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ABSTRACT We present a practical realization of Rivest-Shamir-Adleman (RSA) with a 2048-bit key on
MSP430, a widely used microcontroller in wireless sensor network and Internet of things applications,
and show that 2048-bit RSA is feasible on a constrained microcontroller. We exploit several methods for
acceleration, e.g.Montgomerymodular multiplication, subtractive Karatsuba-Ofman and Chinese remainder
theorem (CRT) based modular exponentiation, and achieve RSA encryption and decryption with a 2048-
bit key on MSP430 in just 0.14 s and 7.56 s, respectively. Our implementation on the low-end MSP430
microcontroller achieves 2048-bit RSA significantly faster (×2.9 and ×2.4 for encryption and decryption)
with respect to the existing implementation in the literature on the comparable ATmega128 microcontroller.
While our implementation is secure against the brute force attack due to its 2048-bit key, and thus 112-bit
security level, it also includes the necessary side-channel countermeasures, e. g. message and key blinding,
to help mitigate implementation attacks such as simple power analysis and differential power analysis.

INDEX TERMS CRT exponentiation, embedded systems, Internet of Things, Karatsuba-Ofman, public-key
cryptography, Rivest-Shamir-Adelman, RSA, side-channel resistant, wireless sensor networks.

I. INTRODUCTION
It is important to implement cryptographic algorithms effi-
ciently on low-end microcontrollers to provide security in
a growing number of wireless sensor network (WSN) and
Internet of things (IoT) applications [1], [2], [3]. These
applications transmit and/or process sensitive data in areas
such as smart homes, connected cars, smart grids, smart
healthcare systems, smart farming [4], environmental surveil-
lance [5], smart cities, smart factories [6] and military appli-
cations [7], [8], [9]. While symmetric key cryptographic
algorithms would facilitate secure communication for these
applications at low cost, distribution of the secret key could
be achieved most practically using complex public-key cryp-
tography (PKC) algorithms.

The Rivest-Shamir-Adleman (RSA) cryptosystem, which
is the first general-purpose PKC algorithm, is by far also the
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most widely deployed one [2], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21]. Nevertheless, mem-
ory and CPU speed limitations for low-end microcontrollers
make it challenging to implement RSA on constrained micro-
controllers used in WSNs and IoT systems [22]. For the 80-
bit security level, RSA should use a 1024-bit key. However,
as the 80-bit security level is considered out-of-date for most
applications, the 112-bit security level, and hence the use of
at least a 2048-bit key, is suggested for RSA [23]. While the
same security level is reached with elliptic-curve cryptogra-
phy (ECC) utilizing a shorter key and hence smaller com-
putational load [24], [25], RSA is still the most widespread
public-key cryptographic algorithm. RSA has some advan-
tages over ECC. One advantage is signature verification with
RSA is faster. Furthermore, RSA is more mature and more
widely adopted, especially in Internet applications. AnyWSN
or IoT application that uses RSA would have a better chance
of being compatible with existing infrastructures. Finally,
while the prospect of building a general-purpose quantum

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 39531

https://orcid.org/0000-0003-3135-8817
https://orcid.org/0000-0002-3478-5200
https://orcid.org/0000-0002-8887-4321


U. Gulen, S. Baktir: Side-Channel Resistant 2048-Bit RSA Implementation for WSNs and IoT

computer would undermine the security of both RSA and
ECC, ECC has also been the suspect of a more recent threat
which is the potential back doors due to its parameter-based
nature as revealed by Edward Snowden [26]. Hence, RSA
clearly has some strong points against ECC.

The National Institute of Standards Technology (NIST)
recommends the use of at least a 2048-bit long RSA key
to achieve 112-bit security [23]. Nevertheless, to the best
of our knowledge, there is no existing study that effi-
ciently implements RSA with a 2048-bit or longer key on a
constrained microcontroller such as MSP430 and ATmega.
Texas Instrument’s low-cost and low-power family of MP430
microcontrollers are some of the most common micro-
controllers which are used in wireless sensor nodes. For
instance, the well-known sensor nodes Telos, Tmote and
BEAN use the MSP430F149 microcontroller; moreover, the
TelosB, Tmote Sky, KMote and SHIMMER sensor nodes use
the MSP430F1611 microcontroller [27]. Similarly, the sen-
sor nodes WSN1120L, WSN1120CL, WSN1101ANL and
WSN1101ACL of WiSense use the MSP430G2955 micro-
controller [28], [29], [30], [31]. In our work, we imple-
ment 2048-bit RSA with the necessary mitigation tech-
niques against side-channel attacks for the MSP430 fam-
ily of microcontrollers. We combine several acceleration
methods together. Our 2048-bit RSA implementation with
side-channel protection has by far the fastest timing result
in the literature on a constrained microcontroller such as
MSP430 or ATmega128.

A. OUR MAIN CONTRIBUTIONS
• For the first time in the literature, we present efficient
RSA implementations on the MSP430 family of con-
strained microcontrollers using a 2048-bit key as recom-
mended by the NIST [23].

• We combine the acceleration techniques sliding-window
method, Chinese remainder theorem (CRT) based expo-
nentiation, Montgomery modular multiplication, and
subtractive Karatsuba-Ofman multiplication for the first
time in the literature for 2048-bit arithmetic. Our
resulting 2048-bit RSA implementation on the con-
strained MSP430 microcontroller outperforms the exist-
ing implementation on the comparable ATmega128
microcontroller [32], and achieves RSA encryption and
decryption operations more than twice faster.

• Unlike the existing work in [32], our 2048-bit RSA
implementation includes the necessary countermea-
sures, such as constant time implementation, secret key
blinding, ciphertext blinding and sliding window, to pre-
vent vulnerabilities that may arise from implementation
attacks such as simple power analysis (SPA) and differ-
ential power analysis (DPA) [33].

• We show that strong RSA cryptography with a 2048-bit
key is feasible on constrained microcontrollers used in
WSN and IoT applications.

In Section II, we present preliminary information and foun-
dations on RSA and arithmetic algorithms for accelerating it.

We present our 2048-bit RSA implementations on three
generations of the MSP430 microcontroller in Section III.
Finally, Section IV includes the performance evaluations and
comparisons with the existing work.

II. PRELIMINARIES
RSA [34], proposed in 1978, is the oldest as well as the most
extensively deployed general purpose public-key cryptosys-
tem [35]. Encryption and decryption operations with RSA are
achieved simply with modular exponentiations. For the prime
numbers p and q, modulus N = p · q, private key d , public
key e, cipher textC and plain textM , the RSA encryption and
decryption operations are conducted as given below:

RSA Encryption : C = M e mod N ,

RSA Decryption : M = Cd mod N .

In the RSA algorithm, the private key d and the public key
e are related to each other according to the following equality

e · d = 1 (mod φ(N )),

where the Euler’s Phi function φ(N ) is defined as

φ(N ) = (p− 1) · (q− 1).

If one can factorize N , they would be able to easily com-
pute φ(N ) and thus the private key d = e−1 mod φ(N ) .
Hence, the security of RSA depends on the difficulty of
factorizing the RSA modulus N which is the product of the
prime numbers p and q. Choosing larger values for p and q
would make factorization of N harder and thus increase the
security of RSA.

Several methods could be utilized to expedite the encryp-
tion/decryption processes in RSA.While the Chinese remain-
der theorem (CRT) based multiplication and the sliding win-
dow method could be used to accelerate RSA decryption, the
small exponent e = 216 + 1 could be used to accelerate RSA
encryption. In order to efficiently realize modular exponen-
tiation, conducted in RSA encryption and decryption, it is
necessary to implement modular multiplication efficiently.
Montgomery multiplication is a popular technique that is
commonly used for efficient modular multiplication [36].
As part of Montgomery multiplication, one needs to achieve
integermultiplications. Karatsuba-Ofman algorithm is an ele-
gant and widely used technique to speed up integer multi-
plication [37]. The subtractive Karatsuba-Ofman technique
improves upon the original Karatsuba-Ofman algorithm and
can be used to achieve the integer multiplication operations
required for Montgomery multiplication [38].

A. SLIDING WINDOW METHOD
Modular exponentiation with large integers, as conducted in
RSA encryption/decryption, is considered feasible due to the
binary method, aka the square-and-multiply algorithm [39].
In this method, the exponent bits are scanned and processed
one at a time starting with the highest ordered nonzero bit.
The intermediary result is first set to 1 for the highest ordered
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Algorithm 1Modular Exponentiation With the 4-Bit Sliding
Window Method
Require: B,N , k = (kt−1 · · · k1k0)2
Ensure: Bk mod N
1: T0← 1
2: T1← B
3: for j← 2 → 24 − 1 do
4: Tj← Tj−1 · B
5: end for
6: R← T0
7: j← 0
8: while j ≤ t − 1 do
9: i← (kt−1−jkt−2−jkt−3−jkt−4−j)2

10: for l ← 1 → 4 do
11: R← R2

12: end for
13: R← R · Ti
14: j← j+ 4
15: end while
Return: (R)

nonzero bit and then squared for each newly scanned bit.
If the scanned bit is 0, no further operations are performed for
that bit. On the other hand, the intermediary result is further
multiplied with the base if the scanned bit is 1. The expo-
nentiation operation is finalized when all bits of the exponent
are scanned and processed following this scheme. Although it
makes exponentiation feasible, the binary method is consid-
ered inefficient and also known to be insecure against the SPA
attack [33]. The binary method can be used safely in RSA
encryption where a small public key is utilized to simplify
exponentiation. With the small exponent e = 216 + 1, the
RSA encryption operation C = M e mod N can be computed
utilizing the binary method by conducting only sixteen squar-
ings and one multiplication modulo N .
An alternative to the binary method for exponentiation is

the sliding window method where the exponent’s bits are
scanned two or more bits at once. The 4-bit sliding window
method is given in Algorithm 1. In this method, the first
16 powers of the base, startingwith the 0th power, are precom-
puted and saved in a look-up table. The intermediary result
is initially set to 1. Then, for every 4 bits of the exponent,
starting with the highest ordered bits, the intermediary result
is squared 4 times and then multiplied with the correspond-
ing look-up table entry. Similar to the binary method, one
squaring is performed for every scanned bit. However, only
one multiplication is done for every 4-bit window of scanned
bits, which significantly reduces the total number of required
multiplications. Furthermore, unlike the binary method, the
sliding window method is considered secure against the SPA
attack. Hence, the sliding window method could be used to
realize modular exponentiation for RSA decryption.

B. RSA DECRYPTION USING CRT BASED
EXPONENTIATION
The CRT is commonly taken advantage of to accelerate
RSA decryption. In RSA, the modulus N is equal to the

product of the prime numbers p and q, therefore CRT based
exponentiation modulo N can be facilitated to accelerate the
exponentiation operation in RSA decryption. The decryption
operation, M = Cd mod N , could be computed utilizing
CRT based modular exponentiation as follows [40]:

Cp = C mod p,

Cq = C mod q,

Mp = C
dp
p mod p,

Mq = C
dq
q mod q,

M = (q · cp) ·Mp + (p · cq) ·Mq mod N ,

where the constants dp, dq, cp and cq are precomputed as

dp = d mod (p− 1),

dq = d mod (q− 1),

cp = q−1 mod p,

cq = p−1 mod q.

The lengths of the operands dp, dq, p, q, cp and cq are half the
lengths for the corresponding operands N , d and C in normal
RSA decryption. Thus, the arithmetic operations in CRT
based RSA decryption are performed over smaller operands
and hence they are simpler compared to the arithmetic opera-
tions in normal RSA decryption. A speedup by a factor of up
to four is achieved in RSA decryption by utilizing CRT based
exponentiation [40].

C. MONTGOMERY MULTIPLICATION
Montgomery multiplication is an elegant technique for mod-
ular multiplication. It is typically used in algorithms where
repeated modular multiplications are performed, such as the
modular exponentiation in RSA encryption and decryption
operations [36], [41]. Algorithm 2 gives the steps of Mont-
gomery multiplication for multiplying the n-bit integers A
and B modulo the n-bit modulus N . In the algorithm, the
operands are in their Montgomery forms Ā = A · r mod N
and B̄ = B · r mod N where r = 2n. Note in Algorithm 2
that an n-bit Montgomery multiplication is achieved with 3
n-bit integer multiplications, one 2n-bit addition, and one n-
bit subtraction. The cost of division by r in the third line
of Algorithm 2 is negligible since the result of T2 · N is
a multiple of r = 2n. Thus, T2 · N/r can be obtained
simply by discarding the least significant n bits of T2 · N .
In line 5 of Algorithm 2, the subtraction operation depends
on the if condition. In our work, we make this if statement
execute in constant time to provide side-channel resistance.
We explain the side-channel attack countermeasures in our
RSA implementation in detail in Section III-B.

D. SUBTRACTIVE KARATSUBA-OFMAN TECHNIQUE
Multiprecision integer multiplication, which is performed
three times in Montgomery multiplication, is the core arith-
metic operation in RSA. Therefore achieving fast multipreci-
sion integer multiplication is crucial for an efficient RSA
implementation. Using the classical grade school method,
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Algorithm 2Montgomery Modular Multiplication

Require: Ā = A · r mod N and B̄ = B · r mod N
where r = 2n and n = ⌈log2 N⌉

Ensure: C̄ = A · B · r mod N
1: T1← Ā · B̄
2: T2← T1 · N ′ mod r where N ′ = −N−1 mod r
3: T1← (T1 + T2 · N )/r
4: if T1 ≥ N then
5: T1← T1 − N
6: end if

Return: (Z̄ ← T1)

multiplication of large integers is typically achieved in terms
of a large number of word additions and multiplications. The
Karatsuba-Ofman technique is a divide-and-conquer method
that trades computationally expensive multiplications with
simple additions [37]. An illustration of Karatsuba-Ofman for
multiplying the n-bit integers A and B is given in Figure 1.
As given with Figure 1, in Karatsuba-Ofman, A and B are
bisected to their higher and lower ordered parts, denoted
with AH , AL and BH , BL , respectively, and arithmetic is
performed over these operand halves. Thus, an n-bit mul-
tiplication is achieved with roughly three n

2 -bit multiplica-
tions and a number of additions/subtractions. Since multi-
plication is more complex and takes more time compared to
addition/subtraction, Karatsuba-Ofman ensures faster overall
multiplication. Note that while the classical grade school
method requires performing four n

2 -bit multiplications to
achieve an n-bit multiplication, Karatsuba-Ofman requires
only three. When applied recursively, Karatsuba-Ofman sig-
nificantly reduces the complexity of multiprecision multipli-
cation fromO(m2) toO(mlog23) for the multiplication of two
m word integers.
In the Karatsuba-Ofman technique, since additions may

generate carry bits, the multiplication operation (AH + AL) ·
(BH + BL) is not always fixed in size. When the conditional
branch operation is avoided in this multiplication computa-
tion to prevent timing attacks, the operands AH + AL and
BH +BL are considered with their extra carry bit even when a
carry bit is not generated after the addition. This causes over-
head in the multiplication computation. This overhead can be
eliminated by using the subtractive Karatsuba-Ofman tech-
nique, a slightly optimized form of the original Karatsuba-
Ofman [38], [42]. With this approach, the two halves of
the integers to be multiplied are subtracted from each other,
instead of being added. Figure 2 shows the operations that
take place in subtractive Karatsuba-Ofman.

III. OUR 2048-BIT RSA IMPLEMENTATIONS
We implement 2048-bit RSA on three target MSP430 micro-
controllers, namely MSP430F1611 [45], MS430F2618 [44]
and MSP430F5529 [43]. Since these three generations
of MSP430 support the same instruction set, we are
able to use the same code with little modifications
for the three microcontrollers. However, there are some

FIGURE 1. Karatsuba-Ofman multiplication for computing A × B.

FIGURE 2. Subtractive Karatsuba-Ofman multiplication for computing
A × B.

differences between our target MSP430microcontrollers. For
instance, MSP430F5529 has a 32 × 32 multiplier whereas
MSP430F2618 and MSP430F1611 have a 16 × 16 multi-
plier, and hence word multiplications need to be handled
differently. Other than the size of the hardware multiplier,
thememorywrite instruction takes different numbers of clock
cycles on different versions of MSP430. The memory write
instruction on MSP430F1611 takes 4 clock cycles while the
same instruction takes 3 clock cycles on MSP430F2618 and
MDP430F5529. Another difference between the microcon-
trollers is in their memory capacities and their maximum
CPU clock frequencies. MSP430F5529, MSP430F2618 and
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MSP430F1611 have the memory sizes of 128 kB, 116 kB and
48 kB, and the maximum CPU clock frequencies of 25 MHz,
16 MHz and 8 Mhz, respectively.

We use the IAR Embedded Workbench development
environment, and test our code using its debugger and
clock-counter features [46]. All the acceleration techniques
described in Section II are applied in our implementa-
tions, namely CRT-based exponentiation and 4-bit sliding
window to accelerate RSA decryption, the small exponent
216 + 1 to accelerate RSA encryption, and subtractive
Karatsuba-Ofman andMontgomerymultiplication to acceler-
ate both. For core arithmetic operations such as integer addi-
tion/subtraction and subtractive Karatsuba-Ofman, we write
our codes in assembly to guarantee fast execution.

In our assembly codes, we eliminate conditional branch
and jump instructions to mitigate timing attacks. For
MSP430F1611 and MS430F2618, we implement 2048-bit
integer multiplication by recursively utilizing subtractive
Karatsuba-Ofman (for five levels) until the method does not
accelerate the base integer multiplication any further. Here,
the base integer multiplications, which are 64-bit multiplica-
tions, are implemented using the onboard 16× 16 multiplier.
For MSP430F5529 with a 32× 32 multiplier, we recursively
implement subtractive Karatsuba-Ofman (for four levels)
until the 128-bit multiplications are reached at the base case
of recursion. We observe that subtractive Karatsuba-Ofman
does not speed up 128-bit integer multiplication when the
32 × 32 multiplier is used for word multiplications. While
we implement subtractive Karatsuba-Ofman recursively, our
code is fully unrolled and thus there is no timing overhead
due to recursive function calls.

We optimize our integer arithmetic as much as we
can, e.g. by storing frequently used operands in regis-
ters, to reduce memory read/write overheads and opti-
mize our subtractive Karatsuba-Ofman code for the squar-
ing operation. We explain our acceleration optimiza-
tions for 128-bit subtractive Karatsuba-Ofman by giv-
ing assembly code examples with MSP430 instructions in
Section III-A
The techniques which we use in our RSA decryp-

tion/encryption implementation are summarized in Figure 3.
At the bottom of our implementation, fast integer multipli-
cation/squaring is achieved with the subtractive Karatsuba-
Ofman and operand scanningmethods which are used within
Montgomery multiplication. Montgomery multiplication is
used in CRT based modular exponentiation and in modular
exponentiation with small public exponent. CRT-based mod-
ular exponentiation is used in RSA decryption and modular
exponentiation with small public exponent is used in RSA
encryption. Furthermore, in RSA decryption, message and
key blinding techniques, which we describe in Section III-
B, are used to mitigate side-channel attacks and protect the
private decryption key. Finally, the sliding window method is
used in RSA decryption for both side-channel attack protec-
tion and efficiency.

A. OPTIMIZED ARITHMETIC FOR SUBTRACTIVE
KARATSUBA-OFMAN AND OPERAND SCANNING
1) SUBTRACTIVE KARATSUBA-OFMAN MULTIPLICATION IN
FIXED-TIME
At the bottom of our 2048-bit recursive subtractive
Karatsuba-Ofman implementation on MSP430F1611 and
MSP430F2618, we perform 128-bit subtractive Karatsuba-
Ofman. Here, we explain the details of our 128-bit subtractive
Karatsuba-Ofman implementation and the optimizations we
use. We would like to note that we apply the same techniques
at the higher levels of recursion in our 2048-bit recursive
subtractive Karatsuba-Ofman implementation. As described
in Figure 2, for performing 128-bit subtractive Karatsuba-
Ofman, three 64-bit multiplications are performed, namely
AH ·BH , (AH −AL) · (BH −BL) and AL ·BL . The advantage of
subtractive Karatsuba-Ofman over normal Karatsuba-Ofman
is that the multiplication operation (AH − AL) · (BH − BL) is
fixed in size since there is no possibility of a carry occurrence
in the computations of AH − AL and BH − BL , unlike in the
additions AH + AL and BH + BL that take place in the orig-
inal Karatsuba-Ofman method. The multiplication operation
(AH − AL) · (BH − BL) in subtractive Karatsuba-Ofman is
performed over shorter operands and hence it is more efficient
compared to themultiplication operation (AH+AL)·(BH+BL)
that takes place in the original Karatsuba-Ofman algorithm.

We use the two’s complement representation to store the
results of the subtractions AH − AL and BH − BL . We use
an additional sign word that is set to 0 × FFFF or 0 ×
0000 depending on whether the result of the subtraction is
negative or positive. We denote the sign words for the results
of AH − AL and BH − BL with SWA and SWB, respectively.
In order to avoid timing attacks, we realize the subtrac-
tions AH − AL and BH − BL , as well as the multiplication
(AH − AL) · (BH − BL), in fixed execution time and without
using branches, regardless of whether the result is positive or
negative. We obtain and process the magnitudes of the results
of the subtraction operations. In order to do this, we need
to compute the two’s complement of the result if subtraction
results in a negative number. We do this computation in fixed
time, regardless of whether a subtraction results in a positive
or a negative number, by XORing the sign word with all the
remaining words of the result and then by adding the sign bit,
as shown in Subroutines 1 and 2. Note that the sign words
SWA and SWBwill be either 0×FFFF or 0×0000, depending
on whether the results of AH−AL and BH−BL are negative or
positive, respectively. Hence, XORing AH −AL (or BH −BL)
with its sign word and then adding the sign bit to the result
would give us its two’s complement, and thus its magnitude,
only if its sign word is 0 × FFFF (it is initially negative). If
AH − AL (or BH − BL) is positive, and hence its sign word
is 0 × 0000, this operation will not change its value which
is already the positive magnitude. Note that, in Subroutines 1
and 2, the magnitudes of AH −AL and BH −BL are computed
and stored in the arrays A[4:7] and B[4:7], and their sign
words are stored in SWA and SWB, respectively.
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FIGURE 3. Techniques used in the proposed RSA implementation listed according to their performance impact.

Subroutine 1. Assembly subroutine for AH -AL computation in 128-bit
subtractive Karatsuba multiplication.

We use the sign words of AH − AL and BH − BL , stored
in SWA and SWB, in the computation of the intermediary
product−T1 = (AH −AL) · (BH −BL) which can be positive
or negative. By utilizing the sign words SWA and SWB,
we compute−T1 and add it to T2 = AH ·BH and T0 = AL ·BL ,
as depicted in Figure 2. With Subroutine 3, we give our
assembly code implementation for the computation of T0 +
T2−T1 in 128-bit subtractive Karatsuba-Ofman. Here, firstly
the computation of−T1 is achieved, and then it is added with
T2 = AH · BH and T0 = AL · BL . Note that, in the beginning
of Subroutine 3, the magnitudes of T2, T1 and T0 are stored
in the memory arrays T2[0 : 7], T1[0 : 7] and T0[0 : 7],
respectively. Remember that the sign words of AH − AL and
BH − BL are stored in SWA and SWB at this point. After the
subroutine is executed, the result T2 + T0 − T1 is stored in
the memory array T1[0 : 7] and the carry-out bit is stored in
SWA.

As seen in Figure 2, the lower half of T0 = AL · BL gives
us the least significant 64 bits of the result. To finalize 128-
bit subtractive Karatsuba-Ofman multiplication, we add the
upper half of T0 to the lower half of T2 + T0 − T1 which
gives us the following 64 bits of the result. Finally, we add the

Subroutine 2. Assembly subroutine for BH -BL computation in 128-bit
subtractive Karatsuba multiplication.

generated carry bit and T2 = AH ·BH to the upper half of T2+
T0−T1 to generate the most significant 128 bits of the result.
Subroutine 4 shows the assembly code for this summation
operation where T2 = AH · BH and T0 = AL · BL are stored
in the memory arrays T2[0 : 7] and T0[0 : 7], respectively.
Note that, we givewith Subroutines 1-4 the assembly codes

for 128-bit subtractive Karatsuba-Ofman. For 256-bit, 512-
bit, 1024-bit and 2048-bit subtractive Karatsuba, we expand
our codes by applying the same techniques recursively and in
an unrolled fashion.

2) SUBTRACTIVE KARATSUBA-OFMAN SQUARING IN
FIXED-TIME
We perform the modular exponentiation operations required
for RSA decryption by using the 4-bit sliding window tech-
nique given with Algorithm 1. With this technique, four
modular squarings are performed for every modular multi-
plication. Since the number of performed modular squarings
is four times higher than modular multiplications, it is par-
ticularly important to improve the performance of modular
squaring for fast RSA decryption. Similarly, in RSA encryp-
tion where the short public key e = 216+1 is used for speed,
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Subroutine 3. Assembly subroutine for t2 + t0 − t1 computation in
128-bit subtractive Karatsuba multiplication.

Subroutine 4. Subroutine for adding t2 + t0 − t1 to finalize 128-bit
subtractive Karatsuba multiplication.

encryption is achieved by performing 16 modular squarings
and only one modular multiplication, and hence speeding up
the modular squaring operation would pay off. Remember
that we perform modular multiplication, as well as modular
squaring, by using Montgomery multiplication given with
Algorithm 2. In Montgomery multiplication, three integer
multiplications are performed, as shown in lines 1, 2 and 3 of
Algorithm 2. The only difference between modular multipli-
cation and modular squaring with Montgomery multiplica-
tion is that in modular squaring the integer multiplication in
line 1 of Algorithm 2 is a squaring. We speed up this inte-
ger squaring by optimizing our subtractive Karatsuba-Ofman
multiplication implementation for the squaring computation.

The operations that take place in our subtractive
Karatsuba-Ofman squaring implementation are depicted
in Figure 4. Subtractive Karatsuba-Ofman squaring is faster
than subtractive Karatsuba-Ofman multiplication since inte-
ger squaring is performed over a single operand and therefore
the number of required memory read/write operations is
less since the same values are multiplied. Moreover, in the
computation of T1 = (AH − AL)2 , the result is always

FIGURE 4. Subtractive Karatsuba-Ofman squaring for computing A2.

positive which allows us to eliminate the XOR and two’s
complement operations that would otherwise be needed to
handle the sign word. For 128-bit subtractive Karatsuba-
Ofman squaring, as seen in Figure 4, the lower half of T0 =
A2L gives us the least significant 64 bits of the result. After
squaring AH − AL to obtain T1 = (AH − AL)2, we subtract
T0 = A2L and T2 = A2H from it. We give the assembly code
for this operation in Subroutine 5 where T0, T1 and T2 are
stored in the memory arrays T0[0:7], T1[0:7] and T2[0:7],
respectively. Note that after this computation, the resulting
value of T1−T0−T2 = (AH −AL)2−A2L−A

2
H resides in the

memory array T1[0:7] and the sign word CW. We represent
this result as T1[0:7] ||CW , the concatenation of T1[0:7] and
CW . We then subtract T1−T0−T2, stored in T1[0:7] || CW ,
from T0[4:7] || T2[0:4] in order to compute the middle
128 bits of the result. We add the generated carry word to
T2[5:7] to compute the most significant 64 bits of the result
and finalize the subtractive Karatsuba-Ofman squaring oper-
ation. When 128-bit subtractive Karatsuba-Ofman squaring
completes execution, the lower 128 bits of the 256-bit result
are stored in thememory array T0[0:7] and the higher 128 bits
are stored in thememory array T2[0:7].We give our assembly
code for this operation with Subroutine 6.

3) OPERAND-SCANNING MULTIPLICATION AND SQUARING
IN FIXED-TIME
In our 2048-bit integer multiplication and squaring imple-
mentations on MSP430F1611 and MSP430F2618, after five
levels of recursive subtractive Karatsuba-Ofman multiplica-
tion/squaring operations, at the base case of recursion we
realize 64-bit multiplication/squaring operations using the
operand scanning method and the onboard 16 × 16-bit hard-
ware multiplier.
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FIGURE 5. 64-bit operand scanning multiplication and squaring methods using a 16
× 16-bit hardware multiplier.

For our implementation on MSP430F5529, which has a
32 × 32-bit onboard hardware multiplier, we implement
subtractive Karatsuba-Ofman with four levels of recursion.
At the base case of recursion, we realize 128-bit multiplica-
tion/squaring operations using the operand scanning method
and the onboard 32 × 32-bit hardware multiplier.

We do not carry out subtractive Karatsuba-Ofman fully
recursively until we reach the microcontroller’s word size,
because the operand scanning method performs better than
subtractive Karatsuba-Ofman for 64-bit operands. In the
operand scanningmethodwith 64-bit operands, we are able to
store the partial products of word multiplications using only
the 12 general purpose registers. We read and write the inter-
mediary results by using these registers instead doing costly
memory read/write operations. Subtractive Karatsuba-Ofman
generates partial products with different sizes, i.e. T2 = AH ·
AH , T1 = (AH − AL) · (BH − BL) and T0 = AL · AL , and
requires irregular operand access patterns for computations
with these partial products. Therefore, even in 64-bit sub-
tractive Karatsuba-Ofman multiplication, memory read/write
operations are inevitable in addition to register operations,
and hence more clock cycles are spent compared to the
operand scanning method. That is why we use the operand
scanning method for multiplications at the base case for
our recursive subtractive Karatsuba-Ofman implementation.
Note that, for MSP430F5520 with a 32 × 32-bit hardware
multiplier, we similarly use the operand scanning method for
the 128-bit multiplication operations at the base case of our
4-level recursive subtractive Karatsuba-Ofman implementa-
tion.We optimize our operand scanningmultiplication imple-
mentation on MSP430F5520 to handle 128-bit operands effi-
ciently by emptying and reusing registers to avoid memory
read/write operations while processing partial results.

We optimize our 64-bit and 128-bit operand scanning
multiplication implementations for the squaring computation
on our target microcontrollers with the 16 × 16-bit and

Subroutine 5. Assembly subroutine for t1 − t0 − t2 computation in
128-bit subtractive Karatsuba squaring.

Subroutine 6. Subroutine for subtracting t1 − t0 − t2 to finalize 128-bit
subtractive Karatsuba squaring.

32 × 32-bit hardware multipliers, respectively. In operand
scanning squaring, we are able to reduce the number of
required word multiplications, compared with operand scan-
ning multiplication, by eliminating repeating word multipli-
cations in partial product computations. For instance, in the
computation of A1 · A2 + A2 · A1, we eliminate the second
word multiplication and find the result with the computa-
tion A1 · A2 ≪ 1 where we simply do a bitwise left shift
operation on the result of the first word multiplication. With
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this optimization, we are able to reduce the number of word
multiplications from 16 down to 10. We depict the com-
putations performed in operand scanning multiplication and
the optimizations performed in operand scanning squaring
in Figure 5. Optimizing operand scanning multiplication for
squaring accelerates the squaring computation considerably.

On MSP430F1611 and MSP430F2618, which have an
onboard 16 × 16-bit hardware multiplier, 64-bit operand
scanning multiplication takes 210 and 189 clock cycles,
respectively. On the same microcontrollers, 64-bit operand
scanning squaring takes 170 and 155 clock cycles,
respectively. Hence, with 64-bit operand scanning squar-
ing, we achieve 23% and 22% speedups over 64-bit
operand scanning multiplication on MSP430F1611 and
MSP430F2618, respectively. On the other target microcon-
troller, MSP430F5529, which has an onboard 32 × 32-bit
hardware multiplier, 128-bit operand scanningmultiplication
takes 466 clock cycles. Whereas, on the same microcon-
troller, 128-bit operand scanning squaring takes 458 clock
cycles. Hence, with 128-bit operand scanning squaring,
we achieve around 2% speedup over 128-bit operand scan-
ning multiplication on MSP430F5529.

4) COMBINED OPTIMIZATION THROUGH SUBTRACTIVE
KARATSUBA-OFMAN SQUARING AND OPERAND-SCANNING
SQUARING
The combined optimizations that come with operand scan-
ning squaring and subtractive Karatsuba-Ofman squaring
result in improved performance for integer squaring opera-
tions. On MSP430F1611 and MSP430F2618, which have an
onboard 16× 16-bit hardware multiplier, 128-bit subtractive
Karatsuba-Ofman multiplication takes 921 and 839 clock
cycles, respectively. Whereas, on the same microcontrollers,
128-bit subtractive Karatsuba-Ofman squaring takes 727 and
665 clock cycles, respectively. Hence, with 128-bit subtrac-
tive Karatsuba-Ofman squaring (with 64-bit operand scan-
ning squaring at the base of recursion), we achieve 27%
and 26% speedups over 128-bit subtractive Karatsuba-Ofman
multiplication (with 64-bit operand scanning multiplica-
tion at the base of recursion), on MSP430F1611 and
MSP430F2618, respectively.

On the other target microcontroller, MSP430F5529, which
has an onboard 32 × 32-bit hardware multiplier, 256-bit
subtractive Karatsuba-Ofmanmultiplication takes 1888 clock
cycles. Whereas, on the same microcontroller, 256-bit
subtractive Karatsuba-Ofman squaring takes 1742 clock
cycles. Hence, with 256-bit subtractive Karatsuba-Ofman
squaring (with 128-bit operand scanning squaring at the
base of recursion), we achieve 8% speedup over 256-bit
subtractive Karatsuba-Ofman multiplication (with 128-bit
operand scanning multiplication at the base of recursion) on
MSP430F5529.

The resulting performance of 2048-bit subtractive
Karatsuba-Ofman squaring is dramatically better compared
to the performance of 2048-bit subtractive Karatsuba-Ofman
multiplication. For the microcontrollers MSP430F1611,

MSP430F2618 and MSP430F5529, 2048-bit Karatsuba-
Ofmanmultiplication takes 110733, 102167 and 73066 clock
cycles, respectively. Whereas, on the same microcon-
trollers, 2048-bit subtractive Karatsuba-Ofman squaring
takes 84720, 78479 and 63968 clock cycles, respectively.
Hence, with 2048-bit subtractive Karatsuba-Ofman squar-
ing (with operand scanning squaring at the base of recur-
sion), we achieve 34%, 30% and 14% speedups over
2048-bit subtractive Karatsuba-Ofman multiplication (with
operand scanning multiplication at the base of recur-
sion) on MSP430F1611, MSP430F2618 and MSP430F5529,
respectively.

B. SIDE-CHANNEL ATTACK COUNTERMEASURES
Side-channel attacks on cryptographic implementations vary
in a wide range and several low-cost countermeasures have
been proposed to mitigate them [47], [48], [49], [50],
[51], [52]. The first attack that comes to mind is the SPA
attack [33]. In the SPA attack, it is assumed that the secret
key has an impact on the power consumption and the attacker
is able to monitor it. Since the key pattern is visually iden-
tifiable in a power trace that is collected by the attacker,
it can reveal the full length of secret key bits even from a
single power trace [53]. The SPA attack can be applied to
RSA decryption. In RSA decryption, exponentiation using
the binary square andmultiplymethodwould reveal the secret
exponent bits since a multiplication is performed, in addition
to a squaring, only when the scanned secret key bit is 1.
Since the difference between the square and the multiply
operations can be distinguished even with the naked eye by
looking at the power consumption trace of RSA decryption
under an oscilloscope, the secret keywould be revealed easily.
Exponent blinding is believed to prevent the SPA attack on
the binary square and multiply method; however, it is proved
in [54] that this claim is not generally true for the chosen
plaintext attack. The attack proposed in [54] can be prevented
by combining exponent blinding (secret key blinding) with
base blinding (ciphertext blinding). In [55], it is shown that an
improved version of the binary square and multiply exponen-
tiation algorithm, known as the multiply always exponentia-
tion method, where the squaring operation is performed in the
form of a multiplication operation, can be attacked success-
fully even though the secret key blinding and the ciphertext
blinding countermeasures are applied together. In their work,
they use unsupervised machine learning (ML) methods to
differentiate whether a multiplication or a squaring operation
is computed from the trace segments of power measurements.
In our RSA implementations, we use the 4-bit sliding window
method as an effective solution to prevent this attack. In the
4-bit sliding window method, the same computations (four
squarings and one multiplication) are performed in every
step of the exponentiation operation, regardless of the values
of the exponent bits, to ensure indistinguishable power pro-
files. A similar approach that uses the 2-bit sliding window,
as well as secret key blinding, is applied in [56]. Note that,
in our work, we utilize all the mentioned side-channel attack
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FIGURE 6. Fixed-time branch implementation (lines 4 − −6 in Algorithm 2) for the 1024-bit Montgomery
multiplications in 2048-bit RSA decryption using the CRT.

countermeasures, namely the sliding window method (with
the 4-bit window size), secret key blinding and ciphertext
blinding. We explain the details of our implementation of
these countermeasures in the rest of this section.

The running time characteristics of a cryptographic algo-
rithm can be exploited by hackers to reveal secret infor-
mation. Fixed-time implementations successfully mitigate
timing attacks in exchange for some performance overhead.
In order to alleviate the performance overhead of fixed-
time implementations, the semi-fixed-time implementation,
named as bucketing, is proposed [57]. However, in the semi-
fixed-time implementation approach, there is a trade-off
between security and performance which should be consid-
ered carefully. In our RSA implementations in this work,
regardless of the performance trade-off, we implement all our
arithmetic algorithms completely in fixed-time, as described
in Section III-A. Another vulnerability of RSA against the
SPA and timing attacks could be due to conditional branches,
e.g. the conditional subtraction if (T1 ≥ N ) then {T1 =
T1 − N } in lines 4 − 6 of Montgomery multiplication in
Algorithm 2. Here, the conditional branch operation would
leak information on secret data. In order to prevent this vul-
nerability, we eliminate the if statement and conduct the sub-
traction operation regardless of the if condition. We allocate
a sign word, namely SW, for storing the sign of the result of
the subtraction operation. Before executing the subtraction,
we clear SW. Then we compute the subtraction T1 − N and
write the result at an offset of D bytes away from the original
location of T1 in the memory where D ≥ 128 for 1024-bit
Montgomery multiplication as it takes place in 2048-bit RSA
decryption using the CRT. Thus, if T1 is stored at the address
Addr1 in the memory, T1 − N will be stored at the address
Addr1+D. After performing T1−N , we subtract the resulting
borrow bit from the sign word SW. Hence, SW is set to either
0 × 0000 or 0×FFFF, depending on whether the result of
T1 − N is positive or negative, respectively. Thus, we have
T1 and T1 − N , the result of Montgomery multiplication
associated with both courses of action for the if statement,
stored in the memory. All we need is to access the correct
result in the memory and move it into the memory address
for the output of Montgomery multiplication.

We compute the memory address for the location of the
output of Montgomery multiplication by first computing the
bitwise AND ofD and SW which will result in the valueD or

0 depending on whether SW is 0×FFFF or 0× 0000, respec-
tively. We then XOR this value with D and add the result as
an offset to Addr1, the memory address of T1. We read the
result of the Montgomery multiplication computation from
this memory address. Hence, the result Z of Montgomery
multiplication is read either as T1 from the address Addr1 or
as T1 − N from the address Addr1 + D, and it is written to
the memory address Addr2, as depicted in Figure 6.

The DPA attack is another possible side-channel attack on
RSA which performs complex statistical analysis on decryp-
tion power traces to reveal the RSA decryption key [33], [60].
The DPA attack is feasible on a CRT implementation of RSA.
However, it can be mitigated effectively if the multiplica-
tive message blinding countermeasure is used [58]. Message
blinding, also known as ciphertext randomization, is shown
to be an effective countermeasure on modern PCs, against
possible side-channel attacks that use trace measurements
from the power supply, chassis potential or electromagnetic
emanation [59]. For affordable DPA attack mitigation, we use
the blinding method [22], [33]. We blind both the ciphertext
and the secret key. For blinding the ciphertext, we multiply
it with the random integer Vi before RSA decryption. After
decryption, we recover the original plaintext by multiplying
the result of RSA decryption with the second random integer
Vf . For themethod to work, we select the random pair (Vi,Vf )
to satisfy the relationship

Vi = (V−1f )d mod N

where d is the decryption key and N is the RSA modulus.
We precompute the random pair (Vi,Vf ) and store it on the
microcontroller. Therefore, no timing overhead is incurred
due to its generation during RSA decryption. However, using
the same (Vi,Vf ) values repeatedly in different RSA decryp-
tions may cause vulnerabilities. In order to efficiently over-
come this issue, we alter Vi and Vf by updating them with
their squares before each RSA decryption operation, as sug-
gested in [33]. Note that for 2048-bit RSA, Vi and Vf are
2048-bit random integers. Hence, in our 2048-bit RSA imple-
mentation, message blinding is achieved with negligible tim-
ing overhead by doing only two 2048-bit modular squarings
(for updating the random integers) and two 2048-bit modular
multiplications (for blinding the ciphertext).

For further protection against DPA attacks, we also
blind the secret exponent d , as suggested in previous
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TABLE 1. Our timings for RSA with a 2048-bit key on the MSP430 microcontroller.

FIGURE 7. Our timings for 2048-bit RSA on the MSP430 microcontroller.

works [22], [33]. Exponent blinding is basically the random-
ization of the private decryption key d described as

d ′ = d + r · φ(N )

where r is a random integer and φ(N ) = (p − 1) · (q − 1).
We apply exponent blinding to our RSA decryption imple-
mentation and thus our CRT exponents become d ′p = dp+ r ·
φ(p) and d ′q = dq + r · φ(q) where φ(p) = p − 1, φ(q) =
q − 1 and r is a random 32-bit integer as suggested in [22].
Exponent blinding increases the length of the exponent by
32 bits which results in a timing overhead of around 3% in
decryption.

IV. PERFORMANCE EVALUATION
We implement 2048-bit RSA on three target MSP430
microcontrollers, namely MSP430F5529, MSP430F2618,
and MSP430F1611. We develop our 2048-bit RSA imple-
mentation in C language. In addition, we write assembly
subroutines for implementing core arithmetic operations.
Our 2048-bit RSA encryption timings are all less than a
second, i.e. 0.14 s, 0.31 s and 0.67 s on MSP430F5529,
MSP430F2618 and MSP430F1611, respectively. Our 2048-
bit RSA decryption timings are 7.56 s, 16.08 s and 34.90 s on
MSP430F5529, MSP430F2618 and MSP430F1611, respec-
tively. We use the same codes for the three MSP430 micro-
controllers with slight adaptations to exploit the distinct fea-
tures of the specific microcontrollers. For instance, while
MSP430F5529 uses a 32 × 32 multiplier, MSP430F2618
and MSP430F1611 use a 16 × 16 multiplier. Additionally,
MSP430F2611 and MSP430F5529 have a more advanced
instruction set architecture, named MSP430X, which allows
the memory write instruction to execute 1 clock cycle faster.
Table 1 and Figure 7 present the timings of our RSA imple-
mentation on the three target MSP430 microcontrollers.

FIGURE 8. Comparison for 2048-bit RSA timings.

There are several existing implementations of RSA with
a 1024-bit key on MSP430 or similar constrained micro-
controllers [22], [23], [61], [62], [63]. However, to the best
of our knowledge, there is only one other reported 2048-
bit RSA implementation in the literature on a comparable
constrained microcontroller, namely Gura et al.’s work on
ATmega128 [32]. To make a fair evaluation, we compare
with the work in [32] our 2048-bit RSA implementation on
the MSP430F1611 microcontroller which has the same clock
frequency and similarmemory capacity. Ourwork on the low-
end MSP430 microcontroller MSP430F1611 presents signif-
icantly better performance than the existing implementation
in [32] as shown in Table 2 and Figure 8. Our 2048-bit
RSA implementation utilizes the same techniques as those
used in [32], namely small public exponent e = 216 − 1,
Montgomery modular multiplication and Chinese remainder
theorem. However, we utilize additionally the subtractive
Karatsuba-Ofman method for multiprecision integer multi-
plication. We implement subtractive Karatsuba-Ofman recur-
sively for improved timing performance. We fully unroll the
recursions in our subtractive Karatsuba-Ofman implemen-
tation by making inline assembly subroutine calls and thus
reduce procedure call overheads. Moreover, we use loop
unrolling in our codes as much as possible to reduce con-
trol flow overhead. Loop unrolling reduces the number of
clock cycles needed for loop instructions, such as counter
increment/decrement and conditional jump; however, it also
increases the code size. Since our target microcontrollers
have enough memory, we accelerate our implementations by
unrolling the loops in our code as much as possible. For
512-bit subtractive Karatsuba-Ofman and all its underlying
arithmetic operations, we fully unroll all the loop opera-
tions. For 1024-bit and larger subtractive Karatsuba-Ofman,
we unroll loop operations as much as possible to reduce
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TABLE 2. Timing comparisons for RSA implementations with a 2048-bit key on constrained microcontrollers.

control flow overhead but keep some loops to save mem-
ory. Furthermore, unlike the existing implementation, our
RSA implementation is equipped with the message and key
blinding countermeasures to mitigate side-channel attacks.
Our implementation has the drawback of using more mem-
ory compared to Gura et al.’s work due to the additional
acceleration and side-channel protection methods used; how-
ever, it is significantly faster. While our implementation uses
×2.37 and ×1.77 more memory, it is ×2.90 and ×2.39
faster for encryption and decryption operations, respectively.
We believe the resulting memory drawback is an acceptable
trade-off for the achieved timing performance gain.

V. CONCLUSION
RSA is the oldest and the most commonly adopted public-key
cryptographic algorithm that is utilized by the existing Inter-
net infrastructure and related applications. We presented
a practical and side-channel resistant implementation of
2048-bit RSA on a constrained microcontroller that is widely
used in WSN nodes and IoT devices. Our fastest RSA
implementation achieved 2048-bit encryption and decryption
operations in 0.14 s and 7.56 s, respectively. Furthermore,
our implementation on the low-end MSP430 microcon-
troller achieved 2048-bit RSA significantly faster (×2.9 and
×2.4 for encryption and decryption) with respect to the exist-
ing implementation on the comparable ATmega128 micro-
controller. We accomplished these performance figures by
utilizing numerous acceleration methods, e.g. Montgomery
multiplication, subtractive Karatsuba-Ofman, and CRT-based
modular exponentiation. Furthermore, unlike the existing
work, we implemented the necessary countermeasures to
mitigate side-channel attacks, e.g. SPA and DPA, by utilizing
the constant time implementation, sliding window, ciphertext
blinding and secret key blinding methods.
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