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ABSTRACT In this study, the average power consumption of an electrode welding machine during
the welding process was estimated using the features of the sound emitted during welding. First, the
instantaneous values of electrode current and voltage and the sound emitted during the welding process were
recorded simultaneously. The minimum, maximum, average, root mean square (RMS), and energy values of
the sound data were found and feature extraction was performed, and the instantaneous power and average
power values were calculated using the instantaneous current and voltage values. Three Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) using the sound features as inputs and average power values as outputs
were created, and their results were compared. The average power values consumed during the welding
process have been successfully estimated at a rate of 87-95%.

INDEX TERMS Welters, average power, emitted noise, neuro-fuzzy inference, data acquisition.

I. INTRODUCTION

Electric arc welding (EAW) is a widely used industrial pro-
cess that employs an electric arc to fuse the surfaces of metal
parts by melting them [1]. The fundamental constituents of
an EAW machine comprise a power source, a welding elec-
trode, an arc-forming mechanism, and a welding wire. The
power source generates an electric arc between the electrode
and the workpiece, the electrode melts and a weld pool is
formed, the arc-forming mechanism regulates the distance
between the electrode and the workpiece, and the welding
wire conducts the current to the workpiece.

EAW machines are widely used in various industrial appli-
cations due to their versatility, cost-effectiveness, and ability
to join a wide range of metal types and thicknesses [2].
The power source can be direct current (DC) or alternat-
ing current (AC), and the electrode can be consumable or
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non-consumable, depending on the specific application. The
arc-forming mechanism is designed to control the arc length
and shape, which is crucial for the quality and consistency of
the weld. The welding wire is used to transfer the current to
the workpiece and can be made of various materials, such as
steel, aluminum, or copper.

The use of automation and advanced control systems in
EAW machines has led to significant advancements in weld
quality and efficiency [3]. The capacity to exert precise
control over key parameters, including current, voltage, and
travel speed, facilitates enhanced levels of consistency and
reproducibility in the welding process. Additionally, the use
of real-time monitoring and data analysis has enabled the
detection and correction of potential issues during the weld-
ing process, leading to further improvements in quality and
productivity.

EAW machines are available in a wide range of types
and configurations to suit different applications and require-
ments. The most common types include direct voltage (DC),
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FIGURE 1. A simple ANFIS [33], [34], [35].
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FIGURE 2. The schematic of data acquisition system
[38], [39], [40], [41], [42].

vertical voltage, and low voltage machines [4]. Direct voltage
machines produce a high voltage arc and are typically used
for large parts, while vertical voltage machines produce a
low voltage arc and are used for smaller parts. Low volt-
age machines are designed for high precision welding, often
used in applications that require high accuracy and minimal
distortion.

EAW machines and technologies have undergone signifi-
cant advancements over the years, particularly in the areas of
automation and artificial intelligence (AI) [5]. The integra-
tion of advanced control systems and automation has led to
improved quality and efficiency in welding processes. Addi-
tionally, the use of AI algorithms for real-time monitoring
and data analysis has enabled the detection and correction of
potential issues during welding, further enhancing the quality
and productivity of EAW machines.

The features of EAW machines, such as current, voltage,
and frequency, have undergone significant evolution over
time. While older machines typically operated with low volt-
age and high current, modern machines are now able to
work with high voltage and low current, resulting in more
precise and higher quality welds [6]. Moreover, the frequency
response of EAW machines has witnessed a remarkable
advancement, with the advent of machines designed to func-
tion at diverse frequency amplitudes catering to the distinct
application requirements.

In the literature, there are several methods used to analyze
the sounds emitted from the electrodes of EAW machines to
determine the quality of the welding process and the welding
condition of the parts. These methods include frequency,
amplitude, and spectrum analysis of the sounds emitted from
the welding electrodes [7], [8], [9], [10]. Frequency analysis
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FIGURE 3. A View from welding machine and application.
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FIGURE 4. Methodology of study.

is used to determine the speed and regularity of the welding
process by measuring the number of periodically repetitive
segments of sounds emitted from the welding electrodes.
Amplitude analysis measures the strength of the sounds emit-
ted from the welding electrodes and is used to determine the
intensity of the welding process and the welding condition
of the parts [11]. Spectrum analysis examines the frequency
composition of the sounds emitted from the welding elec-
trodes and is used to determine the quality of the welding
process. A regular welding process will show a uniform
distribution, while a distorted welding process will show
an uneven distribution. The analysis of the sounds emitted
from the welding electrodes is an important tool to monitor
and improve the quality and efficiency of welding processes
[12], [13], [14], [15].
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FIGURE 8. Instantaneous electrode power (selected 10 values).
FIGURE 5. Instantaneous electrode voltages (selected 10 values).

140 T
120 \ T

giof \“ ¢\ B

2 wr ( L / AN \ A

3 | A \ A

e VW T W
: gon ) I / 1
= g [N A
g k| |\ \ VY J
§ “ “‘ \“ /’ \ ‘A /\ w 'A\ / \ /\\ \ /r\/\ \ “/
3 T VAVAN \‘/\\/\\\' UL \\/\\ \ 1
é 0 J “i“ ! \\/ ‘ v | v | \/ \ | I I
E 10 20 30 40 50 60 70

Samples
FIGURE 9. Average powers.

output

L L L L L L
0 200 400 600 800 1000 1200 1400 1600

Samples
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In recent years, there has been a growing interest in utiliz- nput5

ing Artificial Intelligence (AI) methods to evaluate the effec-
tiveness of EAW machines [16], [17], [18], [19], [20], [21],
[22], [23], [24]. These methods are able to provide energy
savings and increase the quality of the weld. For example,
an Adaptive Neuro Fuzzy Inference System based approach,

FIGURE 11. Generated FIS models.

such as Estimating the Average Power of the Welding Process
by Emitted Noise Based Approach, can be used to estimate
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FIGURE 12. FIS membership functions and surfaces of the proposed model.

the average power of the welding process from the noise
during welding.

Il. WELDING AND SOFT ANALYSIS METHODS
Non-destructive testing (NDT) methods such as X-ray, ultra-
sonic, and magnetic particle inspection are used in welding
industrial analysis to assess the quality of the weld without
causing any damage to the joint. These methods are partic-
ularly useful in detecting internal defects and imperfections
in the weld that may not be visible to the naked eye. Frac-
ture analysis is another important method used in welding
industrial analysis. This method involves the examination
of a failed weld to determine the cause of the failure and
to develop strategies for preventing similar failures in the
future.

Simulation and modeling are increasingly being used in
welding industrial analysis to predict the behavior of the
welded joint under different conditions. These methods use
computer simulations to model the welding process and to
predict the properties of the welded joint.

The ANFIS method uses fuzzy logic and neural networks
to model the relationship between input and output variables,
making it a powerful tool for optimizing welding processes
and improving the quality of the welded joint.

Welding is a widely-used process in various industries and
applications, and there are a variety of methods employed
to achieve the desired results. Among the most common
methods are:

VOLUME 11, 2023

A. INDUSTRIAL WELDING METHODS

1) METAL INERT GAS (MIG) WELDING

This method involves the use of a welding wire and an inert
gas, such as argon or helium, to shield the weld area from the
surrounding atmosphere. The wire is fed through a gun and
melts as it comes into contact with the workpiece, creating the
weld. MIG welding is known for its fast and efficient nature,
making it a popular choice for construction and industrial
applications.

2) TUNGSTEN INERT GAS (TIG) WELDING

This method involves the use of a tungsten electrode and an
inert gas, such as argon or helium, to shield the weld area
from the surrounding atmosphere. The electrode is held by the
welder and melts as it comes into contact with the workpiece,
creating the weld. TIG welding is known for its precision and
is often used in industrial applications where high accuracy
is required.

3) SHIELDED METAL ARC WELDING (SMAW)
This method involves the use of a consumable electrode and
an inert gas, such as argon or helium, to shield the weld area
from the surrounding atmosphere. The electrode melts as it
comes into contact with the workpiece, creating the weld.
SMAW is widely used in remote areas or harsh conditions
where other welding methods are not feasible.

Different welding methods are used depending on the
application, materials, and conditions. The most common
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5) SUBMERGED ARC WELDING (SAW)

is another method that uses a welding wire, welding elec-
trode, and arc-forming gas, such as argon or helium, to create
the weld. This method is typically used for large parts and is
often employed in construction and industrial applications.

Max

—
Average
Power

B. INDUSTRIAL WELDINGS ANALYSIS METHODS
Flux Cored Arc Welding (FCAW): is a method that uses a
welding electrode that contains flux. The flux is used to cause

arcing and clean the oxides on the surface of the metal during
welding [25], [26], [27].

Energy
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FIGURE 14. ANN model [38]. 1) ARTIFICIAL INTELLIGENCE (Al)

methods can be used to improve the quality of the weld. These
methods include:

methods are MIG, TIG and Stick welding methods that used

o D o 2) CLASSIFICATION BASED ON LEARNING
in different conditions and applications.

This method is used to classify the quality of the source
using audio and video data generated during the welding

4) GAS TUNGSTEN ARC WELDING (GTAW)

also known as Tungsten Inert Gas (TIG) welding, is a method
that uses a tungsten electrode and an arc-forming gas, such as
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process. Learning-based classification plays an important
role in determining and improving the quality of the welding
process.
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3) DEEP LEARNING

Deep learning methods are used to predict the quality of
the source using audio and video data generated during the
welding process. Deep learning plays an important role in
determining and improving the quality of the welding pro-
cess.

4) CONTROL SYSTEMS

Al control systems can be used to control the parameters of
the welding process. This method can be used to improve the
quality of the welding process.

5) OPTIMIZATION

Al optimization methods can be used to optimize the param-
eters of the welding process. This method can be used to
improve the quality of the welding process.

6) ANOMALY DETECTION

Artificial intelligence anomaly detection methods can detect
malfunctions and malfunctions that may occur in the welding
process. This method can be used to improve the quality of
the welding process [28], [29], [30], [31], [32].

It is important to note that while there are many methods
available to improve weld quality using Al, the success of
the method varies depending on the material used. Therefore,
it is essential to determine the appropriate method according
to the characteristics of the project and the material.
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1Il. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
(ANFIS)

ANFIS (Adaptive Neuro-Fuzzy Inference System) is one of
the most common hybrid models, which uses both Fuzzy
Logic and Artificial Neural Networks (ANN) together. It has
the flexibility of Fuzzy Logic, in addition to the classification
ability of ANN, making it very popular for solving non-linear
problems. Fuzzy Inference System (FIS) and ANFIS are rule-
based models, but it is not always easy to determine the
rule base [33], [34], [35], [36]. To overcome this problem,
Jang proposed optimizing FIS parameters with ANN [4]. The
ANN generates Takagi-Sugeno type if-then rules. The if-then
rules for a simple Sugeno type fuzzy model are given below,
where x and y represent two inputs [33], [34], [35], [36], [37].

if xis X1 and yis Y1 thenfi = p1x + q1y + 1
if xisXoand yis Yo thenfo =pox +qy+r (1)

In this equation, X; and Y; are the input fuzzy sets, f; is the
output, p;, p; and r; are the design parameters determined
during the learning phase [33], [34], [35].

An ANFIS model has 5 layers. The initial layer is the
defuzzification layer and assigns the membership value for
each input. Expression of nodes at the input layer are;

o} = ux,(x), fori=1,2 )
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Defuzzification is determined by the shape of the assigned
membership function. It could be Gaussian or bell curve,
triangular, trapezoidal [33], [34], [35], [36], [37].

The second layer is where the fuzzy rules are activated and

multiply the data from the first layer [33], [34], [35], [36], [37].

2

0} = wi = ux,(0) X uy ) fori=1,2 @)

The third layer is the normalization of the firing powers of
the fuzzy rules [33], [34], [35], [36], [37].
== — fori=1,2 @)
w1 + wp
The fourth layer is responsible for defuzzification by mul-
tiplying the normalized firing powers by the linear function or

constant determined by each rule [33], [34], [35], [36], [37].

of =Wi X fi =Wi X (pix +qiy + 1) fori=12 (5
The fifth layer is the final layer where all outputs are
collected [33], [34], [35], [36], [37].

0] = > Wixfn, fori=12 (6)

In ANFIS, adaptation occurs at two layers during the train-
ing phase. The first layer is responsible for adjusting the
precondition parameters, while the fourth layer is responsible
for adjusting the outcome parameters. The Hybrid Learning
Algorithm employed in ANFIS consists of two phases: the
forward pass and the backward pass. During the forward
pass, the precondition parameters are held constant while the
outcome parameters are calculated using the least squares
method. In the backward pass, the outcome parameters are
held constant, and the precondition parameters are calculated
by back-propagating the error rates and gradually decreasing
them, as outlined in the literature [33], [34], [35], [36].

IV. DATA ACQUISITION SYSTEM

The data acquisition system employed in the study, as shown
in Figure 2, comprised of a microphone, current and volt-
age transducers, and a National Instruments USB-6009 data
acquisition card. The instantaneous voltage at the electrode
terminals, the instantaneous electrode current, and the sounds
emitted during welding was recorded using an electrode
welding machine with a sampling frequency of 24 kHz.
In order to measure the power of the welding process, direct
measurements of the instantaneous current and voltage of
the electrode were obtained. Efforts were made to minimize
the impact of environmental noise through the use of active
noise cancellation techniques. The study was conducted in the
welding laboratory of Kirklareli Vocational High School.

V. APPLICATION AND ANALYSIS

The power consumption of the welding machines can be cal-
culated from the line voltage and the current of the electrical
network; however, the result also includes machine power
losses. The power consumption of the welding process can
only be directly calculated by measuring the electrode voltage
and current. Detecting the sound emitted during the welding
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process can provide an indirect calculation of the power
consumption. First of all, the average power values should
be calculated from the instantaneous voltage and current data
obtained by the data acquisition system, and the character-
istics of the emitted sound data should be extracted. Thus,
an ANFIS model with sound characteristics as inputs and
average power as the output can be designed (Fig 4).

Seventy-two sets of instantaneous voltage, instantaneous
current, and emitted sound data with 1,750 samples were
recorded sequentially by the data acquisition system.
(Fig. 5, 6 and 7).

While the electrode’s instantaneous voltage at idle is
around + 140 V, it changes polarity during welding and
takes a value around —150 V. The electrode’s instantaneous
current is around +35 A and does not change direction. This
situation demonstrates the inductive load characteristic of the
welding machine. By multiplying the instantaneous voltage
and current values, the instantaneous power consumed during
welding can be determined (Fig. 8).

The instantaneous power variation varies between approx-
imately +2kW and —1.5 kW, with positive values represent-
ing the power dissipated during welding and negative values
representing the power returned. However, when we calculate
the average power values, the average power change during
the welding process gives us a more meaningful parameter
(Fig 9) [43].

|
Pln] = ﬁ;p[n], forn=1,2...,N @)

The average of these 72 instantaneous power datasets ranges
between approximately 131 and 0 W.

To develop a suitable ANFIS model, feature extraction
methods can be applied to the dataset shown in Fig. 7 to obtain
input values for average power estimation. The preferred
methods are average, maximum, minimum, RMS values and
energy value [44].

N
1
Smean:]vzls[n]v fOVVl:],Z...,N ®)
n=
smax = max {s[nl}, forn=1,2...,N 9)
Smin = min{s[n]}, forn=1,2...,N (10)

N
Srms = ]%Z(s[n])z, forn=1,2...,N (11)
n=1
N
senergy=2(s[n])2, forn=1,2....N (12)

n=1

According to the data in Table 1, the proposed ANFIS model
has five input variables: the average, maximum, minimum,
RMS values of the emitted sound data, and the energy value.
The average power values given in Fig. 9 are the output of the
model. The structure of ANFIS model is shown Fig 10.

Each input variable has five membership functions and
243 rules are created. Gaussian, bell curve, or triangular
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TABLE 1. Feature extractions of emitted sounds.

Mean Max Min RMS Energy
S -0.057960741  0.036758984  -0.186236362 0.063229095 6.996357285
S, -0.060891781  0.256092164  -0.609552148 0.071939585 9.056781914
S3 -0.058786611  0.104966812  -0.229236286 0.068676649 8.253843761
S4 -0.059401890  0.220508125  -0.383321889 0.070899798 8.796867413
Ss -0.059530798  0.105607691  -0.218707561 0.069791495 8.523992292
Se -0.058427649  0.229114214  -0.372457465 0.069593912 8.475797138
S; -0.059966212  0.212909133  -0.858213169 0.076238310 10.17148986
Sg -0.057865524  0.145891508  -0.704982071 0.075732863 10.03706637
So -0.059585085  0.232135500  -0.269306477 0.070604391 8.723715143
Sio -0.057960741  0.036758984  -0.186236362 0.063229095 6.996357285
Se2 -0.059293281  -0.024765393  -0.089402609 0.060347295 6.373143093
Se3 -0.059115421  -0.015243763  -0.095475700 0.060385592 6.381234497
Ses -0.059776669  -0.023208972  -0.094743267 0.060941544 6.499275569
Ses -0.060507829  -0.025711452  -0.096635386 0.061711363 6.664511601
Ses -0.058933080  -0.027969787  -0.096330205 0.060012557 6.302637254
Se7 -0.059237494  -0.025223163 -0.091966125 0.060486364 6.402550318
Ses -0.059035272  -0.021683070 -0.090562295 0.060189177 6.339789881
Seo -0.059121787  -0.022781720 -0.096543832 0.060351635 6.374059728
S7o -0.060229487  -0.021469444  -0.093644617 0.061313820 6.578922849
S -0.058269845  -0.026047150 -0.097459373 0.059333782 6.160870956
S» -0.059293281  -0.024765393  -0.089402609 0.060347295 6.373143093
TABLE 2. Training and testing errors of results of ANFIS.

Models Input  Number  Output RMSE RMSE R’ R’

MF of MF MF (Training)  (Testing) (Training) (Testing)
Mdl 1 triangle 15 constant 9.328812 16.6632889 0.955091392 0.875212
Mdl 2 gbell 15 constant  9.666645 27.9565657 0.951779213 0.932452
Mdl 3 gauss 15 constant  9.641569 17.1865578 0.951971778 0.894970

membership functions are used to fuzzify all inputs. For the
output, a constant membership function was preferred. The
FIS models generated by ANFIS are shown in in Fig 11.

Membership functions and surfaces of FIS models are
shown in Fig. 12. The model results are generally compatible
with one another, and it was possible to obtain lower RMSEs
in Mdl1 and MdI3.

VI. COMPARISON OF ANN AND ANFIS RESULTS

Artificial neural networks (ANN), which are another
common estimation method, were used to compare the
performance of the ANFIS models we obtained. For this
purpose, a feedforward ANN model was created. As in the
ANFIS model, the selected five audio features constituted
the inputs, and the average power was the output. Therefore,
there were five neurons in the input layer and one neuron in

VOLUME 11, 2023

the output layer. There were ten neurons in the hidden layer
(Fig. 14).

The Levenberg-Marquardt algorithm was preferred for
training. The tangent function was chosen for activation.
Sixty-four samples were used for training, four for testing,
and four for validation. The root mean squared error was
obtained as 15.6911 for training, 12.9097 for validation, and
24.6559 for testing. Regression results are shown in Fig. 15.

In order to compare the performances of ANFIS and ANN
models, the outputs of the models and errors are given in
Fig. 16-19.

When comparing ANFIS and ANN models, it can be said
that the outputs of ANFIS models are more compatible with
each other. Error values are generally higher in the ANN
model. The ANN output has the highest error amplitude value
out of 8 samples. Naturally, the average power is not expected
to be negative. Except for the 35th sample value of Mdl 2,
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neither Mdl 1 nor Mdl 2 estimated any negative power. On the
other hand, the ANN produced negative power, albeit with a
small amplitude, in 4 samples. It can be said that the ANFIS
models give more successful outputs than the ANN model.

VII. CONCLUSION

In this study, the average power consumed during the weld-
ing process in an electrode welding machine was estimated
using the characteristics of the emitted sound data. Three
ANFIS models created for this purpose yielded very suc-
cessful results. As the power value increased, the error rate
increased and it was possible to obtain smaller errors at lower

39162

power values. The biggest advantage of this method is that the
energy consumed can also be calculated by using the average
power values. Once a sufficient data set is created, the average
power consumed can be estimated with high accuracy using
a microphone without the need for additional current and
voltage measurements.

This study shows that the power or energy consumption
of noise-emitting devices, such as welding machines, can be
calculated by using sound data. The main limitation of this
method is that environmental noise affects the sensing of
welding process noise. With active noise cancellation, this
can be reduced as much as possible. Another disadvantage is
the requirement for a separate Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) model for each welding machine type.

For future studies, average power or energy estimation
can be improved by using different feature extraction and
estimation methods.
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