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ABSTRACT The reaction wheel bicycle robot is a kind of unmanned mobile robot with great potential.
However, the control of such bicycle robots on a curved pavement under inaccurate model parameters, model
uncertainties and disturbances is challenging due to the lateral instability and underactuated characteristic.
Applying conventional control methods to this problem often results in brittle and inaccurate controllers.
In this paper, an online serial-parallel combination reinforcement learning with conventional control methods
is designed to achieve the path tracking and banlancing control for a reaction wheel bicycle robot on curved
pavements. The parallel part of the controller refers to compensating the equilibrium point and the serial
part of the controller refers to adjusting the parameters of a sliding mode controller that tracks the target
roll equilibrium point. The comparison between the proposed controller and several existing controllers in
experimental test built in Matlab Simscape illustrates stronger robustness and better control performances.

INDEX TERMS Reaction wheel bicycle robot, reinforcement learning, robustness, sliding model control.

I. INTRODUCTION
The bicycle robots (BRs) with only two ground contact points
can provide flexible maneuverability and convenient deploy-
ment over rough terrain without relying on the complex active
suspension control [1] or multi-wheel cooperative control [2]
of four-wheel vehicles. In addition, the light weight of the
BR also provides higher energy efficiency and faster acceler-
ation [3], [4]. Research interests have been aroused on the
balancing control of BR on a flat terrain [5], [6], [7], [8].
However, in order to realize the advantages of BR on rough
terrain, it is necessary to investigate the balancing control of
BR on a curved pavement due to the lateral instability and
underactuated characteristic of BR.

The balancing control of BR can be divided into two
categories. The first category only employs the steering and
velocity as inputs [9], [10], [11], [12]. For such methods, it is
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challenging to keep balance and track a given path over rough
terrain. As for the second category, it stays balanced through
controlling the auxiliary balancing mechanisms, such as con-
trol moment gyroscopes [13], [14], mass balancers [15], [16],
reaction wheel [17], [18], [19], etc. The reaction wheel bicy-
cle robot (RWBR) has been studied extensively by virtue of
its simple construction and the lightweight configuration of
the system. In addition, to the best knowledge of the authors,
few studies have concerned the balancing control and path
tracking of the RWBR on a curved pavement. Therefore,
RWBR is selected as the research object in this paper.

Previous studies have applied different methods for bal-
ancing control of RWBR, including linear control, nonlin-
ear control and intelligent control. The linear control, such
as proportional-integral-differential (PID) [20] and linear
quadratic regulator (LQR) [17], [21], can achieve balancing
control by using the local linearization around the equi-
librium point. However, external disturbances and unmod-
eled characteristics might lead to degradation of the control
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FIGURE 1. Combination of FC and RL: (a) The parallel model (b) The serial model (c) The serial-parallel model.

performance of linear controllers and even the instability
of the system when the balancing control of RWBR is on
a curved pavement. To improve the control performance,
some studies have investigated the nonlinear control of BR.
A sliding mode controller combined with low-pass filtering
algorithm was proposed in [22], which is shown to be more
robust than linear controllers. In another study, to deal with
impulse disturbances and system uncertainties, a fuzzy slid-
ing mode controller was designed, but the determination of
fuzzy rules was rather complicated. An adaptive sliding mode
controller was proposed in [23] for RWBR on flat terrain,
in which amonotonic adaptation lawwas designed to tune the
gains of the reaching control part. As to intelligent control,
the neural network is applied to fit the system model or
control strategy. The control strategy is tuned via continuous
interactions between the system and the environment to max-
imize the expected return. As reinforcement learning (RL)
achieved significant results in various tasks [24], [25], [26],
some scholars have concerned the application of RL in BR
tasks [27], [28], [29], [30].

In order to deal with the disadvantages in sampling effi-
ciency of RL, the control framework that combines the stabil-
ity guarantee of conventional feedback controls (FC) with the
optimization ability of RL has been studied in recent years.
In [31], an adaptive RL-based PID was tested in several
simulated environments and in a real time robotic platform
showing that RL was used to compensate or even adapt to
changes in the uncertain environments. In [32], an improved
backstepping control method was designed based on RL and
fuzzy state observer for strict-feedback systems with unmea-
surable states and proved to be bounded by the Lyapunov
method. In [33], a performance-constrained fault-tolerant
dynamic surface control (DSC) algorithm based on RL was
proposed for nonlinear systems with unknown parameters
and actuator failures. Although the combination between RL
and FC can attenuate the problem of sampling efficiency, the
application of RL in underactuated and unstable systems such
as RWBR is limited.

In general, this combination between FC and RL can
be divided into parallel (Fig. 1(a)) [34] and serial modes
(Fig. 1(b)) [35], [36] for disturbed bicycle robots on a curved
pavement strategies, the serial RL (SRL) uses the optimiza-
tion capabilities of RL to tune the parameters of FC. In our
previous work [36], the serial mode of RL and FC was used
for the balancing control of RWBR driving straightly on a

curved pavement. By comparing the performance of the three
controllers and SRL, it was shown that SRL can effectively
reduce the influence of matched and mismatched distur-
bances on the controller by adaptively adjusting the sliding
mode surface parameters and reaching law parameters of the
controller online. The current study tends to consider the bal-
ance of the RWBR under path tracking on a curved pavement
with inaccurate model parameters, simplified dynamic model
and disturbances. The exact equilibrium of the roll angle is
very useful for improving the robustness and reducing the
output torque of the controller, but it is difficult to be ana-
lytically computed on curved pavements under uncertainties
and disturbances. Therefore, the controller proposed in this
paper is shown in Fig. 1(c). PRL is used to estimate the target
equilibrium point and SRL is used to realize the tracking
control of the equilibrium point.

The main contributions of this paper are summarized as
follows:

1) In order to improve the robustness of the balancing
control, a serial-parallel reinforcement learning (SPRL) con-
troller is proposed. The controller is consisted of a PRL and
a SRL, the former is the compensation of equilibrium point
based on RL and the latter is the online gain adaptation
(including the parameters of the sliding surface) of sliding
mode controller (SMC) based on RL. And the effectiveness
of SPRL is demonstrated in Matlab Simscape by comparing
with several existing control methods.

2) A simplified dynamic model of RWBR on a curved
pavement is derived, and an online approximation of the
equilibrium point is put forward based on this model. The
error dynamics of the roll angle is obtained by an equivalent
inertia wheel pendulum.

3) In this paper, an online serial-parallel combination
reinforcement learning with conventional control methods is
designed to achieve the path tracking and balancing control
for a reaction wheel bicycle robot on curved pavements. This
is different from existing related studies about the RWBR
from the perspective of the task. First of all, previous studies
have not considered the influence of an unstructured curved
pavement on the balancing control of RWBR. Secondly,
in our previous work [36], the balancing control of RWBR
driving straightly on a curved pavement was considered while
not considering path tracking on a curved pavement.

This paper is organized as follows: The RWBR is described
in Section II, and the dynamics of the bicycle and the
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FIGURE 2. RWBR on a curved pavement.

equivalent inertia wheel pendulum are established using some
assumptions and simplifications. In Section III, the SPRL
controller is designed. The Actor Net. and Critic Net. of PRL,
the SMC and the SRL are described in detail in this part.
In Section IV, the simulation environment in Matlab Sim-
scape is built, and three test cases are designed; and then,
the performance of four different controllers are compared.
Finally, in Section V, a conclusion is addressed.

The video of the experiment is available at the follow-
ing website: https://github.com/ZhuXianjinGitHub/SPRL.
(accessed on 10th February 2023).

II. DYNAMICS
The RWBR on a curved pavement is illustrated in Fig. 2. The
RWBR is consisted of five parts: rear wheel, body frame,
reaction wheel, steering handlebar and front wheel (noted as
R, B, W, H and F, respectively). The fork angle is zero. The
inertia frame is defined as ogxgygzg. The θ is the yaw angle,
the η is the pitch angle, the α is the roll angle and the φ

is the steering angle. In addition, p is the vertical distance
between the center of gravity and the ground point of the rear
wheel, c is the horizontal distance from the rear wheel ground
point to the center of mass, and b is the distance between the
front and rear wheel ground points in Fig. 3. The following
assumptions are made: (1) The thickness of the rear and front
wheels is negligible, and the contacts between wheels and the
ground are regarded as point contacts. (2) These five parts are
symmetrical with respect to the plane of the rear and front
wheels, so the center of mass of these bodies are in the same
plane. (3) The front and rear wheels are always in contact with
the ground.
Remark 1: Assumption (1) is often considered in balanc-

ing control of RWBR. Assumption (2) is a favorable and easy
assumption to be implemented in real RWBR. Assumption
(1) and Assumption (2) are used to simplify the derivation
of the nominal model in this paper. As for Assumption (3),

FIGURE 3. (a) Equivalent gravity field with α = 0 and (b) Equivalent
inertia wheel pendulum.

it is mainly for the impact of the lifting of wheel-ground
constraint on the dynamic model. The constraints in RWBR
are the same as in [11].

The motion state of the inertia wheel will not affect the
movement of the RWBR. Therefore, the dynamic modeling
of RWBR can be divided into two parts for the design of the
balancing controller, which are the dynamics of the bicycle
and the dynamics of the equivalent inertia wheel pendulum.
In the modeling of the bicycle dynamics, the bicycle is con-
sidered as a point of mass with two contacts with the ground.
The gravitational force Fg = mg of the bicycle robot on the
slope can be converted to Fg′ = mg cos (η), Fh′′ = mg sin (η)

andMh′′ = pmg sin (η), where Fg′ , Fh′′ , andMh′′ are all in the
plane of the body frame. Since the rear wheels in this paper
are controlled by speed servo, we could ignore the effect
of Fh′′ . Under assumption (3),Mh′′ is also ignored. Then g′

=

cos (η) g is defined according to the equivalent gravity [37],
[38]. As derived in [11], [12], and [39], σ ≜ c

b tan (φ) and
the constrained Lagrangian of the bicycle is calculated as
follows:

mp2α̈ − mcpσ v̇rcos(α)

= mg′psin(α)

− mcpσvrsin(α) + mpcos(α)συ2
r (1 + psin(α)σ)

+
1
2

∂

∂α
J (α, σ ) σ̇ 2

+ mcpcos(α)vr σ̇ + τrw. (1)

We assume that the true value of the target roll angle αtarget is
the equilibrium point under zero dynamics, and the estimate
value α̂ = Ψ (φ, υr , η) can be obtained by the formula (2)
(from [11]).

0 =
(
g′

− cσvr
)
tan

(
α̂
)
+ cσυ2

r + p(cσ )2υ2
r sin

(
α̂
)

(2)

where υr is the component of the velocity of the rear-wheel
contact along the contact-line as measured from the virtual
inertia frame generated by the equivalent gravity. In general,
α̂ does not equal to αtarget .

As for the dynamics of the equivalent inertia wheel pen-
dulum derived in [36] and [40], considering the body frame
and rear and front wheels as a unit P, and the reaction wheel
as another unit W . The mass and inertia matrix of the two
parts with respect to the body-fixed reference frame are m1,
I1, m2 and I2. L1 and L2 represent the distance between the
centroids of P and W and the connection between front-
and rear-wheel ground points on a flat road. The following
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simplified model of equivalent inertia wheel pendulum can
be derived:

d11α̈ + d12β̈ − m̄g′ sin (α) = d1
d21α̈ + d22β̈ = τrw + d2 (3)

where d11 = m1l21 + m2l22 + I1 + I2, d12 = d21 = d22 = I2,
m̄ = m1l1 + m2l2, β is the reaction wheel angle, τrw is the
input torque of the reaction wheel’s motor, and d1 and d2 are
mismatched/matched disturbances. Define e = α̂ − α as the
tracking error of the roll angle, then from [41] it is possible
to derive the following error dynamics:

ë =
d22
detD

m̄g′ sin (e) − ¨̂α −
d12
detD

τrw (4)

where detD = d11d22 − d12d21 > 0, and ¨̂α is estimated by a
second-order low pass filter from α̂.

III. CONTROLLER DESIGN
In traditional RL, the standard Markov decision process
framework is often considered for picking optimal actions
to maximize the rewards over discrete timesteps. The state
at time t only depends on the state at the time t − 1 and the
corresponding action, which is independent of other historical
states and inputs. The agent learns a policy ut = π (st)
by maximizing the return Rt =

∑T
i=t γ

(i−t)ri, where T is
the horizon that the agent optimizes over, γ is the discount
factor and r is the reward. RL often does not attempt to
model or identify the dynamics. Instead, it finds actions
that maximize rewards as the estimation of the state-action
value.

As for FC with RL discussed in [32] and [42], using
RL to obtain the approximate optimal solution of Hamilton-
Jacobi-Bellman (HJB) equation can avoid to solve the ana-
lytical solution of HJB. And it is often difficult to obtained.
In addition, RL is a data-driven approach that effectively deal
with unknown dynamics and disturbances through gradient
updating of neural networks in interactions with environment
online [24], [43].

In this paper, two different kinds of RL and conventional
feedback control are adopted in this paper for the balancing
control of the RWBR as shown in Fig. 1c. The first one is
the compensation of the α̂ by PRL. The second one is the
adjustment of the parameters of the SMC by SRL. In this sec-
tion, the PRL, the SRL and the SPRL will be described. For
the choice of the RL algorithm, proximal policy optimization
(PPO) [44], which is a model-free, online, on-policy, actor-
critic framed [45], policy gradient RL method, is selected.
PPO uses conservative policy iterations based on an esti-
mator of the advantage function to guarantee the monotonic
improvement for general stochastic policies. The monotonic
improvement guarantee for general stochastic policies can be
found in [47]. The update of the parameters of the Actor Net.
and Critic Net. in the PPO can be found in [36] and [44],
which will not be discussed in this paper.

FIGURE 4. Actor Net. in Parallel RL.

FIGURE 5. Critic Net. in Parallel RL.

A. PRL
The exact value of αtarget is difficult to be obtained ana-
lytically. As proposed in [19] and [34], RL methods allow
agents to learn ∆α = αtarget − α̂ through interaction with
environments. In order to reduce the need for interactive
samples, PPO with discrete output is adopted in the PRL and
the output at time t is:

∆αt = K1u
p
t (5)

where K1 is the output coefficient of the PRL and upt ∈

{−1, −0.75, −0.5, −0.25, 0.25, 0.5, 0.75, 1}.
The Actor Net. (Fig. 4) of PRL is used to map the

states xpt =
(
α, φ, η, vr , τrw, α̂

)
t to the actions p(upt ),

which presents the probability of each discrete action upt ,
p(upt ) ∼ π

p
θ1

(
xpt

)
in which θ1 represents the parameters of the

policy πp.
The Critic Net. implements a value function approximator

that is used to map the states xpt to a scalar value V p
µ1

(
xpt

)
,

in which µ1 means the parameters in the Critic Net. The
scalar value represents the predicted discounted cumulative
long-term reward when the agent starts from the given state
and takes the best possible action. The Critic Net. of the RPL
is shown in Fig. 5, which is composed of a deep neural net-
work with ReLU nonlinear activation function. The gradient
descent calculation of the Critic Net. is to update µ1 in the
policy V p.
Reward rt+1 can be calculated as:

rt =


0 rt < 0,
1 − κpe|τrw| 0 ≤ rt < 1
1 rt ≥ 1

(6)

where κp > 0 is a constant.
Remark 2: PRL is introduced to compensate the equilib-

rium point as for the nominal analytical model with uncer-
tainties. The only difference between PRL and [34] is that
the latter is directly used to compensate the output of the
controller. The motivation using PRL to compensate the equi-
librium point other than the output of the controller is to take
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full advantage of RWBR’s prior knowledge of dynamic mod-
els. This is obviously conducive to improving the efficiency
of RL.

B. SRL
Firstly, a terminal sliding mode controller is constructed.
Then, the actor-critic framework, SMC Net., and the key
components of the SRL are presented. The process and con-
vergence of the SRL are described and the analysis of the PPO
optimization process for SMC is performed in our previous
work [36]. By defining x1 = e and x2 = ė, the tracking model
can be expressed as follows:

ẋ1 = x2

ẋ2 =
d22
detD

m̄g′ sin (e) − α̈target −
d12
detD

τrw (7)

The SMC is designed according to the method in [37]. The
recursive sliding surface is defined as follows:

s0 = x1
s1 = ṡ0 + α0s0 + β0|s0|p0sign(s0) (8)

where α0, β0, 0 < p0 < 1 and the sign function is defined as
follows:

sign (s) =

{
1, s > 0
−1, s < 0

(9)

and sign(0) ∈ [−1, 1]. Next, based on the sliding surfaces (8),
the following output of the mean part of the SMC Net.
is defined as follows:

u =
1
c2
(c1g′ sin (x1) − ¨̂α + α0ṡ0 + p0β0 |s0|(p0−1) ṡ0

+ ϕs1 + ϑ |s1|p1 sign (s1)) (10)

where ϕ, ϑ > 0 and θ2 = [α0, β0, ϕ, ϑ]T . The reward
function in the SRL is of the same form as for it in [36].

rt =


0 rt < 0,
1 − κsX̄ (t)2 0 ≤ rt < 1
1 rt ≥ 1

(11)

where κs = [a1, a2, a3] , ai > 0 and X̄ = [x1, x2, u]T .
In order to adaptively adjust the coefficients θ2 of SMC

using automatic differential software, the SMC controller is
represented as a neural network. The weights of the neural
networks represent the coefficients of the SMC. Then, the
SMC controller represented by a neural network is used to
replace the mean part of the PPO’s actor network. Finally, the
optimization framework based on PPO with an actor-critic is
explored to adaptively adjust the coefficients of SMC. These
steps are described in [36].
Remark 3: In [46], the adaptive terminal sliding mode was

designed for RWBR by tuning parameters ϕ, ϑ online. The
online adaptation of ϕ, θ can attenuate the matched distur-
bance, and well-adjusted parameters such as α0, β0, ϕ, ϑ can
lead to a more robust sliding surfaces against mismatched
disturbance. The main motivation of SRL is to improve the

TABLE 1. The parameters of RWBR.

robustness with respect to matched and mismatched distur-
bances by tuning parameters α0, β0, ϕ, ϑ online. Moreover,
the adaptive gains of [46] are monotonic, which may cause
more serious chattering in practice. The comparison between
SRL and adaptive terminal sliding mode is shown in our
previous work [36].

C. SPRL
Finally, the SPRL in this paper is similar to the hierarchical
RL for that the output of PRL is a dimension of the input
of SRL in Fig. 6. The PRL is used to compute an approx-
imated equilibrium of target roll angle and attenuation of
the inaccurate parameters and the model uncertainties. The
SRL is used to compensate matched disturbance and atten-
uate mismatched disturbances as proposed in [36]. Learning
two levels of policies simultaneously is problematic due to
non-stationary transition and reward functions that naturally
emerge. To make it easier for the PRL to learn, PRL needs to
act at longer time scales than the SRL [48], [49].

IV. SIMULATION EXPERIMENT
In order to demonstrate the effectiveness of the SPRL con-
trollers proposed in this paper, three test cases built in Matlab
Simscape [50] are formed by the combination of different
rear-wheel angle velocities and height of the terrain. And
several comparative tests are designed. First, performances
of SMC, Model Predictive Control (MPC) [51] and SRL are
compared in the roll angle tracking control task. Next, the
performances of SRL and SPRL compensation are compared.
In addition, all the comparison trials are conducted under
three different random seeds.

A. SIMULATION PLATFORM
To verify the performance of the controller proposed in this
paper, the simulation environment is built in Matlab Sim-
scape, as shown in Fig. 7.

In the simulation environment, the RWBR is placed on a
curved pavement. According to the physical parameters of
the RWBR, the parameters in Formula (1) are calculated as
shown in Table 1. The first column in the table represents the
true values of BR. The other columns represent estimates of
BR under different random seeds. The other parameters of the
BR are p = 0.1 m, c = 0.15m and b = 0.3m. The function
relationship between the height of the curved pavement and
the direction of x of the inertia frame is y = K2 sin (K3x)+K4,
where K2 is a given constant, K3 is generated by K3 = 0.8 +

0.4γ1 andK4 = 0.1γ2K2, both γ1 and γ2 are random numbers
betweent 0 and 1. The surface plot of the terrain for case 3 is
shown in Fig. 8.
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FIGURE 6. The SPRL Controller.

FIGURE 7. (a) RWBR on the curved pavement in Matlab Simscape.
(b) Given ‘‘8’’-shape path.

FIGURE 8. The three-dimensional surface plot with K2=0.2.

TABLE 2. The parameters of RWBR.

Three test cases are formed by the combination of differ-
ent rear-wheel angle velocities v and terrain parameter K2
as shown in Table 2. In addition, an overturning moment
perturbation τp is added at the center of the RWBR. The
perturbation is shown in Fig. 9.

FIGURE 9. The perturbation over time.

In Simscape, the contact force models between tire and
ground includes normal force fn and friction ff . During the
contact, a contact frame is located at the contact point. The
z-direction of the contact frame is an outward normal vector
for the one geometry, and inward normal vector for the other.
The fn is listed as follows,which is aligned with the z-axis of
the contact frame:

fn = s (d)
(
k · d + b · d ′

)
(12)

where d is the penetration depth between two contacting
geometries, d ′ is the first time derivative of the penetration
depth, k is the normal-force stiffness specified in the block,
b is the normal-force damping specified in the block and
s (d) is the smoothing function. As for the frictional force,
the ff is directly opposed to the direction of the relative
velocity. ∣∣ff ∣∣ = µ · |fn| (13)

where µ is the effective coefficient of friction. It is a function
of the values of the coefficient of static friction, coefficient
of dynamic friction, and critical velocity parameters, and the
magnitude of the relative tangential velocity. The parameters
used in the contact force model are chosen in [52].
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FIGURE 10. Tracking error over time.

FIGURE 11. The cumulative sum of squares of tracking error over time.

FIGURE 12. Torque of reaction wheel τrw over time.

B. EXPERIMENTAL RESULTS
To illustrate the effect of SRL in roll angle tracking control,
the performances of SMC, MPC and SRL are compared in
each case and each random seed. In all cases, a Stanley con-
troller [53] is used to track the ‘‘8’’-shape path. The control
frequency of SRL, SMC and MPC is set to 100 Hz. The
control frequency of PRL is set to 10 Hz. All cases in the

experiments are set to 50 s. The parameters κp = 10 and
κs = [80, 10, 0.1] are chosen for the reward functions.
The initial coefficients of all controllers are tuned to obtain
an acceptable control performance. The implementation of
SMC is shown in Section III-B in addition to parameters
θ2(0) = [30, 1, 20, 1]. The Nonlinear MPC Controller block
in Maltab is adopted to design the MPC controller, in which
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FIGURE 13. The cumulative sum of squares of torque of reaction wheel τrw over time.

FIGURE 14. Torque of reaction wheel τrw over time.

FIGURE 15. The cumulative sum of squares of torque of reaction wheel τrw over time.

the prediction model has 2 states (e, ė), 2 outputs (e, ė), and
1 input (τrw). The parameters of the MPC controller are listed
as follows: the prediction horizon is 10 steps, the control
horizon is 5 steps, and the tuning weights is [2, 0] for states
and 0.01 for input.

1) COMPARISON OF SRL WITH SMC AND MPC
The evolution of the tracking error versus time is shown in
Fig. 10. For a clearer comparison with the performance of
each controller, the cumulative sum of tracking error squares
is shown in Fig. 11. The solid line in the Fig. 11 shows the
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TABLE 3. RMS of the four controllers (Nm).

mean, while the area part shows the standard deviation under
different random seeds. The following conclusions can be
drawn from experiments. Firstly, the RWBR with SRL is the
only controller that completes the full 50 s test scenario in
all of the three cases and the three seeds, which shows that
it has the best robustness over the others. Secondly, in both
case 1 and case 2, the tracking error of SRL is smaller than
the one of SMC. In case 2, SRL has the smallest cumulative
sum of squares of tracking errors among the three controllers.
Finally, the standard deviation of SRL is significantly lower
than the others, which also indicates that SRL improves the
robustness of controllers. Similar to the tracking error, the
torques and the cumulative sum of squares of torques under
different controllers are also plotted in Fig. 12 and Fig. 13.
The inertia wheel torque of the RWBR with SRL controller
is significantly smaller than SMC. All tests exhibit that RL
improves the performances of the SMC.

2) COMPARISON BETWEEN SPRL AND SRL
In order to show the influence of PRL on equilibrium com-
pensation on RWBR control, Fig. 14 and Fig. 15 show SRL
and SPRL under different cases and different seeds. In case
1 and case 2, SPRL is slightly superior to SRL. In case 3,
SPRL is significantly superior to SRL. The reason for this
phenomena is the higher speed of case 3. Higher velocity
results in a larger approximation error when computing the
target equilibrium point from the conventional analytical
model, whereas the SPRL controller can reduce the approxi-
mation error through optimization. Thus, it can be concluded
that the proposed SPRL controller achieves superior balanc-
ing performances, smaller inertia wheel torque and better
robustness compared to the three other controllers.

For further data comparisons, the root mean square (RMS)
of the torque for reaction wheel are compared, which are
defined as follows.

RMS (q (i)) =

√√√√ N∑
i=1

q2 (i)
N

. (14)

In Table 3, we compare the RMS of the reaction wheel
torque of the four controllers in all tests. Even though the
average MPC in case 1 is slightly smaller than SPRL, the

MPC in case 2 is larger than SPRL, and in case 3 the MPC
crashed early before accomplishing the full 50 s simulation.
In addition, the RMSs of SPRL are less than SRL, and the
ones of SRL are less than SMC in all three cases. In conclu-
sion, SPRL has a good balance compensation and tracking
control effect for RWBR.

V. CONCLUSION
In this paper, a SPRL controller is developed for the bal-
ancing purpose of an RWBR system on a curved pavement
under path tracking task with inaccurate model parameters,
simplified dynamic model, matched disturbances (the dry
friction of inertia wheels, etc.) and composite mismatched
disturbances (including unmodeled wheel–ground contact
and gust disturbances and topographically introduced peri-
odic disturbances, etc.). By connecting FC and RL in serial-
parallel, the comparison between the proposed SPRL and
SMC,MPC and SRL illustrates stronger robustness and better
control performance. The comparison between SPRL and
SRL shows that PRL significantly reduces the control torque
of inertia wheel for balancing equilibrium point compensa-
tion. The comparison between SRL and SMC shows that
online adjustment of the parameters of the sliding mode
surface and reaching control by serial reinforcement learning
can effectively improve the control performance. In addition,
MPC also serves as a comparison algorithm to demonstrate
the effectiveness of SPRL.

In addition, improving the sample efficiency of the pro-
posed SPRL will be considered as the main future research
direction of this paper. The convergence of Actor Net.
occurs later than that of Critic Net. according to [54].
It is not very ideal for the practicability of the algorithm
and limits the effectiveness of SPRL in a rapidly chang-
ing environment or when there are more random distur-
bances. Therefore, our future work aims to replace the
critic deep neural network with Gaussian process regres-
sion, radial basis functions, or some other components of
model-based reinforcement learning to reduce the demand for
data samples. Next, a real-time physical deployment is also
planned.
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