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ABSTRACT Human brain activities—electroencephalogram (EEG) signals—are likely to provide a secure
biometric approach for user identification because they are more sensitive, secretive, and difficult to
replicate. Many studies have recently focused on identifying and quantifying important frequency patterns
in motor imagery (MI), recorded through EEG. However, there is still a lack of an optimal methodology
for recognizing users with EEG-based MI. Therefore, we aimed to propose an EEG-MI methodology that
utilizes optimized feature extraction methods and classifiers to improve user-aware accuracy. To accomplish
this goal, we extracted four features related to MI and compared the accuracies for recognizing users using
a support vector machine (SVM) and Gaussian Naïve Bayes (GNB). We then used the half-total error rate
(HTER) to determinewhether the results were reliable due to an imbalance problem caused by the differences
in the data sizes. Thus, we used a common spatial pattern (CSP) to achieve the highest user identification
accuracies of 98.97% and 97.47% using SVM and GNB, respectively. All user recognition accuracies are
guaranteed by the HTERs, which are below 0.5. However, CSP has the disadvantage of decreasing accuracy
on a small dataset scale. Therefore, we proposed and tested a statistical methodology for estimating a
minimum dataset scale to ensure CSP performance. We confirm that the used dataset adequately guarantees
CSP performance. This study makes a great contribution to the field of information security by presenting
an EEG-MI methodology that improves the identification accuracy in human biometrics based on EEG-MI
signals.

INDEX TERMS Biometric, electroencephalography (EEG), motor imagery (MI), support vector machine
(SVM), user identification methodology, Gaussian Naïve Bayes (GNB).

I. INTRODUCTION
User identification methods have rapidly advanced, and
they are essential in many information-security fields. This
method frequently requires the user’s credentials to identify
the user, while communicating between humans and comput-
ers. Recently, biometrics has gradually emerged to enhance

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

the security of the user’s identification method. They are
designed to extract the physiological features obtained from
a user using signal processing, machine learning, and pattern
recognition techniques, and these features are then compared
to the user’s profile/template stored in a database. These bio-
metric characteristics include the face, iris, voice, gait, finger
or footprint, and signature technologies [1]. However, there is
still a risk of forgery and theft of the biometric characteristics
from users. For example, physical characteristics such as
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photos of faces or voice recordings can be digitally captured,
copied, or forged by an attacker [2]. A study has demonstrated
the possibility of generating master prints that can be used by
an adversary to launch a dictionary attack against a fingerprint
recognition system [3]. In addition, biometric systems are
vulnerable to external attacks, including attacks by individ-
uals wearing contact lenses with printed artificial textures [4]
and fake iris images [5].

To prepare for these security attacks, new biometric identi-
fication methodologies using EEG have been developed and
proposed [6], [7], [8]. There are various reasons why EEG
is a reasonable indicator for biometrics. A mental passphrase
is difficult to steal because brain activity is unique for each
individual and stable over time [9], [10], [11]. Some studies
have shown that a user’s mental passphrase is well-defended
against attackers [12], [13], [14].Moreover, as hardware tech-
nologies have advanced gradually, simplified EEG devices
have been developed, such as Dry EEG [15], NeuroSky [16],
and Emotiv EEG headsets [17]. All of which, have portability
and communication capabilities. Furthermore, because of the
increase in miniaturized and mass-produced EEG products,
user identification methods that use EEG have become more
common [18], [19], [20], [21].

Regarding EEG, biometrics have traditionally been used
with a variety of strategies that include specific brain regions
associated with human behavior. These strategies include
vision, speech, auditory signals, and motor imagery (MI).
One of the most commonly used tasks for recognizing users
is visual recognition [22] because it has the advantage of pro-
viding quick responses. Nevertheless, there is always a risk of
forgery and loss of media, such as face photography. Visual
recognition is also not suitable for individuals who have lost
their sight naturally. Thus, recent studies commonly suggest
that MI is a more appropriate strategy [23], [24], [25], [26].
Rig Das et al. proposed EEG-based biometric identification,
using a convolutional neural network (CNN) known as one of
deep learning method omitting feature extraction procedures
[24]. MI strategies can elicit brain activity while imagining
moving the body, which not only generates the most powerful
detectable patterns but also indicates that MI is significantly
more accurate than visual imagery [27].

In the processing of brain signals caused by the MI strat-
egy, feature extraction methods are regarded as one of the
very important steps. Common spatial pattern (CSP) and
event-related (de)synchronization (ERD/S) are the represen-
tative MI features extraction methods. Indeed, CSP shows
that the frequency response components occurring in the
motor cortex regions represent different spatiotemporal pat-
terns among subjects [28]. Each subject possesses differ-
ent frequency response components because of individual
brain positions, signal patterns, and frequency bands [29].
These characteristics facilitate user identification. Moreover,
MI is accompanied by both ERD and ERS. Indeed, ERD
shows the suppression of electrode activity amplitudes, while
ERS demonstrates the enhancement of electrode activity

amplitudes over primary sensorimotor areas [30]. Both, ERD
and ERS provide stable and consistent brain signals [31]
and each can be used as an indicator of whether a user is
identified or unidentified, resulting from individual differ-
ences in cognitive abilities [10]. Thus, it is reasonable to
use CSP and ERD/S because they are extremely suitable for
the MI data characteristics and have already been proven
by previous studies [32], [33], [34]. Compared with other
feature extraction methods, signals obtained from MI stimuli
are easy to quantify and extremely helpful in improving user
identification accuracy [35], [36].

In contrast, recent MI studies have tended to employ time
series specialized feature extraction methods other than CSP
and ERD/S for feature extractions, which have been known
to enhance the time series characteristics of EEG using fea-
ture extraction methods, such as autoregressive (AR) [37],
power spectral density (PSD) [38], and fast Fourier transform
(FFT) [39]. Several studies have reported that AR and PSD
were extracted features and then classified using SVM in
the Graz dataset B, known as a dataset for motor imagery
classification [37], [38]. Moreover, an identification accuracy
of up to 95.89%was achieved between the imaginarymotions
of the tongue and the left little finger for an individual in
the FFT-based MI data using SVM [40]. Lee et al. have
reported that the time domain parameter (TDP) outperformed
CSP in identification accuracy between hand grasping and
wrist twisting, based on the MI tasks using SVM [41]; this
phenomenon showed that TDP (93.6%) was more accurate
than CSP (91.4%). Hence, these results contradict previous
studies, which demonstrated that CSP and ERD/S were ade-
quate asMI data-driven feature extraction methods [42], [43].
It is also still to be determined whether MI-driven data are
suitable for user identification because previous studies have
classified the imaginations that move the body.

In this study, we proposed an EEG-MImethodology, which
had been optimized to identify each individual from groups
using the ‘Big Data of 2-classes MI’ [44], which represents
the most widely available large-scale dataset for MI analysis.
To achieve this goal, we chose four feature extraction meth-
ods, which are frequently used in MI research: CSP, ERD/S,
AR, and FFT. The extracted feature was classified between
the user and non-users by SVM and GNB, and the calculated
findings were compared against each other. Subsequently,
a validation process using the half-total error rate (HTER)
was also conducted to solve the imbalance problem caused
by the difference in data sizes. As a result, we found that CSP
provided the highest accuracy among all feature extraction
methods and obtained accuracies of 98.97% and 97.47% in
the SVM and GNB classifiers, respectively. Despite the high
accuracy of CSP, it is also possible to detect between one
user and the non-users using the ‘dataset IVa’ [45]—known
as a small MI dataset—considering the sensitivity of CSP
is weak in data sizes that are too small. In this process,
we can estimate the minimum number of users required to
ensure a reliable CSP performance, even with small sample
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FIGURE 1. Overview of the process of user identity recognition based on EEG-MI signals. After performing the data pre-processing, including
filtering, segmentation, and feature extraction, we divided the pre-processed data into training sets and test sets to avoid overfitting, which
does not work well given new data. Then, the user identification methodology used SVM and GNB to calculate the accuracies for recognizing
specific users among all users. The reliability of the calculated accuracy was determined by HTER. When this value is less than 0.5, the user
identification accuracy is reliable. Therefore, we can obtain identification accuracy for all users through this process.

sizes. These results are confirmed by HTER. Therefore, this
study is very helpful in implementing an EEG-based MI user
identification, which improves the accuracy in recognizing
users and guarantees user-aware performance.

II. MATERIALS AND METHODS
To recognize a user by improving their identification accu-
racy, we proposed an EEG-MI methodology, which used the
optimized feature extraction methods and classifiers based
on EEG-MI datasets. Figure 1 shows the detailed procedures
for the proposed methodology. During pre-processing, EEG
signals were filtered, segmented, and the features extracted.
Specifically, we used one of the large-scale MI datasets
known as the ‘Big Data of 2-classes MI’ [44]. We extracted
features using CSP, ERD/S, AR, and FFT; then, divided
the extracted data into training sets and test sets to avoid
overfitting [46]. Then, we detected the user by comparing
identified accuracies using SVM and GNB. The two classi-
fiers are known to operate in completely differentmodes, with
SVM classifying the two classes by maximizing the margin,
whereas GNB operates on probability, thus the performance
differences between the two classifiers are considered clear.
Finally, a two-independent sample t-test was performed to
determine whether there is a statistically significant differ-
ence in the identified accuracies. To evaluate the reliability
of the identified accuracy, HTER was calculated using the

means of FAR and FRR, which are two errors in the biometric
identification method.

A. EEG DATASETS
According to G∗Power 3.1.9.2, we need to collect at least
30 users. We assumed a moderate effect size (α = 0.05,
power=0.8, effect size=0.25) [47]. We adopted the publicly
available EEG dataset used by Lee et al. [44], which is one of
the largest datasets based on EEG-MI tasks. This dataset has
been widely used in many previous studies [48], [49], [50]
and has been well collected by proven system protocols [51].
The raw EEG signals were recorded from 54 healthy users
(ages: 24–35; 29 males) by 62 channels with a sampling fre-
quency of 1 kHz. To classify the EEG brain patterns between
the motor and the non-motor regions, we selected 18 motor
channels located in the parietal region and 18 non-motor
channels located in the frontal and occipital regions. Figure 2
shows the selected channel locations and motor cortex posi-
tions. An overall experiment consists of a cue (3 s), a task
imagining grasping either the right- or left-hands (4 s), and
non-task (6 s) periods. A total of 100 trials were attempted.
The acquired EEG signals are made up of various oscillatory
activities, including the alpha and beta bands. These alpha
and beta bands play an important role in determining brain
states during MI tasks [52]. Thus, we performed band-pass
filtering in the range of 8–30 Hz, which corresponded to the
alpha and beta bands [53]. We segmented the task sections
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ranging from 0 to 4 s for signal enhancement because of the
repeated measurements. Therefore, we applied four feature
extraction methods to the enhanced signals within the seg-
mented sections.

B. FOUR FEATURE EXTRACTION METHODS: CSP, ERD/S,
FFT, AND AR
In this study, we used CSP, ERD/S, AR, and FFT to transform
segmented data into informative features. The TDP method
is excluded from this work because it is suitable for motor
execution rather than motor imagination. Each method is
described as follows.

1) CSP
This method is a spatial filtering technique that takes into
account spatial characteristics [54]. The CSPmethod is based
on the simultaneous diagonalization of two covariance matri-
ces. Simply, CSP maximizes the variance between classes.
The spatially filtered signal Z is given as:

Z = WE (1)

where E is the N × T matrix representing raw EEG mea-
surement data. Further, N is the number of channels, T is
the number of measurement data per channel, and W is the
CSP projection matrix. The rows of W are the stationary
spatial filters and the columns ofW−1 are the common spatial
patterns.

The spatially filtered signal Z given in Eq. (1) maximizes
the differences in the variance of the two classes of EEG
measurements. The spatially filtered signals are generally
used as features for classification [55]. For each imagined
movement direction,m is the number of imaginedmovements
as the row vectors of Z. Thus, the feature vectors are formed
by Xp (p ∈ {1, . . . , 2m}) given in Eq. (2) as inputs to the
classifier.

Xp = log(var(Zp)/
∑2m

p=1
var(Zp)) (2)

where Xp are the feature vectors that are used to calculate a
linear classifier by taking log to have a normal distribution.

2) ERD/S
The standard method for quantifying ERD/S was proposed
by Pfurtscheller et al. [56]. This method shows the rela-
tive variability between the recorded EEG power during the
non-task before the event occurred and the recorded EEG
power during the event. To extract the features using the
ERD/S method, the power spectrum of the non-task must
have a clear peak. We performed the following procedures
for the identification of the individuals. First, we obtained
xf (t; i), the bandpass-filtered signal in trial iϵ {1, . . . ,N },
from x(t; i), the EEG signals. The filtered signals were then
squared to obtain the power signals, Sf (t; i), as follows:

Sf (t; i) = x(t; i)2(t; i) (3)

The averaged power signal, S̄f (t), obtained for the MI task
for all trials, was calculated by:

S̄f (t) =
1
N

∑N

i=1
Sf (t; i) (4)

where N is the total number of trials. Conversely, Rf , which
was obtained from the non-task for a comparison relative to
the MI task, was calculated by:

Rf =
1
N

∑k

t∈tb
Sf (t; i) (5)

where tb ∈ {t1, . . . , tk} is the non-motor imagery channel
data. The relative power change, Cf (t), can be calculated as
follows:

Cf (t) =
S̄f (t) − Rf

Rf
× 100(%) (6)

3) AR
The AR model is a linear regression of the current observed
data against the prior observed data. The AR model is calcu-
lated as:

x(t) =

∑p

i=1
aix (t − i) + εt (7)

where x (t) is the current observed data at the current discrete
time t , which is dependent upon the data at the previous time
steps. In other words, an ARmodel of order ‘p’, indicates that
the current observed values depend on the ‘p’ past observed
values. Further, ai, are the model coefficients corresponding
to the i the order x (t); εt is the white noise at time t .

4) FFT
FFT is a representative spectral analysis algorithm in the
frequency domain, representing time-series signals as var-
ious power spectra of frequencies. FFT is often used as a
benchmark to compare with other spectral analysis methods
because of its simplicity and efficacy. FFT is calculated as:

Xk =

∑N−1

n=0
xne−i2πk

n
N , k = 0, 1, . . .N − 1 (8)

where Xk is the FFT coefficients, n is the total number of
points in FFT and N is the total number of input EEG data.

C. USER IDENTIFICATION USING THE SVM AND GNB
CLASSIFIERS
We calculated the accuracy of distinguishing one user from
53 non-users using two classifiers: SVM and GNB. SVM
is widely used for pattern recognition, classification, and
regression, as one of the supervised machine-learning algo-
rithms. We used SVM with radial basis function (RBF) in
this study. It is critical for SVM to find a hyperplane with
the farthest distance between support vectors (i.e., each vec-
tor corresponds to two classes) in an infinite-dimensional
space for data classification. The advantage of SVM is that
it optimizes the weight with the lowest cost function [57].
This method is determined by whether the data for each class
belongs to the user (Y=0) or belongs to the non-user (Y=1).
Similarly, GNB can also be divided into user (Y=0) and
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FIGURE 2. Location of the 62 electrodes and the predefined regions of interest (ROIs): (a) configuration of
the EEG channels consisting of the motor area (dark area) and non-motor area (light-dark area) and
(b) subject’s head in the area of the motor cortex (dark area). The electrodes were placed on the scalp at
AFz, according to the international 10-20 system.

non-user (Y=1), although it differs from SVM in that it is
based on the Bayes hypothesis, having independence between
predictors [58]. The GNB classifier recognizes the effect of
the value of a previous probability of a predictor on a given
target value [59]. The two models are widely used in user
identification fields.

Through these two classifiers, we progressed through the
process shown in Figure 3 to classify one user from the
other 53 non-users. To avoid the overfitting or learning biases
caused by the classifier’s heavy dependency on the training
data, the designed classifiers were tested using a 10-fold
cross-validation. For cross-validation, we divided them into
nine train sets and one test set. Each classifier model was
tested 30 times and then the mean identification accuracy
and the standard error of the mean (SEM) were calculated
to estimate the variability of the accuracies. In both classi-
fiers, however, the binary classification between one user and
53 non-users has the potential to cause an imbalance problem
due to the difference in datasets between the two classes [60].
Therefore, we calculated HTER to determine whether the
classifiers’ results were affected by the imbalance problem
in the following section.

D. HTER AS AN INDICATOR FOR DETERMINING THE
RELIABILITY OF CLASSIFIER’S RESULTS
There are two types of errors in a biometric system: false
acceptance (FA), in which the user identification accepts a
non-user, and false rejection (FR), in which the user identifi-
cation rejects a genuine user. They are stated as a percentage
of the false acceptance rate (FAR) and false rejection rate

(FRR). They are averaged as HTER (= (FAR + FRR)/2) to
objectively determine the reliability of the accuracy of the
results calculated from the classifiers [25]. Ultimately, the
lower the HTER value, the more reliable the user identifica-
tion methodology based on the EEG biometrics is. Therefore,
we considered the security criterion for user identification as
the HTER value, which should be less than 0.5, otherwise,
they were deemed a non-user.

E. STATISTICAL ANALYSIS USING A TWO-INDEPENDENT
SAMPLE T-TEST
A Statistical Package for the Social Sciences (SPSS), version
25.0 (IBM Corp., Chicago, Illinois, USA) was used for all
statistical analyses. A Two-independent sample t-test is a
method used to test whether the unknown population means
of two groups are equal or not. The two-independent sample
t-test was utilized to determine whether there were statisti-
cally significant differences in classified accuracy between
a user and the non-users in the combinations based on four
feature extraction methods and two classifiers. The values
of p < 0.05 or p < 0.001 were considered statistically
significant.

III. EXPERIMENTAL RESULTS
A. CLASSIFICATION ACCURACY BETWEEN ONE USER
AND 53 NON-USERS WITH FOUR FEATURE EXTRACTION
METHODS USING SVM AND GNB
We show the resulting ranking in order of accuracy based
on four features and two classifier combinations. Figure 4
depicts the accuracies of user identification using SVM for
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FIGURE 3. Schematic flow chart for user identification between a user and the non-users using the SVM and GNB classifiers. They
were tested using 10-fold cross-validation to prevent overfitting or learning biases caused by the classifier’s heavy dependency on
training data. We divided the training data into nine train sets and one test set. Each classifier model was tested 30 times and then the
accuracy for recognizing users and the standard error of the mean (SEM) were calculated to estimate the variability of the accuracies.

TABLE 1. HTERs based on the four feature extraction methods using SVM
and GNB. HTERs are obtained to be less than 0.5, indicating that the
calculated accuracies are reliable.

each feature extraction method. The use of ‘A’ in the x-axis
indicates the average accuracy for user identification between
the one user and the 53 other non-users. The averaged iden-
tification accuracies appear in the order of CSP (98.97%),
ERD/S (98.94%), AR (98.93%), and FFT (97.92%), high-
lighting that almost equal accuracies were observed for each
extraction method. Likewise, Figure 5 shows the user identi-
fication accuracies using the GNB classifier. High accuracies
were again obtained in the order of CSP (97.47%), ERD/S
(94.58%), FFT (53.80%), and AR (50.24%). The accuracy
difference between the highest accuracy (CSP) and the lowest
accuracy (AR) was 47.23%. Thus, emphasizing that the CSP
method is superior to other methods for both classifiers. This
phenomenon can estimate that the GNB’s features are influ-
enced by one another and will affect the results organically.

Furthermore, Figure 6 shows the boxplots of the user iden-
tification accuracies of the 54 total users for the four feature
methods using GNB and SVM. The CSP, using both GNB
and SVM, shows the highest mean accuracy and the smallest

variation in the accuracy distributions. In each boxplot, the
red lines and red crosses represent the median and outliers of
the distributions, respectively.

B. STATISTICAL ANALYSIS USING A TWO-INDEPENDENT
SAMPLE T-TEST
Figure 7 shows the user identification accuracies between
one user and the non-users, and their HTERs in four feature
extraction methods using SVM and GNB. Their differences
were then statistically compared using a two-independent
sample t-test. Before statistically comparing the differences
in accuracy, we found that the two combinations among
the four feature extraction methods clearly show significant
differences in the user identification accuracies and their
HTERs, as follows: FFT vs. CSP, FFT vs. ERD/S, AR vs.
CSP, and AR vs. ERD/S. The asterisks indicate significant
differences determined by a two-independent sample t-test
(∗ ∗ ∗ p < 0.001; ∗ p < 0.05) and the red error bars are
SEMs to estimate the variability of the accuracies and HTER
values.

Figure 7(a) illustrates the bar graphs showing the statisti-
cal differences in each combination based on the accuracy,
as follows: FFT vs. CSP (∗ ∗ ∗ p < 0.001), FFT vs. ERD/S
(∗ ∗ ∗ p < 0.001), AR vs. CSP (∗ p < 0.05), and AR vs.
ERD/S (∗∗∗ p < 0.001), and result in significant differences
in the accuracies for the combinations.

In all the feature combination cases, there are statistically
significant HTER differences (∗ ∗ ∗ p < 0.001) between the
two feature combinations, as shown in Figure 7(b). Thus,
we discovered that there are significant differences in the
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FIGURE 4. User identification accuracies of 54 users using SVM, in accordance with four feature extraction
methods. ’A’ in the x-axis indicates the average accuracy for recognizing a user across 54 users. The highest
accuracy is derived in the order of CSP (98.97%), ERD/S (98.94%), AR (98.93%), and FFT (97.92%).

accuracies of identifying users and their HTER values in each
feature extraction method.

C. EEG IDENTIFICATION BASED ON A SMALL DATASET
We have achieved a sufficiently high user identification accu-
racy using the CSP-SVM method. However, when CSP is
applied to small datasets, it tends to rely on sample-based

covariance, which can lead to poorer accuracy [19]. Thus, the
dataset size is known to be extremely sensitive to CSP.

To investigate whether the CSP method is actually affected
by the size of the data, we tested a publicly known, small
dataset—Dataset IVa [61]. We followed the same steps to
calculate the identification accuracies for Dataset IVa using
the CSP-SVM combination.
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FIGURE 5. User identification accuracies of 54 users using GNB in accordance with four feature extraction methods. ‘M’ in the x-axis
indicates the average accuracy for recognizing a user across 54 users. The highest accuracy is derived in the order of CSP (97.47%),
ERD/S (94.58%), FFT (53.80%), and AR (50.24%).

FIGURE 6. Boxplots of user identification accuracies of the 54 total users based on the four feature extraction methods using (a) GNB, and
(b) SVM. CSP provides the highest accuracy and smallest variation in the accuracy distributions, allowing for consistent findings. The red lines and
red crosses in each box represent the median and outliers of the distributions, respectively.

As a result, we achieved a user recognition accuracy of
56.2% in Dataset IVa. This result shows a poor performance
compared to the dataset known as the ‘Big Data of 2-classes

MI’ (98.9%). However, all the results were also guaranteed
through theHTER and SD (0.5± 0.00) inDataset IVa, and the
HTER and SD (0.01±0.00) for ‘Big Data of 2-classes MI’.
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FIGURE 7. Bar graphs representing (a) user recognition accuracies and (b) their HTERs using a two-independent sample t-test, in accordance
with the feature extraction methods using SVM and GNB. The red error bars are SEMs and the black horizontal thick lines show the significant
levels between the two feature extraction methods, as indicated by the vertical short solid black lines at the end of the thick solid black
horizontal lines. The asterisks show the significance levels (∗ p < 0.05; ∗ ∗ ∗ p < 0.001). There are significant statistical differences in user
identification accuracies and their HTERs. There are significant differences in the authenticated mean accuracies and the averaged HTERs (FFT
vs. CSP, FFT vs. ERD/S, AR vs. CSP, AR vs. ERD/S).

FIGURE 8. Comparison of HTERs calculated from small-scale user
datasets (Dataset IVa) and large-scale user datasets (Big Data of 2-classes
MI) using the CSP-SVM approach. The user identification accuracies of
both datasets are reliable by HTERs. However, higher reliability is
guaranteed in the large-scale user dataset due to the low HTER of the
large-scale user datasets (0.01 ± 0.00) over the small user datasets
(0.5 ± 0.00). Although the user identification accuracy in Dataset IVa is
distinctly inferior, we ensured the results of the user identification
accuracy.

These are illustrated in Figure 8. Moreover, it means that the
accuracies of both datasets are guaranteed to be the HTER
less than 0.5.

D. RELIABILITY OF USER IDENTIFICATION ACCURACIES
GUARANTEED BY HTER
To assess the reliability of the identified accuracies, we used
the HTERs as the threshold (τ ) for security settings. The
HTERs range from zero to one and numbers closer to zero
represents higher reliability. Table 1 shows the averaged

HTERs and their standard deviations (SD) using SVM and
GNB. SVM presents an almost equal HTER and SD. How-
ever, GNB shows the low-reliability order of CSP (0.02 ±

0.01), ERD/S (0.03 ± 0.03), FFT (0.18 ± 0.12), and AR
(0.41 ± 0.08). These results guarantee sufficient reliability
of the calculated accuracies because their HTER values are
below 0.5.

E. PROPOSED METHODOLOGY FOR ESTIMATING THE
NUMBER OF USERS BASED ON EEG-MI SIGNALS
In the dataset of ‘Big Data of 2-classes MI’ [44], we were
successful in achieving a high accuracy in the classification
between the one user and the non-users. Then, we addi-
tionally tested a small dataset, Dataset IVa, with the same
processes and obtained a lower accuracy [61]. Dataset IVa,
a small-sample dataset consisting of five brain signals,
is likely to degrade the performance [62], [63], [64]. Fur-
thermore, the CSP, which depends on sample-based covari-
ance, finds it difficult to yield highly recognized accuracy on
small-scale datasets [19]. Therefore, we proposed a method
for estimating the number of recognizable users (i.e., data
scales) and ensuring the results obtained from biometric sys-
tems for small datasets. For this purpose, we defined the
threshold for security settings as HTER (τ ) and selected its
value as between 0 and 0.5. Then, we calculated the mean of
the HTERs (X̄ ), borrowing the concept of basic statistics [65],
as follows:

X̄ =
1
n
(x1 + x2 + . . . + xn) (9)

where n is the total number of users and x refers to the HTER
value calculated from each user. We randomly selected two
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HTERs out of all the users’ HTERs and calculated X̄ with
Eq. (9). This process was repeated until X̄ reached τ .

This method was then applied to Dataset IVa. It is possible
to predict up to five users when a threshold of 0.5 (τ = 0.5)
is established for the security settings. In other words, this
estimated result ensures reliability, while also satisfying the
HTER value. Hence, this study estimated the number of users
regardless of the small sample size, while also ensuring the
reliability of the user identification method.

IV. DISCUSSION
A. EEG-MI METHODOLOGY WITH A HIGHLY
RECOGNIZABLE ACCURACY
Personal identification models have recently been developed
using time series data-based feature extraction methods in
security fields, such as AR and PSD, rather than CSP [66].
However, our study demonstrated that the EEG-MI method-
ology is suitable for biometric systems owing to its high user
identification accuracy. This methodology was utilized with
the CSP feature extraction method and SVM classifier based
on the EEG-MI datasets, as shown in Figures 4–7. Similarly,
T. N. Alotaiby et al. showed that the CSP–SVM combination
provides a highly recognizable user accuracy (95.15%) [67],
although our results exhibited a 3.82% higher accuracy than
those in their study. Furthermore, our results can reliably
ensure personal identification, exhibiting a uniformly high
accuracy across all 54 subjects (Figures 4–7).

B. DIFFICULTY CLASSIFYING THE ONE USER FROM THE
NON-USERS
We used the CSP–SVM methodology in the security field,
which signifies one of the ways to identify a user from
multiple users based on EEG-MI signals. Studies relating to
our proposed model are not common because most studies
focus on identifying other biological signals, such as the iris
and fingerprints [68], [69], rather than brain waves. Many
researchers also focused on classifying the brain signals
recorded between cognitive tasks and non-tasks as performed
by a user [25], [70]. Moreover, previous studies have pro-
vided relatively low accuracy: Andreas M. Ray et al. previ-
ously reported that the use of 27 healthy subjects achieved a
mean classification accuracy of 75.30% [71]. A recent study
obtained an average classification accuracy of 71.20% from a
total of 18 participants [72]. However, they had fewer subjects
than our case and their average accuracies were 27.77%
and 26.27% lower than the average accuracies obtained
from the SVM and GNB models in this study, respectively
(Figure 4–5). Therefore, our study demonstrated, for the first
time, how to identify only one user from multiple non-users
using the CSP–SVM combination, based on EEG-MI.

C. PROPOSED METHODOLOGY FOR ESTIMATING THE
NUMBER OF USERS
To compensate for the shortcomings of CSP, which is
less accurate when using small datasets, we estimated the

minimum number of users required to ensure the reliability
of the classification results using Eq. (9). We confirmed that
a data size of five people is a viable data size for ensuring
the appropriate reliability by using the Dataset IVa—a small
dataset. Figure 8 demonstrates the reliable HTER results
after using the CSP–SVM combination. It is appropriately
reasonable to estimate the minimum number of users since
the data size is affected by the number of users, in terms
of information security. Many studies have already reported
the poor accuracy of the results when the data size is too
small [62], [63], [64]. It is also important in the field of
security to prevent the exposure of the user’s personal infor-
mation [73], alongside improving on the accuracy of their
identification [74]. Therefore, the number of users is an
important factor that can affect the security system; this study
was able to predict the required data size by demonstrating
the reliability of HTERs. Hence, our proposed method is
simple and is expected to make a significant contribution to
the security field.

V. CONCLUSION
We proposed the EEG-MI methodology for user identifica-
tion to improve the accuracy of identifying one user from
other non-users and ultimately guarantee their reliability.
We compared four feature extraction methods along with
optimized classifiers. The CSP–SVM method, in particular,
provided the best identification performance with an accu-
racy of 98.97%, compared to any other combination method.
Moreover, the GNB classifier produced the highest identi-
fication difference between CSP, with the highest accuracy
(97.47%), and AR, with the lowest accuracy (50.24%), which
resulted in an accuracy difference of 47.23%. Despite the
high performances of using CSP, it is very sensitive to data
size. Thus, we can estimate the dataset size required to ensure
CSP performance, even with small data scales. Lastly, all
user recognition results were evaluated by HTER to deter-
mine whether they were affected by the imbalance problem
in binary classifications; all our results are reliable. This
study contributed to developing an optimized user identifi-
cation method for the EEG-MI methodology by significantly
improving user identification accuracy.
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