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ABSTRACT The usage of distributed Peer-to-Peer (P2P) networks has been growing steadily for a reason-
able period. Various applications rely on the infrastructure of P2P networks, where nodes communicate to
accomplish a task without the need for a central authority. One of the significant challenges in P2P networks
is the ability of the network nodes to reach a consensus on a shared item; the challenge increases as time
passes. Thus, this work proposes a new effective method for tweaking the Deep Reinforcement Learning
(DRL) algorithm to train Deep Q Network (DQN) learning agents to reach a consensus among the P2P
nodes. We propose various hierarchies of deep agents to address this crucial challenge in P2P networks. DRL
is utilized to build and train agents; more precisely, DQN learning agents are constructed and trained. Two
scenarios are proposed and evaluated. In the first scenario, one DQN agent is trained to find the consensus
between the network nodes. In the second scenario, three hierarchies with different numbers of layers of
agents are proposed and evaluated. In both scenarios, the P2P network used is a blockchain network. The
best result was obtained using the third hierarchy of the second scenario; the overall accuracy of the model
is 87.8%.

INDEX TERMS Blockchain, consensus, deep reinforcement learning, DQN, P2P.

I. INTRODUCTION
Recently, the need for an efficient mechanism for reach-
ing a consensus in P2P networks is mightily back to the
lights because of the rapid growth in blockchain technologies,
which has attracted great interest in research and industry.
In a P2P network environment, various nodes are randomly
connected in an equivalent manner. For a large-scale P2P
network, which is the current norm, communication between
nodes is performed asynchronously. The most well-known
technique used for asynchronous communication among
large-scale P2P nodes is gossip Stochastic Gradient Descent
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(SGD) [1], [2]. This is a simple technique in which each
node averages only with its neighbors to reach consensus.
It is commonly used with well-known methods, such as
consensus-based distributed SGD [3] and decentralized paral-
lel SGD [4]. However, different types of consensus protocols
are used in different blockchain networks. For example,
consensus in permissioned blockchain networks might be
implemented with conventional Byzantine Fault Tolerant
(BFT) protocols [5], [6] to enforce strict synchronization
between consensus nodes. In permissionless networks where
the synchronization among the consensus nodes could be
poor, incentive-based consensus protocols are implemented,
such as the Proof of Work (PoW) protocol [7], [8]. PoW is
a common consensus algorithm used by Bitcoin, the most
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popular cryptocurrency network. The PoW is a decentralized
consensus algorithm that requires the participants of the net-
work to spend effort solving an arbitrary mathematical puzzle
to prevent anybody from playing the system. Proof of work is
widely used in cryptocurrency mining. Bitcoin was the first
cryptocurrency project to use PoW for validating transactions
and mining new blocks. In the case of Bitcoin, the miners
mine a new block roughly every 10 min, the new block is
added to the blockchain, and then propagates to all other
nodes to keep the blockchain synchronized among all nodes at
all times. The blockchain is a constantly growing ledger that
keeps a permanent record of all transactions that have taken
place in a secure, chronological, and immutable way. Once a
block is added to a blockchain, it cannot be altered. However,
51% of attacks on a blockchain can occur only if a group of
miners can control over 50% of a network’s mining hash rate,
which allows them to exploit the mining of new blocks and
take over the blockchain and its reward.

In this work, we propose a framework for DQN agents
to reach a consensus between distributed P2P blockchain
nodes. A DQN approximates a state-value function in a
Q-Learning framework using a neural network [9], [10]. DRL
combines artificial neural networks with a Reinforcement
Learning (RL) framework that helps software agents learn
how to achieve their goals [11]. This discipline of study has
been capable of resolving an extensive variety of compli-
cated decision-making tasks. Thus, DRL opens many new
applications in a wide range of domains, such as robotics,
finance, healthcare, and smart grids. RL is a ML training
approach primarily based on rewarding desired behaviors
and punishing undesired behaviors. In general, a RL agent
is capable of understanding and interpreting its environment,
taking action, and learning through trial and error [12], [13].

Recently, DQN agents have shown remarkable success in
training agents in a variety of applications, such as Atari
games, which have almost achieved human-level control.
Motivated by this success, we utilized DQN RL agents to
reach consensus in P2P networks. ADQN is a combination of
Q-learning (reinforcement technique), DNN, and experience
replay. Q-learning is performed by finding the variables of the
Q-function. The Q-function of policy π , Qπ (s, a), measures
the expected return sum of rewards gained from state s by
taking action a followed by policyπ . In reality, formost appli-
cations, it is unfeasible to represent the Q-function as a table
with values for each s and a. Instead, the values are estimated
by a training model, such as a Deep Neural Network (DNN).
In this paper, we make the following contributions:

• We Propose an effective method for modifying the rein-
forcement learning algorithm using deep Q-Learning to
achieve consensus within a blockchain P2P network.

• We successfully deploy and train DQN agents within the
blockchain P2P network.

• We propose and evaluate various DQN agent architec-
tures to collect informative data from distributed miners,
as well as examination of different agent hierarchies

to determine the most effective approach for achieving
consensus.

• We propose a new communication mechanism between
miners and DQN agents (update message), whereby
miners only communicate with their sector agent.

• We reduce the network bandwidth utilization required
for achieving consensus, and we also reduce consensus
delay times by minimizing the number and size of sent
messages.

The remainder of this paper is organized as follows: The
literature review is introduced in Section II, and themethodol-
ogy of the proposed work is introduced in Section III. In Sec-
tion IV, the experiments and discussion are presented, and
finally, the conclusion of this work is presented in Section V.

II. RELATED WORK
Lucarelli et al. [14] proposed a deep Q-learning portfolio
management framework for maximizing return and minimiz-
ing risk by allowing agents to reallocate funds into different
financial assets. The framework in their work is composed
of two types of agents: a set of local agents that learns asset
behaviors and a global agent that describes the global reward
function. Additionally, the local agent was based on three
different deep RL approaches: deep Q-learning, double deep
Q-learning, and dueling double deep Q-learning. To evaluate
their work, the authors tested their framework on a crypto-
portfolio composed of four cryptocurrencies: Bitcoin (BTC),
Litecoin (LTC), Ethereum (ETH), and Ripple (XRP). Their
results showed that, in 80% of the cases, the proposed frame-
works had higher daily returns with respect to cryptocurren-
cies. Based on their results, the authors showed that the DR
portfolio management framework is a promising approach for
dynamic portfolio optimization.

Zeng et al. [15] studied the protection of the relay sys-
tem in a distribution network, where distributed generation
access increases the uncertainty and affects distributed net-
work security. The authors proposed solving the problem by
following three main phases: the first phase, which analyzes
the relay protection characteristics of the distribution network
under distributed generation access; the second phase, which
transforms the distribution network relay protection problem
into a multi-agent RL problem; and the third phase, which
proposes a distribution network distributed protectionmethod
based on a multi-agent deep deterministic policy gradient.
The authors explained the main advantage of the proposed
work because there is no need to build a distribution network
security model in advance, which will overcome the impact
of uncertainty caused by distributed generation access on
distributed network security.

Kim et al. [16] proposed an on-chip training method for
DQN that is applicable to hardware-based Spiking Neural
Networks (SNNs). The authors showed how their training
method could minimize memory usage and reduce power
consumption and area occupation levels. For simple prob-
lems, the proposed method can significantly reduce memory
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dependency while achieving a high performance without
using replay memory. In addition, the authors studied the
effect of nonlinearity characteristics and variations in non-
ideal synaptic devices and found that their work was strongly
immune to such variations because of the proposed on-chip
training scheme. The performance of the proposed training
method was evaluated in two games: a fruit-catching game
and a Rush Hour game. The results showed that the network
was trained well without significant performance differences
compared with the software-based training method. In the
fruit-catching game, high performance with a catching rate of
approximately 98% was achieved, although replay memory
was not used.

Chen et al. [17] presented a DRL algorithm without exter-
nal noise called self-guided deep deterministic policy gra-
dient with multi-actors, which is a combination of a deep
deterministic policy gradient andGenerativeAdversarial Net-
works (GANs). The proposed algorithm employs the gener-
ator of GANs to guide the learning of the agent, and makes
the discriminator constitute a subjective reward. In addition,
to stabilize the learning process, the proposed algorithm
applies a multi-actor mechanism based on the temporal phase
of an episode. The results of this study are encouraging.

Jang et al. [18] proposed a DQN-based multi-criteria
decision-making framework for virtual agents in real time
for automatic goal selection based on motivations in virtual
simulation environments, as well as for planning the required
behaviors to achieve those goals. The motivations in the
proposed work are classified according to Maslow’s five-
level hierarchy of needs, and the virtual agents train a double
DQN using big social data, select optimal goals depending on
motivations, and perform behaviors relying on a predefined
Hierarchical Task Network (HTNs). The authors reported the
performance of the proposed method as efficient by increas-
ing the accuracy from 63.24 to 80.15%. In addition, for
behavioral performance using predefined HTNs, the number
ofmethodswas increased from 35 in theQ-network to 1511 in
the proposed framework.

Hu et al. [19] addressed the bipartite consensus problem for
a class of double-integrator multiagent systems with antag-
onistic interactions. The authors reported two cases: if the
communication time delays are not considered, the bipartite
consensus of the studied multi-agent systems with directed
signed graphs is possible based on their proposed distributed
controller. In the second case, if non-uniform communica-
tion time delays are considered, the bipartite consensus of
multi-agent systemswith undirected signed graphs is possible
if the time delays are less than a limit.

Wang et al. [20] investigated the problem of free-fault-
tolerant consensus tracking for multi-agent systems subjected
to actuator faults. The authors proposed a new variable based
model free algorithm to detect the faults, the algorithms can
detect the faults which occur on different agents through
any agent. Once a fault is detected, a radial basis function
neural network is applied to estimate actuator faults. Then,
fault estimations are utilized to reconstruct the faulty agent

controller. Moreover, the authors introduced a distributed
model-free adaptive fault-tolerant consensus control method
to ensure that all agents can track the expected trajectory.

Zhao et al. [21] analyzed the typical application archi-
tecture of blockchain technology and the security risks of
blockchain application architecture. The authors proposed
combining the DOCmechanismwith Internet of Things (IoT)
application scenarios to introduce a blockchain-based con-
fidential IoT service model that supports first-order homo-
morphic multiplication and a blockchain-based confidential
IoT service model that supports high-order homomorphic
multiplication. The authors found that Beekeeper 2.0 signif-
icantly improved the Beekeeper 1.0 in server capabilities,
verification efficiency, verification key length, and device
work diversity. The authors reported that the chain code call
delay increases with an increase in the transaction-sending
rate, and the average blockchain access delay increases with
an increase in the transaction-sending rate. In addition, the
blockchain access delay is affected by lower throughput, and
the transaction success rate is stable at 98%.

Oikonomidis et al. [22] proposed deep learning-based
models to evaluate the performance of the underlying algo-
rithms with respect to different performance criteria. The
authors evaluated the following algorithms in their study:
the XGBoost Machine Learning (ML) algorithm, Convolu-
tional Neural Network (CNN), DNN, CNN-XGBoost, CNN-
Recurrent Neural Networks (RNN), and CNN-Long Short-
Term Memory (LSTM). The authors performed experiments
on a public soybean dataset consisting of 395 features, includ-
ing weather and soil parameters, and 25,345 samples. The
case study results showed that the hybrid CNN-DNN model
outperformed the other models, with an RMSE of 0.266,
an MSE of 0.071, and an MAE of 0.199. The predictions of
the model fit, with an R2 of 0.87. The second-best result was
achieved by the XGBoost model, which required less time to
execute than the other DL-based models.

Videgaín et al. [23] developed a series of intelligent agents
with different reasoning and decision capacities based on
different artificial intelligence techniques applied to game
theory, such as Minimax or RL. Their capabilities have been
tested not only by playing games with each other, but also
against human players, obtaining remarkable results. The
experimental results ratify conclusions already known at a
theoretical level but also provide a new contribution that could
be the basis for future research.

Mohamed-Amine et al. [24] proposed an Epidemiological
Model (EM) that is inherently suitable for analyzing differ-
ent control policies. The Authors validated the potential of
the developed EM in modeling the evolution of COVID-19
infections with a mean Pearson correlation of 0.609 CI
0.525–0.690 and P-value < 0.001. To automate the pro-
cess of analyzing control policies and finding the optimal
one, the authors adapted the developed EM to a RL setting
and conducted several experiments. The case study results
of this work showed that the problem of optimal epidemic
control can be significantly difficult for governments and

VOLUME 11, 2023 38667



A. A. Mallouh et al.: New Efficient Method for Refining the RL Algorithm

policymakers, especially if faced with several constraints
simultaneously; hence, there is a need for such ML based
decision support tools. In addition, it demonstrates the poten-
tial of deep RL in addressing real-world problems.

Nicolas et al. [25] proposed a Multistage Secure
Pool (MSP) framework to address the vulnerabilities of
blockchain. The proposed framework was designed to handle
both discrete and general issues affecting the overall security
of the blockchain. Additionally, the authors present the ML
capabilities of the system to enable a progressive aspect of
the design. Providing their application with the ability to
analyze data to recognize and classify distinct actions will
enable greater comprehension. An application that learns,
updates, and configures to meet specified defensive standards
presents key design features that enable greater understanding
and future analysis of the overall blockchain network. The
authors’ findings using this application showed that there was
a decrease in the number of attacks propagating through the
system based on the system’s robustness and capabilities.

Qiu et al. [26] studied a DRL empowered adaptive
approach for future blockchain networks. Instead of using
one consensus protocol as the best fit, and to improve the
scalability and meet the requirements of different users,
blockchain networks launch different consensus protocols
based on users’ Quality of Service (QoS) requirements. The
authors quantified four consensus protocols. Additionally,
the authors dynamically allocated the computation and band-
width resources to the blockchain networks. They then for-
mulated these three items, that is, the selection of consensus
protocols, computation resources, and network bandwidth
resources, as a joint optimization problem. A DRL approach
was used to solve this problem. The simulation results
obtained by the authors demonstrate the effectiveness of the
proposed scheme.

Rabieinejad et al. [27] proposed a conceptual model to
improve blockchain throughput in IoT-based devices with
limited power through DRL. This model benefits from a
recommender agent based on DRL in the mobile edge com-
puting layer to improve throughput and select the rightmining
method.

Yang et al. [28] presented a clustering-based sharded-
blockchain strategy for collaborative computing in the IoT,
where the sharing of the blockchain system was implemented
in two steps: K-means clustering-based user grouping and the
assignment of consensus nodes. The authors described data
transactions among IoT devices using a data transaction flow
graph based on a dynamic stochastic block model. Subse-
quently, formed as a Markov decision process, the optimiza-
tion of the cluster number and the adjustment of consensus
parameters are jointly trained by DRL. The simulation results
show that the proposed scheme improves the scalability of the
sharded-blockchain in IoT applications.

Gong et al. [29] proposed a blockchain network-slicing
broker that can support the network slice resource agency
process in an end-to-end manner. The network slicing broker
provides a resource brokering solution between network slice

tenants, which are regarded as blockchain nodes, and the
Complex Network theory is used to obtain the topological
information and define the value of blockchain nodes accord-
ing to the importance of the nodes. The framework consists
of three parts: the network slice tenants request resources,
the network slicing broker receives the request and allocates
the resource using the DRL algorithm, and the Infrastructure
Provider allocates the entity resource according to the Smart
Contract. The authors described the computing resource allo-
cation process as an example and the optimization problem
modeled by the DRL framework. The results reported by the
authors indicate that the proposed solution is effective

Ma et al. [30] introduced an intelligent incentive-based
DCR management framework to determine a specific reward
for each prosumer providing power support to the grid and
proposed a framework that employs a Deep Deterministic
Policy Gradient algorithm with a designated reward func-
tion to find the optimal incentives for each prosumer on an
hourly basis. The proposed algorithms were implemented
on a Hyperledger Fabric blockchain network. Laboratory
prototypes were built using an actual fabric network. Case
studies have shown that the developed framework can handle
a large number of prosumers with a promising performance.
The proposed work provides a proof of concept for the effec-
tiveness of the integration of AI and blockchain in distributed
resource management in modern smart grids.

In [31], the framework introduces different hierarchies of
DR agents distributed across multiple layers. The layers were
divided into sectors; each sector contained distributed nodes,
and each sector had one agent that was trained using DRL.
Three models were developed and examined in this study.
Model 1 achieved 71.6%, Model 2 achieved 73.3%, and
Model 3 achieved 82.2%.

III. METHODOLOGY
In this study, we propose the utilization of DRL agents to
reach a consensus among distributed P2P nodes. More specif-
ically, the DQN agents will be used. In part A, a description of
the environment is introduced. Part B introduces and explains
the DQN learning process.

A. THE ENVIRONMENT
The main objective of this work is to train agents that make
decisions in a P2P network environment to reach a consensus;
therefore, we assume that the local node decision is made and
sent to the agents. The local decisions of the network nodes
are randomly simulated, and the decision can be: Accept,
Reject, or Neutral.

Once a node receives an update about the current version
of the chain, it must make its local decision and send it
to a specific agent in the network. In this work, we intro-
duce a new type of message called an ‘‘update message’’
that nodes and agents use to communicate their decisions.
This message allows for more efficient and effective com-
munication between the nodes and agents in the network,
enabling them to work together towards achieving consensus
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FIGURE 1. The update message that nodes and agents use to
communicate their decisions.

in a more streamlined and effective manner. The message
consists of three main fields: the ID of the current version
of the blockchain, the node local decision, and a timestamp.
The local decision field also consists of three subfields that
represent each node’s decisions regarding the new blockchain
as shown in Fig 1. One of these subfields was set to one, while
the rest were set to zero. The first subfield is set to one if the
node accepts the new version of the blockchain, the second
subfield is set to one if the node rejects the new version, and
the last subfield is set to one if the node is a neutral decision.
The network uses the timestamp field to set a time interval
to receive the local decisions of the nodes. The message is
considered legitimate if it is delivered within a specified time
interval; otherwise, the message is discarded.

B. DQN LEARNING
In RL, the agent’s goal is to find the optimal series of actions
that should be taken each time the agent faces a new obser-
vation in its environment. When moving from the start state
to the target state, the agent should select a series of actions
that hit the highest possible optimal action value for the Q(si,
ai) function, where ai is the action taken by the agent at
state si. There are many methods for calculating the Q value.
In our proposed approach, we utilize Bellman equations in
conjunction a DNN to estimate the Q value. By leveraging
these techniques, we are able to predict the optimal action
that an agent should take given a particular state.

Based on the Bellman equations, there is a Q value for
action ai at state si, defined as Q(si, ai). Value function Q(si,
ai) is a nonlinear function, and a neural network can be used
to approximate such a complex function. The neural network
is trained using supervised learning, where the targets for this
network are calculated using Bellman (1).

Qπ (s, a) =

∑
s′
P

(
r (s, a) + γ.

∑′

a
π (a′

|s′).Qπ (s′, a′)
)
(1)

where Qπ (s, a) is the value of taking action a in state s by
following policy π , P is the probability of selecting action a
in state s and ending at state s’, s’ is the next state and a’ is the
action to be taken in s’, r is the reward for selecting action a in
state s, and gamma (γ ) is the discount factor. It is noteworthy
that the Q table is a matrix listing all possible states down
the side to define the rows and all possible actions for every
state defining the columns. The contents of the table are the
values of ai while the agent is in si. As a matter of fact, in our
proposed approach, the use of Q tables to represent the Q
values for agents in a blockchain P2P network would result
in a very large table, and creating such tables is not feasible
because of the required space and computation power. There-
fore, in reality, the best option for calculating the entries for
such a large table is to use approximation techniques. Hence,
in this study, we used DRL to approximate the values of the
Q function in a timely manner. In RL, the agent is forced
to find the best actions that maximize its reward within an
episode through experience. Strictly speaking, the episode
is all things that happen between the initial and final states
within the environment. In this work, in the blockchain P2P
network, the episode is a sequence of states that starts when
a new block is added to the blockchain, the local decisions
of the nodes that are sent to the DQN agent(s), and the final
decision of the DQN agent(s) as shown in Fig. 2.

As discussed earlier, the DQN agent can make three dif-
ferent decisions to label the update message: Accept, Reject,
and Neutral. Nodes must send their decisions to the nearest
agent. After receiving thesemessages, the agents calculate the
reinforcement signal. The reinforcement signal is calculated
as the difference between the predicted agent’s decision and
the actual target of actions with higher Q values. Initially, the
weights of the deep network used to train the DQN agents
were randomly initialized, which resulted in the poor perfor-
mance of the DQN agent in the early stages. However, while
agents advance in the training, they will learn how to enhance
their performance and take the right decisions as a result
of exploring different environmental states with appropriate
actions. The DQN agent can calculate the Q-value for every
possible action for every state in the environment in a single
forward pass as depicted in Fig 3. This resulted in a vector
containing all possible values for each action, which can be
used as a base by the agents to select those actions with
maximum Q values.

1) THE DEEP NETWORK ARCHITECTURE
It has been noted that the learning process becomes unstable
if a deep network is combined with RL, particularly when a
neural network is used to represent the state-action values.
The network weights are liable for oscillation and divergence
because of the high correlation between actions and states.
Training such networks successfully requires a huge amount
of data, and even in the presence of a huge dataset, we cannot
guarantee that the network converges to find the optimal val-
ues. Many studies have suggested different types of efficient
techniques to reduce the effect of instability while training
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FIGURE 2. The episode is a sequence of states that starts when a new block is added, the local decisions of the nodes
that are sent to the DQN agent(s), and the final decision of the DQN agent(s).

FIGURE 3. Agent Q values calculations for each state.

such networks. In this study, two techniques were used: the
experience buffer and the target network.

2) THE EXPERIENCE BUFFER
Efficient model training requires the dataset observations to
be independent and normally distributed. However, when an
agent interacts with the environment, the generated sequence
of experience tuples (messages of local decisions) can be
highly correlated. Training agents using such highly corre-
lated data mostly results in high fluctuations in the results.
Thus, to reduce the effect of such oscillations and diverging
state-action values, the experience buffer was used to sample
the training dataset. The experience buffer consists of expe-
rience tuples collected from previous experiences. It is also
worth noting that new experiences are regularly added to the
buffer while the agents interact with the environment.

Each tuple (S, A, R, S’) consists of observation (S), action
(A), reward (R), and the next state (S’). Technically, the buffer
is implemented as a queue with a fixed number of tuples,
and whenever new experience is added while the buffer is

full, the oldest experience in the buffer is pushed out. The
experience buffer is a queue in which small batches are
sampled from the buffer observations for training the agents.
This helps reduce the high correlation between the experience
tuples and increases the chance of reusing every individual
tuple several times during training. Sequential samples are
highly correlated, which can negatively impact the perfor-
mance of the proposed approach. To mitigate this issue, sam-
ples in the experience buffer are randomly selected in small
batches. This approach helps to minimize the correlation
between sequential samples, resulting in improved perfor-
mance. In this way, the experience buffer plays a vital role
in reducing correlation and enhancing the effectiveness of the
proposed method. It is also worth noting that the observations
in the buffer might change when the agent interacts with the
environment.Whenever the agent receives a new observation,
it creates a new tuple and pushes it to the buffer as shown in
Fig. 4.

After a careful study of the relationship between the mes-
sages generated by the nodes, we chose to set 50 stacked
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FIGURE 4. The random sampling in the experience buffer queue.

messages as the input for the network; to speed up the training
process and exploit spatial relationships and temporal proper-
ties across messages. We noticed that for the majority of the
messages, especially the intermediate messages, the nodes
were most likely to take the same action for almost every
50 messages. This resulted in an insignificant change in the
subsequent messages.

3) TARGET NETWORK
In Q-learning, the value of each Q(s, a) is initialized randomly
and the values are changed during training with the most
optimal values. The Bellman equation (1) states that the
current value of Q(s, a) relies on the next value of Q(s’, a’),
however, there is only one step between s and s’; therefore,
they are likely very similar, resulting in difficulty in finding
differences between them during training. It is worth noting
that while training the DQN agent to find the best Q(s, a)
values, Q(s’, a’) and the next close states are modified and
changed, which results in disorder and instability. In such
cases, to reduce the effect of instability in the network,
an additional network is used, called the target network. The
target network is a copy of themainQ-network used to regress
the expected Q values for each (s, a), which are, in turn,
used to calculate the loss in the main Q-network. The target
network weights did not change as frequently as the main
Q-network weights. They were changed every 500 messages
and copied from the main Q-network. The main Q-network
and the target network are shown in Fig 5. 500 messages are
chosen After trying different numbers of messages to synch
the target network with the main Q-network weights.

4) THE DQN ALGORITHM
The first step in the DQN algorithm [10] training is to ini-
tialize the main Q-network, target network, empty experience
buffer D, and agents.

DQN Learning is conducted in two interleaved phases: the
sampling phase and learning phase. In the sampling phase,
observations were collected by the agents to be used in the
training phase; the agent interacts with the environment by
performing actions and storing observed experience tuples
in the experience buffer. In our proposed approach, each
sector in the blockchain is associated with a corresponding
DQN agent. The agent receives update messages from the
nodes within the sector, which are then stored in the agent’s
experience buffer for further processing. Notably, the nodes
within the sector do not directly communicate with each
other, but instead interact solely with the sector’s DQN agent.
This approach helps to streamline communication within
the network, enabling more efficient and effective consensus
formation in the context of blockchain P2P networks. On the
other hand, in the learning phase the main Q-network is
trained to find the best Q(s, a) values. As a matter of fact,
both steps are performed alternately, however, initially we
start with the sampling phase until the experience buffer is
filled.

5) ACTION POLICY
In RL, the agent is trained to maximize the value of Q(s, a)
by following policy π . There are different types of policies
for choosing the most candidate action such as the random
policy, the greedy policy and the ϵ greedy policy. In a random
policy, the action is chosen randomly, resulting in an equal
probability for each action to be chosen. In the greedy policy,
the agent selects the action with the maximum Q-value if
taken in state s. In the ϵ greedy policy, the agent is set to select
most of the actions with the maximum Q value (greedy) and
select a few actions randomly. The percentage of the actions
selected greedily and randomly is determined by ϵ, ϵ =

0 resulted in using the greedy policy while ϵ = 1 resulted in
using the random policy. It is worth to note that, the ϵ greedy
policy helps to balance between the need for exploiting the
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FIGURE 5. Training DQN agents using main Q-network and the target network.

FIGURE 6. Observation cycle: 1) Action a is chosen while in state s given
policy. 2) Action a is taken, reward is granted. 3) The next state s’ is
generated.

agent knowledge by selecting the action with maximum Q
value, and the need to explore other actions that may lead to
better rewards in the future.

6) DQN-AGENT
In the sampling phase, the experience buffer is filled by
enforcing agents to collect observations while interacting
with their environments. As shown in Fig. 6 each observation
is collected by performing three steps: 1) Action a is chosen
while in state s using ϵ greedy(Q). 2) Action a is taken, and its
reward r(Q(a)) is calculated. 3) The next state s’ is retrieved.
Each observation is then stored in the buffer as (s, a, r, s’).
We kept accumulating the actions’ rewards in the episode
until we hit the last action.

As previously noted, there are three potential actions an
agent can take in our proposed approach: Accept, Reject, and
Neutral. The reward granted to an agent is dependent on the
action taken, with observations being inferred from 50 update
messages sent by local nodes. To calculate the observation

reward, we consider the majority decision of the update mes-
sages. Accept and Reject actions are weighted equally in the
blockchain consensus process, and therefore, are assigned the
same value of reward. In contrast, Neutral actions are not
desired in the network, as they do not contribute to consensus
formation. As a result, agents receive a reward of +1 for
observations resulting in an Accept or Reject action, while
Neutral observations are given a reward of 0. For example, if
27 update messages result in an Accept action, 18 in a Reject
action, and 5 in aNeutral action, the initial observation reward
is calculated as +1 based on the majority decision.

For training purposes, the expected value for each observa-
tion must be provided. Unfortunately, the target value is not
present; therefore, the Bellman equation was used to calculate
an approximation value for each observation. However, if the
observation is not the latest in the episode, its target value yi
is calculated as shown in (2).

yi = ri + γ × maxai∈Q
′(s′i, a

′
i) (2)

where γ is the discount factor and Q’ is the target network
that is used to find the maximum value for being in the next
state s′i and taking action a′

i in that state. If the observation is
the latest in the episode, then yi = ri, because there is no next
state.

After that, the mean squared error loss (L) is calculated
between the state-action values and the target (expected)
values, L is calculated as shown in (3).

L =
1
N

×

N−1∑
i=0

(Q (si, ai) − yi)2 (3)

ThemainQ-networkweights are updated using the Stochastic
Gradient Descent (SGD) algorithm tominimize loss. Asmen-
tioned earlier, the target DQN network weights were also
synchronized with the main DQN network for every 500mes-
sages.
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TABLE 1. First scenario architectures.

TABLE 2. DQN agent configurations for the three hierarchies.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the proposed method is evaluated in two
scenarios to reach a consensus between the nodes. The first
scenario consisted of one DQN trained using three different
deep architectures, as presented in Table 1. In the second sce-
nario, three DQN agent hierarchies were proposed, as shown
in Table 2. The data used to evaluate the two scenarios were
randomly generated to simulate real working environments.

A. TRAINING PARAMETERS
In this work, the training converges when the agent almost
chooses the correct decision 40 times for every update mes-
sage in the last 50 episodes (update messages). The discount
factor (γ ) was 0.85, the minibatch size was 100 (each sam-
ple contained 50 messages), the learning rate was 1e-4, the
experience buffer size was 5000 samples, and the main DQN
network was synchronized with the target DQN network
every 500messages. The input for the architectures comprises
samples of the update messages.

B. FIRST SCENARIO: SETTINGS AND RESULTS
In the first scenario, a DQN agent, which is the only agent
in the network, is trained to reach consensus. All nodes in
the network send their local decisions about a particular
chain version (update message) to the main DQN agent. The
DQN agent acts greedily to select actions that maximize the
Q-value. Three deep network architectures are introduced to
train the agent in this scenario. The input size and settings
for each architecture with the training and testing accuracy
results are presented in Table 1. A dataset of 1,600,000 obser-

vations was collected to evaluate the proposedmethod for this
scenario. The data were divided into two sets: training and
testing sets. A total of 1,200,000 observations were chosen
randomly for training, while the rest were used for testing.

As indicated in Table 1, the number of nodes used in the
experiment for all the architectures was one million. It is also
obvious from the table that Architecture 3 performs slightly
better than Architectures 1 and 2. The training accuracies
are 83.6%, 85.1%, and 87.8% for Architecture 1, 2 and 3,
respectively. The test accuracy is78.2%, 81.4%, and 83.1%
for Architecture 1, 2, and 3, respectively.

To study the effect of increasing the number of nodes that
reject the update message on the result, Architecture 3 was
evaluated. Fig. 7 shows that the number of nodes that reject
the message initially is chosen to represent 20% of the total
nodes, and then gradually increases to 80%. It is obvious
from the figure that the model is able to discover whether
there is a consensus between the nodes when less than 40%
or when approximately 63% or more of the nodes reject the
update message. However, the figure also suggests that if the
rejection percentage among the nodes is between 40% and
62%, the DQN agent accuracy decreases (68%-79%).

As discussed earlier in the methodology section, the
ϵ-greedy(A) policy algorithm is used to train DQN agents to
select the action with the maximum Q value. Hence, Fig. 8 is
introduced to study the effect of changing the ϵ value on agent
performance. That might be due to the fact of as a matter of
fact, when ϵ value is close to 1 the agent is always trying
to select as much random actions for exploring more options.
On the other hand, when ϵ value is getting close to 0 the agent
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FIGURE 7. Overall accuracy vs number of nodes that accepts the update message.

FIGURE 8. The performance of the DQN agent with different ϵ values.

starts acting greedily and exploiting and choosing the action
with the higher Q value. The results in Fig. 8 show that the
agent performance is getting enhanced if ϵ value is initialized
with a high value that is decreased while learning over the
time. The overall accuracy increased from 83.1% to 84.6%.
That might be due to the fact that when ϵ value is close to
1 the agent is always trying to select as much random actions
for exploring more options to find actions with the higher Q
values. On the other hand, when ϵ value is getting close to
0 the agent starts acting greedily and exploiting and choosing
the action with the higher Q value.

It can also be observed from Fig. 8 that the agent’s perfor-
mance sharply decreases (approximately 50%) if 70% of the
actions are greedily chosen, while 30% are randomly chosen
by the agent (ϵ = 30%).

C. SECOND SCENARIO: SETTINGS AND RESULTS
The second proposed scenario was motivated by our previous
study [31]. In [31], we proposed the utilization of a hierarchy
of DRL agents. The distributed nodes are divided into mul-
tiple layers, with each layer consisting of sectors of varying
sizes. The size of each sector is proportional to the density of
nodes in the targeted area. Specifically, an area with a high
density of nodes will be divided into relatively small sectors,
whereas an area with a low density of nodes will have larger
sectors. The primary objective of this division is to ensure that

the number of nodes in each sector is approximately equal.
For every sector, a DQN agent is added to the sector, and
the nodes within the sector communicate with the agent as
depicted in Fig. 9. The subsequent layer will cover the area of
the distributed agents from the previous layers, and the same
sector-based division will be applied, with one agent selected
for each sector. The agents within a given sector in the second
layer communicate with their respective sector agent. This
pattern is repeated for each subsequent layer, as illustrated in
Fig. 10.
The primary objective of communication that takes place in

each layer between the nodes in each sector and their agent,
as well as between agents in different sectors, is to achieve
a collective consensus within a short timeframe. All agents
will be trained to find the optimal policy for consensus based
on the available data received from local nodes and agents
from other sectors, utilizing DQN reinforcement learning.
The optimal number of layers, sectors within each layer, and
nodes within each sector will be studied in section IV.

The agents in [31] were trained using a deep network
alongwith a cross-entropy algorithm to determine the optimal
policy π . Policy π is the route followed by the agent to opt
for the next action (Accept, Reject, or Neutral) based on the
current state of the environment observations. In the second
Scenario, we propose to use three hierarchies of DQN agents.
Table 2 lists the deep network settings for the three hierarchies
of DQN agents. The table shows the number of layers used in
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FIGURE 9. Integrating DQN agents into the blockchain network.

FIGURE 10. Communication within the sectors and among DQN agents across different layers.

every hierarchy and the number of hidden layers required for
each DQN agent level.

A dataset of 1,600,000 observations was collected to eval-
uate the proposed method for this scenario. The data were
divided into two sets: training and testing sets. A total of
1,200,000 observations were chosen randomly for training,
while the rest were used for testing. The numbers of training
observations used per agent for the first, second, and third
hierarchies were 6000, 2400, and 1200, respectively. The
number of testing observations used per agent for the first,
second, and third hierarchies was 1000, 800, and 400, respec-
tively. It should be noted that different sets of observations
were used to test each agent. Furthermore, different values
for the propagation time (delay time) for each hierarchy were
chosen, as listed in Tables 3, 4, and 5. In each hierarchy
initially ϵ is set to a high value, that decays while the agent
is being learned. At the beginning of the learning process,
the agent attempts to explore the environment to update its
settings. However, as the agent moves forward in the learning
process, exploration decreases.

The settings and accuracy results for the three hierarchies
are presented in Tables 3, 4, and 5. As shown in Table 3,

the first hierarchy consists of 3 layers of agents. The number
of nodes was 1,000,00, 200, and 20 in layers 1, 2, and 3,
respectively. The number of agents was 200, 20, and 1 in
the same layers. Table 4 shows that, in the second hierarchy,
there were four layers. The number of nodes was 1,000,000,
500, 50, and 10 for layers 1, 2, 3, and 4, respectively. The
number of agents was 500, 50, 10, and 1 for layers 1, 2, 3,
and 4, respectively. Table 5 indicates that the third hierarchy
is divided into five layers. The number of nodes is 1,000,000,
1000, 100, 10, and 2 for layers 1, 2, 3, 4, and 5, respectively.
The number of agents was 1,000, 100, 10, 2, and 1 for layers 1,
2, 3, 4, and 5, respectively. It can be observed from Tables 3,
4, and 5 that the propagation time is increased as we move
forward from the lower layers toward the upper layers in
every hierarchy. This is due to the fact that the agents in the
upper layers need to wait until the communication is finished
in the lower layers.

The results in Tables 3, 4, and 5 show the overall accuracy
for each hierarchy. The overall accuracy of the training set
was 88.1%, 88.4%, and 90.1% for hierarchies 1, 2, and 3,
respectively. The accuracy results for the testing set were
85.2, 86.3, and 87.8% for hierarchies 1, 2, and 3, respectively.
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TABLE 3. The first hierarchy configuration.

TABLE 4. The second hierarchy configuration.

TABLE 5. The third hierarchy configuration.

FIGURE 11. Accuracy comparison between Hierarchy 1, Hierarchy 2, and Hierarchy 3.

It is obvious that accuracy is enhanced as we move from
the first to the third hierarchy. This might be because of
two main reasons: a) the number of DQN agents in every
layer for each hierarchy; when comparing the number of
DQN agents in every equivalent layer in the three hierar-
chies, the number is always increased while we are moving

toward hierarchy 3. For instance, the number of DQN agents
in the first layer is 200, 500, and 1000 for hierarchies 1,
2, and 3, respectively, whereas the number of DQN agents
in the second layer is 20, 50, and 100 for hierarchies 1,
2, and 3, respectively. Thus, it is clear that increasing the
sector numbers in every layer resulted in an increase in the
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FIGURE 12. The overall accuracy vs. the propagation time for all architectures in both scenarios.

number of DQN agents, which can help the hierarchy reach
a better consensus. b) The number of layers in each hier-
archy: The number of layers is also increased as we move
from the first to the third hierarchy, resulting in an increase in
the number of DQN agents. Moreover, it appears that having
more layers of DQN agents reduces the error caused by the
lower agents with the help of the upper agents while they are
learning.

Even though the result is enhanced by having more agents
and more layers in the hierarchy, it negatively impacts
the total propagation time. It is clear from the results
in Tables 3, 4, and 5 that the propagation time is slightly
increased by increasing the number of agents and layers.
This is a reasonable result because the number of messages
exchanged within each sector and between agents across the
layers increases as the number of agents increases in the
hierarchy. However, the proposed approach can contribute
to reducing bandwidth utilization. Communication occurs
between nodes and their agents within each layer, as well as
between agents in different layers, as opposed to the standard
method utilized in other consensus protocols, which involves
the exchange of updatemessages between neighboring nodes.
This can lead to nodes sending millions of handshake pack-
ets and receiving the same message multiple times from
their neighbors, causing significant bandwidth issues, startup
latency, and other network-related problems. Additionally,
the proposed approach is relatively immune to packet loss.
Lost or delayed messages can be handled as in the case of
messages with neutral votes. Neutral votes are discarded, and
decisions are made based on the majority vote. It is worth
noting that other blockchain P2P consensus protocols, such
as PoW and Proof of Stake (PoS), also suffer from lost and
delayed packets, as it is an inherent problem within P2P
networks.

Fig. 11 studies the effect of nodes number that rejects the
update message on the performance of the three hierarchies.
Number of nodes that reject the message starts by 20% and
then gradually is increased to 80%. Even though the three
hierarchies reach to a consensus among the nodes, however,
the performance of the first and the second hierarchies was
slightly affected when number of nodes was around 50%.

On the other hand, the third hierarchy retained its perfor-
mance and was not affected.

Fig. 12 shows the effect of increasing the propagation
time on the four DQN agent proposed in both scenarios.
Initially the propagation time is set to 11 seconds, and it gets
increased gradually to 60 seconds. The result shows a slightly
better performance for hierarchy 3 over the other proposed
DQN agents in both scenarios. The degradation in the overall
accuracy of hierarchy 3 was the smallest compared with the
other DQN agents in both scenarios. And this might be as
per the fact that number of agents is the largest in hierarchy
3 among all other hierarchies in both scenarios, which leads
to an efficient distribution for the agents among the layers in
this hierarchy. And also leads to assign an efficient number
of nodes per agent in every layer. Furthermore, hierarchy
3 is barley affected by the propagation time as the other
hierarchies in both scenarios because the number of nodes
that communicate with each agent is smaller than those are in
the other hierarchies in both scenarios.

D. LIMITATION AND COMPARISON WITH POPULAR
CONSENSUS ALGORITHMS
This section provides an overview of the limitations of
commonly used consensus protocols in blockchain, includ-
ing PoW, PoS, Delegated Proof of Stake (DPoS), Practical
Byzantine Fault Tolerance (PBFT), andRipple, and illustrates
how the proposed approach addresses most of these short-
comings.

One of the key challenges with PoW is its computational
intensity, which necessitates a significant amount of comput-
ing power to solve complexmathematical problems, resulting
in high energy consumption [8]. In contrast, the proposed
DQN agent approach does not need to solve complex mathe-
matical problems, it involves limited small messages that are
sent within the sector nodes and between the agents across
sectors, leading to a dramatic reduction in power consump-
tion across the network. While PoS and DPoS algorithms
have effectively reduced the amount of power required com-
pared to PoW, they still limit participation in the consensus
process to only those miners who have significant financial
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resources (stakeholders) [32], [33]. Conversely, the proposed
method leverages agents trained using efficient reinforce-
ment DQN learning techniques, which are able to incorporate
insights from network nodes to arrive at a final decision. This
approach offers a more democratic and inclusive consensus
process that is not limited by financial resources alone.

PoW, PoS, and DPoS can be applied to public blockchain
since any node can participate in the consensus process.
Conversely [8], [32], [33], PBFT and Ripple are suitable only
for private blockchain and consortium blockchain since only
permitted nodes can participate in the consensus process [6],
[34]. DQN agents can be applied to both public and private
blockchain because initially, all miners can participate in the
consensus process by sending small messages to the sector
agent inside the sector. At the second level, specific nodes
(agents) decide and lead the consensus process.

Most of these protocols have good scalability and can be
used for a large-scale network, except for PBFT, which is a
good fit for high-performance networks with limited nodes.
DQN agent is highly scalable, and a new sector with a new
agent can be added anytime to the network. Additionally,
a new node is easily added to the network by communicating
with the agent sector.

V. CONCLUSION
In this study, RL was utilized to enable agents to learn how
to reach consensus between distributed P2P nodes. More
precisely, DQN agents were deployed to achieve the neces-
sary agreement on a single state of the network (the update
message) among the nodes in the network.

Two scenarios are introduced and evaluated. In the first
scenario, we introduced one main DQN agent trained using
three different deep network architectures. Using the greedy
policy (ϵ = 0), the overall test accuracies of the three architec-
tures are 78.2%, 81.4%, and 83.1%, respectively. However,
the overall accuracy is getting enhanced to 84.6% when the
agent trained with a policy that follows decaying values of
ϵ. The decaying policy enables the agent to combine two
impressive policies: random and greedy; using both the agent
learns to explore different actions at the early stages of the
train and then learns to exploit the actions with higher Q
values at the later stages. In the second scenario, a set of DQN
agents with different hierarchies was deployed and evalu-
ated. We proposed three hierarchies (hierarchies 1, 2, and 3),
where each hierarchy has a different number of layers with
different numbers of DQN agents. The overall test accuracies
for hierarchies 1, 2, and 3 were 85.2%, 86.3%, and 87.8%
respectively.

To conclude, a relatively high accuracy for consensus in
P2P nodes was achieved using DQN agents. Thus, it seems
that utilizing deep agents to reach consensus in P2P networks
has promising results. Therefore, we plan to improve our
findings by 1) utilizing different type of deep agents. 2) Study
the effect of combining different types of agents in different
layers of the proposed hierarchies in the second scenario. 3)
Utilizing different sets of actions.
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