hence, for a given
pixel, the signal meanµ can be represented asµ := (U+α)ν
(DV, digital value), where ν (DV/pixel) is a value yielded for
a pixel period and is dependent on the incident exposure [24].

LetD(u1) denote a difference between the linemean curves
of n = 0 and n = 1, for a scan-line position u1, and be defined
as

D(u1) := λ0(u1) − λ1(u1). (4)

The difference D can be described with two linear polynomi-
als as shown in Fig. 4(a). The left and right polynomial curves
intersect at u1 = uo [25, AR3]. Hence, a can be obtained from

a = 1 −
D(uo)

µ
. (5)

From (5), we can obtain the autoregressive coefficient a using
the current image after the X-ray turns off and the previous
image.

For narrow X-ray images from fast dynamic detectors, it is
hard to find the intersection point uo. Hence, estimating a
from (5) is not easy. Instead of using the difference of (4),
we can use a ratio of the line mean curves as follows. Let
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FIGURE 5. Correlation-based methods [5], [7] and the PSD-based
method [27] use the steady-state image sequences to measure LCF
values.

R(u1) denote the ratio of the line mean curves of n = 0 and
n = 1, and be defined as

R(u1) :=
λ1(u1)
λ0(u1)

. (6)

Note that the ratio satisfies the following relationship:

a = R(u1), (7)

for u1 > uo as shown in Fig. 4(b) [25, AR4]. Even though the
ratio R can yield an estimate of a without searching the inter-
section uo, the approach based on the ratio R shows unstable
or low-precision estimate values, especially at low doses.
Hence, using the different approach from (5) is preferable for
a wide range of incident exposures.

C. CORRELATION-BASED ESTIMATION
The correlations of fn can be used to estimate the autoregres-
sive coefficient a [5], [7] using a steady-state image sequence,
as shown in Fig. 5. In other words, a can also be estimated by

a =
Cov{fn, fn+1}

Var{fn}
=

Cov{qn, qn+1} − Cov{ξn, ξn+1}

Var{qn} − σ 2
ξ

. (8)

Here, the variance of the electronic noise, σ 2
ξ , can be esti-

mated from dark images, which are acquired without expo-
sure, and can be extracted. Because the lag signal implies
the remaining signal mean at the consequent image frames,
using the mean-based method of (5) or (7) in estimating the
autoregressive coefficient a can provide more accurate results
than the correlation-based indirect method of (8) [24].

III. LAG CORRECTION BASED ON THE AUTOREGRESSIVE
MODEL
In this section, we propose lag correction algorithms based
on the AR(1) model.

We first correct the lag signals from the acquired X-ray
images of qn. Using qn, the proposed linear lag correc-
tion algorithm restores gn from a decorrelation scheme [17,
p. 253]:

g′
n[u] :=

qn[u]−aqn−1[u]
1 − a

, (9)

for each pixel u as shown in Fig. 1(b). Note that (9) is a
linear predictive coder [17] and requires only the previous
image frame to decorrelate or correct the current image. The
estimate g′

n of (9) can be rewritten as

g′
n[u] = gn[u] + ξ ′

n[u], (10)

where ξ ′
n[u] := (ξn − aξn−1)/(1 − a) is generated from the

electronic noise. Note that the mean of ξ ′
n is zero, and the

variance is given as

Var{ξ ′
n} =

1 + a2

(1 − a)2
σ 2

ξ . (11)

Because the electronic noise in g′
n satisfies

σ 2
ξ ≤ Var{ξ ′

n} ≤

(
1 + a
1 − a

)2

σ 2
ξ , (12)

the restored image g′
n can contain more significant electronic

noise levels than the case of qn [28].
The linear lag correction scheme of (9) can be easily imple-

mented with low computational complexity. For practical
dynamic FPDs, however, the autoregressive coefficient of the
AR(1) model depends on the signal mean or the incident
exposure. Hence, we next introduce a nonlinear lag correction
algorithm. The AR(1) model of (1) can be extended to an
exposure-dependent nonlinear lag model as

fn[u] = a(fn−1[u])fn−1[u] + [1 − a(fn−1[u])] gn[u], (13)

where the exposure-dependent autoregressive coefficient
a(µ) is dependent on the previous signal fn−1 changes accord-
ing to the exposure. The proposed linear lag correction algo-
rithm of (9) can be modified as a nonlinear lag correction
algorithm:

qn[u] − a (qn−1[u]) qn−1[u]
1 − a (qn−1[u])

, (14)

for each pixel of u. Because the previous signal fn−1 is not
available from the acquired image sequence, qn−1, which
includes the electronic noise ξn−1, is employed to obtain the
correlation coefficient a(µ) for each pixel of u.

IV. PERFORMANCE EVALUATION OF THE LAG
CORRECTION
In this section, the performances of the proposed lag cor-
rection algorithms are evaluated based on observing the
LCF values. Here, an LCF value of 1 implies there are no
lag signals. Lee and Kim [25] proposed and summarized
several LCF measurement methods based on the MA(L)
[25, MA1-MA5] and AR(1) models [25, AR1−AR5].

A. LAG CORRECTION FACTORS BASED ON MEAN
The first-moment methods for measuring LCF use the signal
mean of transient decaying image frames acquired from the
continuous or pulsed X-ray source [24], [25]. We observe
the lag correction performance based on signal means from
the LCFmeasurement methods. The LCF of the lag-corrected
signal g′

n of (9) is investigated based on signal means as
follows. If the X-ray is tuned off from n = 1 as shown in
Fig. 2, then gn = 0, for n ≥ 1, and thus g′

n = ξn, for n ≥ 1.
Therefore, we can have a mean ratio of E{g′

1}/E{g′

0} = 0 as
an estimate of a′ from (3). Let r denote the lag correction
factor. Because the LCF value for the AR(1) model is given
as r = (1−a′)(1+a′) [25] and a′

= 0, the LCF value satisfies
r = 1. Therefore, the corrected signal g′

n has no lags.
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FIGURE 6. Temporal PSD of the AR(1) lag model in (17). The lag system hn
plays a low-pass filter, and thus the PSD curve decreases as the
normalized frequency increases to ω/2π = 0.5. Note that the LCF for
AR(1) satisfies r = (1 − a)/(1 + a) for a correlation coefficient of a.

B. LAG CORRECTION FACTORS BASED ON CORRELATIONS
We observe the correlations and temporal PSD curves of
acquired image sequences based on the AR(1) lag model
to evaluate the lag correction performance of the proposed
algorithm. The second-moment methods, which use the cor-
relations, including the temporal PSD, use the steady-state
second moments of image frames acquired from continuous
and pulsed X-ray sources [5], [25].

We first observe the lag correction performance from
the correlation-based LCF measurement from (8). For a
steady-state image sequence of Fig. 5, it is clear that the
covariance of g′

n and g′

n+1 is equal to zero. Hence, a′ is
zero for g′

n, and the LCF value is also one. Therefore, the
decorrelated signal g′

n has no lag signals.
We next observe the LCF values from the temporal PSD.

The IRF of hn in the AR(1) model can be a causal system:
hn = (1 − a)an, for n ≥ 0, and 0 otherwise [5], [17]. The
acquired image qn can then be rewritten as an infinite impulse
response system as

qn[u] =

∞∑
k=0

hkgn−k [u] + ξn[u]. (15)

We can also restore gn from a recursive deconvolution step:

g′′
n[u] =

qn[u] − (1 − a)asn[u]
1 − a

, (16)

where sn[u] := g′′

n−1[u]+asn−1[u], in a similar manner to [3].
Because sn = (fn−1 + ξn−1)/(1 − a), g′′

n is identical to g
′
n of

the decorrelation step (9). Let 8q denote the temporal PSD
of qn. From (15), 8q is given as

8q(ω) =
(1 − a)2

1 + a2 − 2a cos(ω)
σ 2
g + 8ξ (ω), (17)

where ω is a normalized radian frequency and 8ξ is the
temporal PSD of the electronic noise ξn [17, p. 64]. In (17),
the spectral flatness measure (SFM) of fn is 1 − a2, which is
less than 1 due to the lag. The PSD of fn at ω = π is equal

to r2σ 2
g and thus decreases as r decreases while the PSD at

ω = 0 is fixed to σ 2
g as illustrated in Fig. 6.

From (15), the LCF from hn can be rewritten as r =∑
∞

k=0 h
2
k . Note that, from Parseval’s theorem, the PSD of (17)

provides the following LCF relationship:

r =
1
2π

∫ π

−π

(1 − a)2

1 + a2 − 2a cos(ω)
dω =

1 − a
1 + a

(18)

similarly to the LCF measurement method based on the tem-
poral PSD [27].

We now obtain the temporal PSD of the decorrelated g′
n,

which is denoted as 8g′ and can be given as

8g′ (ω) = σ 2
g + 8ξ ′ (ω). (19)

In (19), the PSD of gn is a correlation of σ 2
g , and thus the LCF

value is 1. The second term on the right side of (19) is the
PSD of ξ ′

n and can be estimated from a dark image sequence.
Hence, the PSD curve of the decorrelated g′

n can be flattened
or whitened by subtracting 8ξ ′ . Therefore, it can be shown
that the lag signals are corrected from the proposed algorithm
based on the temporal PSD observation.

V. SIMULATION RESULTS
In this section, we conducted simulations and experiments for
the lag correction based on the AR(1) model, and dynamic
FPDs from DRTECH Co. Ltd. (www.drtech.com) were used.
In the dynamic FPDs, the a-IGZO TFT panel with the
a-CsI(Tl) scintillator controlled the photodiodes. We mea-
sured the autoregressive coefficient a using white images
acquired from uniformly exposed X-rays under the RQA5
and Mo/Rh conditions depending on applications [27], [29]
and dark images without exposures. We used image mean
from a transient decaying image sequence after the X-ray tube
tunes off for the line-mean method of (5) or (7). Here, we also
used a temporal correlation coefficient from a steady-state
image sequence as shown in (8) [5], [7]. The frame rates of
the image sequences were 10-30 frames per second (fps).

A. TEMPORAL BLURRING FROM THE LAG SIGNALS
We first observe a synthetic example of temporal blurring
due to the lag signal in mammography imaging. Fig. 7(a)
shows a processed and enhanced mammography image from
RConsole2 (www.drtech.com) and Fig. 7(b) shows a nonlin-
ear lag signal of a(fn−1)fn−1.

The blurring amount can be observed by measuring MTF
degradation for moving object image frames based on para-
metric MTF modeling and image synthesizing. We first
conduct parametric modeling for the FPD MTF [30], [31].
To measure the MTF of a given FPD, we acquire slant-
edge images under an appropriate exposure from a slant-edge
phantom with a slant-edge angle of ≈ 2.7◦ as described in
the IEC62220 standard [27]. We then conduct parametric
modeling for the measured FPD MTF [30], [31]. Here, a
3rd-order polynomial fitting is performed on the log value of
MTF. Based on synthesized moving edge images under the
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FIGURE 7. Synthetic examples to show nonlinear lag corrections. (a) Mammography image from RConsole2 (DRTECH, Co.Ltd., www.drtech.co.kr).
(b) Lag signal of a(fn−1)fn−1. (c) After the linear lag corrections of (9), the lag signal remains with breast calcifications. (d) After the nonlinear lag
correction of (14), the lag signals are removed.

FIGURE 8. Simulation of the MTF degradation from the lag signal for
different values of the autoregressive coefficient a in percentage. The
MTF degradation is calculated for the MTF value of 0.489 at 1.5 lp/mm,
where the pixel pitch is 140 µm/pixel.

AR(1) lag model of (1), we observe MTF degradations as
shown in Fig. 8. Even for a slight lag of a = 1%, movements
of 1.5 and 2.5 pixels per frame show MTF degradations of
1.4% and 2.0%, respectively. Besides these temporal blurring
artifacts, a lag signal of a = 1% also shows a ghost image
artifact.

B. LAG CORRECTION SIMULATION RESULTS
Using practically acquired X-ray image sequences, we next
validate the lag correction performance through the LCF val-
ues measured from the mean-based method [24, Algorithm 1]
for transient decaying image sequences. The acquired images
show lag signals from the measured LCF values as ‘‘without
correction’’ in Fig. 9. Note that the LCF values decrease sig-
nificantly at low doses independently of the frame rates [24],
[25]. If we apply the nonlinear lag correction of (14), then
the corrected images show the LCF values increased to
≈ 1.0 for the whole dose range as ‘‘lag correction.’’ Here,
the exposure-dependent autoregressive coefficient a(µ) was
obtained by a curve fitting as shown in Fig. 10.

FIGURE 9. Lag corrections of (9) and (14), and the LCF values measured
from the mean-based method of Kim and Lee [24, Algorithm 1], [25, MA4]
using transient decaying image sequences of Fig. 2 under RAQ5 [27]. The
obtained correlation coefficients are shown in Fig. 10. The correction
results are also shown with a fixed a = 2−5 (3.25%).

FIGURE 10. Fitting for a(µ) to cope with high lag signals at low doses.
A fitting curve is given as a(µ) ≈ αe−µ/τ + β, where α = 0.0980,
β = 0.0311, and τ = 350.

In Fig 9, lag correction results with a fixed coefficient of
2−5

= 0.0325 in (9) are also depicted as ‘‘a = 2−5 cor-
rection.’’ This value is close to 0.0311, obtained at relatively
high doses, as shown in Fig. 10. Note that multiplying 2−5 to
the previous frame fn−1 can be efficiently conducted by 5-bits
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FIGURE 11. Comparison of the temporal PSD curves with respect to ω/π

for an image sequence acquired at an incident dose of 1,393 nGy with a
frame rate of 20 fps (the PSD size was N = 128). (a) Temporal PSD curves
of g, f , and ξ . The LCF and SFM values are 0.949 and 0.999, respectively
(a = 2.61%). (b) Temporal PSD curves of the lag correction from the linear
decorrelation step of (9). The LCF and SFM values are 1.00 (a = 0%).

shifting binary values in (9). Hence, the lag correction of (9)
can be easily implemented with low computational complex-
ities. However, the lag correction performance is not good
at relatively low doses, as observed in Fig. 7(c). The breast
calcifications with low pixel values can remain as lag signals
if the linear lag correction of (9) is applied. On the other hand,
if the nonlinear lag correction of (14) is used, then the lag
signal of low doses can be efficiently removed, as shown in
Fig. 7(d). Note that the electronic noise in Fig. 7(d) depends
on the lag signal. However, the lag dependency is invisible;
thus, the nonlinear lag correction algorithm can successfully
correct the nonlinear lag signals.

C. PSD AND CORRELATION SIMULATION RESULTS
In Fig. 11, we illustrate an example of temporal PSD curves
to show the decorrelation step of (9) and SFM values. Here,
to alleviate the nonuniform temporal gain problem for the
approaches of PSD and correlations, we use a correction
scheme called the upper-lower algorithm based on a notion
of image difference [5], [32], [33].

FIGURE 12. Lag correction of (9) and the LCF values measured from the
correlation-based method of Matsunaga et al. [5], [7] using steady-state
image sequences of Fig. 5 under RQA5 [27].

The PSD of fn (‘‘f ’’) was obtained by subtracting the PSD
of the electronic noise ξn (‘‘ξ ’’) from the PSD of the acquired
image qn (‘‘q’’). We can observe in Fig. 11(a) that the PSD
of fn decreases as the frequency increases, as shown in (17).
After decorrelating the lag signals, we observe a flat spectrum
in Fig. 11(b) with an SFM value of ≈ 1 (‘‘g’’) as shown in
(19). We can observe that the PSD values of the electronic
noise, ξn, and ξ ′

n, slightly increase as the frequency increases
(11ξ ’’ and 11ξ ′’’) [24], [25].
We now observe a comparison result of the lag correction

for several incidents doses in Fig. 12. Here, the LCF values
of the corrected image sequences are measured based on
the correlation-based method of Matsunaga et al. [7] for
steady-state image sequences of Fig 5. For the measuring
method of Matsunaga et al., we observe that the average LCF
value increased to 1.002 from 0.946 by conducting the lag
correction of (9). On the other hand, the correlation-based
method does not show such decreasing LCF values as the
dose decreases. Hence, the LCF values show different prop-
erties according to the mean-based or correlation-based mea-
surement methods. Because the lag artifacts are generally
caused by the lag signal mean, the decreasing LCF values in
Fig 9 imply that the lag property is worsening, especially at
low doses. Hence, the autoregression coefficient measured by
a mean-based method in Fig. 9 can provide further accurate
lag correction performances.

VI. CONCLUSION
In this paper, we considered an AR(1) model to describe
lag signals and conducted lag corrections through a decor-
relation step for X-ray image sequences practically acquired
from dynamic FPDs. Due to the simple step from the AR(1)
model, we could conduct lag corrections by using only the
previous image frame with low computational complexities.
The lag correction performance was also evaluated through
LCF and showed successful removal of the lag signals.
The linear lag correction with a fixed autoregressive coeffi-
cient 2−5 could implement a simple lag correction with the
FPGA level. The nonlinear lag correction algorithm could
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correct the exposure-dependent lag signals by introducing an
exposure-dependent autoregressive coefficient of AR(1).
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