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ABSTRACT Code comments explain the operational process of a computer program and increase the
long-term productivity of programming tasks such as debugging and maintenance. Therefore, developing
methods that automatically generate natural language comments from programming code is required. With
the development of deep learning, various excellent models in the natural language processing domain
have been applied for comment generation tasks, and recent studies have improved performance by
simultaneously using the lexical information of the code token and the syntactical information obtained from
the syntax tree. In this paper, to improve the accuracy of automatic comment generation, we introduce a novel
syntactic sequence, Code-Aligned Type sequence (CAT), to align the order and length of lexical and syntactic
information, and we propose a new neural network model, Aligned Lexical and Syntactic information-
Transformer (ALSI-Transformer), based on a transformer that encodes the aligned multi-modal information
with convolution and embedding aggregation layers. Through in-depth experiments, we compared ALSI-
Transformer with current baseline methods using standard machine translation metrics and demonstrate that
the proposed method achieves state-of-the-art performance in code comment generation.

INDEX TERMS Program comprehension, comment generation, natural language processing, deep learning.

I. INTRODUCTION
CODE comments are themain factor that helps in understand-
ing the working process of source codes. During software
development and maintenance, developers usually take a sig-
nificant amount of time to understand programs. Commented
codes are easier to understand than uncommented codes, and
high-quality code comments can effectively improve program
comprehension [1], [2], [3], [4]. However, writing comments
and keeping them up to date requires substantial time and
effort [5]. As the scale of open-source software grows, the
need for code comment generation technology that auto-
matically generates high-quality natural language comments
increases. Code comment generation is currently an active
research topic, and achievements in this work can also be
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adapted to other natural language processing (NLP) tasks
such as code search, code translation, and code classification.

Early code comment generation techniques used template-
based methods with predefined generation rules and
information-retrieval-based approaches with code summa-
rization dataset. With the development of deep learning,
various excellent models in the NLP domain have been
applied to programming language domains, particularly code
comment generation. Hu et al. [6] showed a significant
performance improvement in code comment generation by
treating comment generation as a neural machine translation
(NMT) problem of converting code comments.

State-of-the-art models [4], [7] with recurrent neural net-
work (RNN) [8], Seq2Seq [9], and transformer [10] to gener-
ate comments generally used structural information obtained
by various abstract syntax tree (AST) traversal methods of
source code, such as the structure-based traversal (SBT)
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method. This indicates that simultaneously using the lexi-
cal and syntactic information of a programming language
increases the accuracy of translation from the source code to
the comment.

In this paper, we emphasize the importance of align-
ing lexical and syntactic information. Many studies [4], [6],
[7], [11] have used SBT, where the order and number of
tokens differ from those of the corresponding keywords in the
original source code. In NLP, it has been commonly observed
that machine translation performs better between languages
with similar word order. For instance, in English-German
and English-Korean translations, the former has similar word
order [12], [13] while the latter does not, and machine trans-
lation naturally performs better for English-German transla-
tion. Hence, if the order and length of lexical and syntactic
information differ, as in SBT, learningwith thesemulti-modal
information may have a limited accuracy improvement.

Therefore, we propose the Aligned Lexical and Syntac-
tic information Transformer (ALSI-Transformer) to synchro-
nize the order and length of lexical and syntactic informa-
tion. ALSI-Transformer uses two types of sequence infor-
mation extracted from the source code as multi-modal fea-
tures: a code sequence, which represents the lexical infor-
mation, and a new data type called Code-Aligned Type
sequence (CAT), which represents the syntactic informa-
tion. These representations are combined into one piece of
information using the convolution layer and the embedding
aggregation layer. By leveraging this multi-modal informa-
tion, ALSI-Transformer can generate high-quality comments.
We demonstrate the effectiveness of ALSI-Transformer in
code comment generation through thorough experiments.

Our contributions are as follows:
• We propose a new data type, CAT; to the best of our
knowledge, we are the first to align the order of syntactic
information to lexical information.

• The size of ALSI-Transformer is smaller than those
of related models while achieving excellent comment
generation performance.

• We evaluated the performance of several methods to
create a combined feature that merges two inputs. The
performance of Gate Network was the best, and it was
applied to ALSI-Transformer.

• We compared ALSI-Transformer with six baselines on
two performance metrics, BLEU and METEOR; which
achieved state-of-the-art performance.

The remainder of this paper is organized as follows.
Section II presents background methods on code summa-
rization. Section III elaborates on the details of ALSI-
Transformer. Section IV presents the experimental setup,
results, and discussion. Finally, Section VI concludes the
paper and presents potential future works.

II. RELATED WORK
In this section, we present previous studies related to
code comment generation. These studies are categorized
based on the methods used for code summarization.

In Sections II-A and II-B, we introduce the early stages of
code comment generation techniques, which are template-
based and retrieval-based methods. In Section II-C,
we describe the learning-based code comment generation
methods that have been developed after the introduction of
deep learning.

A. TEMPLATE-BASED CODE SUMMARIZATION
Generally, template-based approaches follow some cus-
tom rules and extract keywords from the source code.
Sridhara et al. proposed an automatic comment generation
technique that extracts keywords from the Java method and
describes the functionality in [1] and an automatic tech-
nique that identifies code snippets and implement high-level
abstractions of behavior and represents it as a natural lan-
guage description in [14].

McBurney and Mcmillan [15] used context-based meth-
ods PageRank and SWUM to extract keywords from a Java
source code. Moreno et al. [16] generated code comments
on the responsibility of Java classes using class stereotype
identification and heuristic rules. However, template-based
approaches do not capture the intrinsic attributes of the source
code.

B. RETRIEVAL-BASED CODE SUMMARIZATION
Information retrieval-based approaches return the best match-
ing code summarization from similar code snippets with
similar correlations in the code dataset. Haiduc et al. [17] used
a text retrieval technique and vector space model for code
analysis to calculate code similarity from large datasets. They
investigated a program comprehension that automatically
determines code descriptions based on an automated text
summarization technique in [18]. Wong et al. [19] collected a
large Q&A dataset on Stack Overflow and proposed a model
that generates code comments by mapping an input code to
codes in Stack Overflow via similarity calculation. However,
this method depends on the source code dataset and fails to
retain rich contextual information about the source code.

C. LEARNING-BASED CODE SUMMARIZATION
After the two aforementioned methods, advances in machine
learning and deep learning models have led to learning-based
code annotation generation approaches [20]. Hu et al. [6]
considered the task of generating comments from the source
code as a machine translation problem from programming
language to natural language and applied the NMT model
to this problem, outperforming the existing methods of code
summarization. CODE-NN [20] achieved high performance
by using a long short-term memory (LSTM) network for the
first time. Initially, the source code was simply regarded as
plain text, and features of various programming languages
were extracted [18]. In this method, identifiers or keywords
in the source code can be extracted, but intrinsic attributes,
such as the operation flow of the code, may not be retained.
To overcome this problem, structural information of the
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source code has been utilized by using various methods of
traversing the AST [21]. Deepcom [6] utilizes the traditional
SBT and Hybrid-DeepCom [11] created comments on Java
methods through an encoder-decoder structure with atten-
tion. Yang et al. [7] used Sim_SBT, and SeTransformer [4]
used improved structure-based traversal (ISBT) to dedupli-
cate SBT and improve its representation. They used the
transformer [22] instead of an RNN, which has a long-term
dependency on long input data.

Most AST traversal methods generate sequences for code
information focusing on structural information. However
Aljumah and Berriche [23] compared source code summary
experiments with andwithout AST, and found that AST infor-
mation does not improve model performance in all situations
although the text of function can benefit from AST if it is
not clear. Therefore, we designed a language model using
CATwith a new sequence by adopting a different source code
structure extraction method.

III. INPUT FORMAT AND NETWORK MODEL
In this section, the overall framework of ALSI-Transformer
is explained in detail. Figure 1 illustrates the overall struc-
ture of the ALSI-Transformer model. We describe ALSI-
Transformer in three essential parts: source code information,
input embedding, and model.

FIGURE 1. Structure of the ALSI-transformer.

A. SOURCE CODE INFORMATION
1) CODE SEQUENCE
Acode sequence is a lexical representation of the source code.
Most tokens in the source code are composed of identifiers,

separators, and operators. Similar to subjects and objects in
natural language, the code also has lexical information.

2) CODE-ALIGNED TYPE SEQUENCE (CAT)
One of the key points in ALSI-Transformer, CAT, is a syn-
tactic representation of the source code. Haiduc et al. [18]
used only lexical information using code tokens for com-
ment generation. Hybrid-DeepCom [11], ComFormer [7],
SeCNN [24], and SeTransformer [4] use the source code
structure information as well as the source code in comment
generation. These methods use lexical and syntactic informa-
tion together.

We extracted the structural information of the source code
to obtain the lexical and syntactic information. The biggest
difference from previous studies is that when obtaining the
structure information of the source code, CAT aligns the
types according to the code sequence. Previous studies [4],
[7], [11], [25] utilized SBT that traverses the AST extracted
from the source code. Various methods for traversing the
AST such as Sim SBT and ISBT have emerged; however
these methods contain redundant and unnecessary informa-
tion. Most importantly, the code token and SBT sequence
are not aligned because some code tokens are lost in the
process of converting the source code to AST. In contrast,
CAT minimizes information loss when extracting the code
structure from the source code. Specifically, we extract the
AST generated from the source code. The AST is a tree that
separates the source code written in a programming language
into semantic units and change them into a structure that
can be understood by a computer. Each node in this tree has
source code information, such as node id, value, type, and
child nodes. We tokenize the source code and extract the type
information.1

Then, the type information of each code token is arranged
according to the order of the code sequence. In this man-
ner, a CAT with the same sequence and length as the code
sequence is extracted. Therefore, we can obtain better syn-
tactic information than the existing SBT.

Examples of SBT and CAT are shown in Figure 2. Because
SBT creates a sequence according to the syntax tree order
rather than the code order, the type information of some code
tokens is lost. Additionally, there are cases where parentheses
and types overlap, making the SBT sequence much longer
than the original code sequence. Moreover, code type infor-
mation is missing in SBT, but CAT has type information for
all code sequences. Therefore, in CAT, the code sequence and
the mapped code type sequence correspond, and both have
the same length. In Figure 2, Modifier, the type of ‘public,’
Separator, the type of ‘parentheses, comma, semicolon,’ and
Keyword, the type of ‘BOOL_,’ are omitted in SBT, whereas
the types of all code tokens are shown in CAT. In addition,
the order of ReferenceType, which is an ‘AnnotatedPrimitive
Type’ type, and FormalParameter, which is a ‘type’ type,
is reversed in SBT, but CAT follows the code sequence order.

1Javalang https://pypi.org/project/javalang/
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FIGURE 2. Example of SBT and CAT.

3) OUT-OF-VOCABULARY (OOV) PROBLEM
Code identifiers have many variations depending on the
developer’s naming preferences and may follow the naming
convention for each programming language (e.g., camel case
naming convention, snake case naming convention).

Therefore, the out-of-vocabulary (OOV) problem tends to
occur in such data. To alleviate the OOV problem, we uti-
lize the byte pair encoding (BPE) algorithm [26]. BPE is a
preprocessing operation that separates and encodes tokens
into smaller units of meaningful sub-tokens through subword
segmentation. For example, there is the word ‘representation’
in the training set and ‘present’ in the test set; ‘present’ does
not appear in the training set. In this case, the BPE algorithm
splits the word ‘representation’ into ‘re,’ ‘pre,’ ‘sent,’ ‘a,’ ‘t,’
‘i’ and ‘on.’ A Subsequently, the decoder can create the word
‘‘present’’ from the fragmented word tokens. The vocabulary
size is set to 52,000, and special tokens include <start> for
the start of the input, <end> for the end of the input, <pad>
for padding, and <unk> for OOV.

B. ALSI-TRANSFORMER
1) CONVOLUTION LAYER
CNN can reduce the size (e.g., length and width) of images
and minimize computational load [27]. Research to improve
the performance in NLP tasks by combining CNN and
transformer is being actively conducted [28]. Similarly,
ALSI-Transformer uses CNNs to process input embeddings.
In most cases, the length of the source code and the large
dimensions make training computationally expensive. There-
fore, CNNs can be used to compress the dimensions of the
data and shorten the training time.

A previous study confirmed the effectiveness of com-
pressing the code using CNN [4]; the local information
(i.e., context and order) of the source code was preserved
through CNN and reflected in learning. In addition, we aim to
express the contextual meaning intensively. After this series
of operations, the input data code sequence and CAT can
effectively reduce the dimensions of each unique piece of
information while minimizing the loss.

2) EMBEDDING AGGREGATION LAYER
Our proposed model utilizes the code sequence and CAT as
inputs. Because ALSI-Transformer is a one-encoder-based
model, we must merge two inputs. These two inputs can be
merged in various ways. When inputs are fed into a single
encoder, to reflect the advantage of using the same length
and order of lexical and syntactic information, it is impor-
tant to adopt an appropriate method to generate combined
features. We experimented with six aggregation methods and
finally chose Gate Network. The experiment is detailed in
Section IV-B3.

The ALSI-Transformer jointly encodes the lexical and the
syntactic representations through Gate Network and creates
a combined feature X . Given the code sequence input xc =

(xc1, · · · , xc768) and CAT input xq = (xq1, · · · , xq768), we set
axis = −1 for concatenation. Then, Gate Network generates
a gate context Cg as

Cg = σ (FC([xc, xq])), (1)

where σ (·) is a logistic sigmoid function, and FC denotes a
fully-connected layer. The combined feature is defined as

X = Cg · xc + (1 − Cg · xq) (2)

and is fed to the encoder.

3) ENCODER AND DECODER
We constructed model components and implemented compu-
tational processes according to the standard transformer [22].
The encoder is represented in the block on the left of Figure 1,
and the decoder is in the block on the right. Both the encoder
and decoder are configured in a stacked form of multi-head
attention and feed-forward layers. The positional embeddings
were added at the bottom of the encoder and decoder to
reflect the token order of the code sequence, CAT, and natural
language. Detailed training settings and hyper-parameters are
given in Section IV-A3

a: ENCODER
The proposed model has one encoder, which comprises
N = 3 identical layer stacks. The encoder uses combined
feature X as the input. The encoder inputs first flow through
a self-attention Attention(Q,K ,V ) layer, and the outputs are
fed to feed-forward neural networks. Finally, the combined
embeddings learned from the aligned lexical and syntactic
information of the source code are passed to the decoder.

Attention(Q,K ,V ) = softmax
(QKT

√
dk

)
V (3)

b: DECODER
The decoder is composed of a stack ofN = 3 identical layers.
Masked multi-head attention is added, and the structure of
the rest of the decoder is the same as that of the encoder.
The masked multi-head attention masks certain values so that
they are not affected when the parameters are updated. The
mask keeps the decoder from viewing future information.
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The combined embeddings are passed through the N decoder
layers along with the natural language comments and target
mask. Finally, an output sequence (y1, . . . , yn) is generated.

IV. EXPERIMENTS
In this section, we present the verifications performed
to evaluate the performance and quality of the automati-
cally generated code comments by our proposed method.
In Section IV-A, we introduce the experimental setup.
In detail, we present the statistics of the code corpus and
the performance metrics for verifying ALSI-Transformer.
Moreover, we describe the training details of each com-
ponent in ALSI-Transformer and training environments.
In Section IV-B, we explain the experimental results of
ALSI-Transformer compared to baselines and present exam-
ples of how our proposed approach generates the comment.

A. SETUP
1) CODE CORPUS
In the experiments, we used the code corpus collected by
Hu et al. [11], which has been widely used in previous
studies on code comment generation [7], [11], [29], [30].
Each data consists of <java method-comment> pairs, and
this code corpus has been refined according to a set of rules
to ensure quality. The constant numbers and strings in the
source code are replaced with <num_> and <str_> tokens,
respectively. The train, test, and validation sets consisted of
445,812, 20,000, and 20,000 pairs, respectively. Statistical
information about the code length, CAT length, and comment
length is presented in Table 1.

TABLE 1. Statistics of code corpus lengths. (Code, CAT, and Comment.)

2) PERFORMANCE METRICS
Our study used two neural machine translation metrics, bilin-
gual evaluation understudy (BLEU) and metric for evaluation
of translation with explicit ordering (METEOR), to evaluate
the quality of hypothesis comment generated by the model
compared to the reference comment. The details of each
metric are as follows:

BLEU is the basic metric to evaluate the performance of
NMT models [31]. It is used to measure the similarity by
comparing the degree of matching n-grams (N = 1 ∼ 4)
in the hypothesis and reference. In addition, unigrams are
used to measure word translation accuracy, and high-order
n-gram is used to measure the fluency of sentence transla-
tion. METEOR is a method that supplements some inherent
defects of the standard BLEU [32]. It is based on the weighted
harmonic mean of single precision and recall of single word,

TABLE 2. Performance comparison under different hidden state sizes.

and it computes word matches and concordance relationships
between synonyms, roots, affixes, and definitions.

3) TRAINING DETAILS
Our source code is available in the GitHub repository.2 ALSI-
Transformer was implemented with Tensorflow 1.13.1 and
Python 3.7. All the experiments were run on a computer hav-
ing following specifications: NVIDIA Corporation GP102,
GeForce GTX 1080 Ti GPU, and the operating system was
Linux.

We adopted the hyperparameters commonly used in other
code comment generation studies: Hybrid-Deepcom [11]
SeTransformer [4] and transformer [22]. In addition,
to ensure fairness, additional comparative experiments were
conducted using a test set and validation set. During training,
the model was validated every 5000 steps using the BLEU
and METEOR score as terms. As a result of hyperparame-
ter adjustments, we determined the optimal combination of
parameters as the final parameters of our proposed method.
The hyperparameters of the model were set as follows:

• We used a CNN with 2 layers, a 3 × 1 convolution
kernel, and a 2 × 1 filter for max pooling.

• Transformer had 3 layers, the hidden state was
768 dimensions, and the head of the multi-head attention
was 8. Both the encoder and decoder had the same
settings. We analyzed the size of the hidden layer of the
neural network. The hidden state was tested with 256,
518, and 768 sizes. The results are presented in Table 2.

• Because the length of the code sequence or CATwas less
than 200, we set both the code sequence and CAT input
length to 200 respectively. Thus, the total input length
was 400(=200+200). To validate this input length, the
performance was compared when the input length of the
code sequence and CAT was set to 600(=300+300),
and the resulting performance was better when set to
400(=200+200). The results are presented in Table 3.

• Both the code sequence and CAT were embedded in
768 dimensions. These two embeddings were con-
nected in 1556 dimensions and fed to the Gate Net-
work. The hidden state of the FC layer was adjusted to
768 dimensions.

• We chose the Adam optimizer with an initial learning
rate of 1e-4. The learning rate was decayed at a rate
of 0.99. The dropout of all models was set to 0.2.
Since the models were tested with dropout rates ranging
from 0.1 to 0.3, and the best performance was achieved
with a dropout rate of 0.2. The results are presented in
Table 4.

2https://github.com/KIE-KID/ALSI-Transformer
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TABLE 3. Performance comparison under different input length.

TABLE 4. Performance comparison under different dropout.

• Cross-entropy was used as the loss function. The best
model was selected after training 50 epochs in the
experiments.

B. RESULTS
1) CODE COMMENT GENERATION
We compared the performance of our proposed method,
ALSI-Transformer, with six state-of-the-art baselines in code
comment generation. We used BLEU (n-gram BLEU) and
METEOR to evaluate the performance by measuring the
similarity between the reference comment and hypothesis
comment generated by the ALSI-Transformer and the six
baselines. The overall performance evaluation results are
illustrated in Table 5; ALSI-Transformer outperformed the
six baselines. ALSI-Transformer improved by 4.8%-33.54%
in BLEU and 3.12%-42.82% in METEOR compared to
baselines.

The results indicate that our proposed method achieved
state-of-the-art performance in comment generation. This
result proves the importance of using lexical information
and syntactic information together. Therefore, simultane-
ously considering these two multi-modal information helps
improve performance. Notably, BLEU 1 of SeTransformer is
higher than that of ALSI-Transformer, but the scores of other
indicators are low. BLEU 1, which indicates the accuracy
of unigram token translation, is 5.52% lower than SeTrans-
former but 5.41% higher in BLEU 4, which indicates a high
continuity of words being compared. This is because that the
similarity between the reference comment and the comment
created by ALSI-Transformer is high. Specifically, our pro-
posed approach has an excellent ability to naturally generate
comments. This can be confirmed through the example of the
actual test set presented in Table 6.

In Table 6, we give examples of test cases to demon-
strate the actual comments generated by the models. In Case
A, the robustness for OOVs of the ALSI-Transformer is
shown. SeTransformer [4] and Hybrid-DeepCom [11] gen-
erate <unk> tokens to represent out-of-vocabulary (OOV)
words, whereas the ALSI-Transformer makes ‘topic’ instead.
This is due to the effect of the Byte Pair Encoding (BPE)
algorithm in our proposed approach, which solves the
OOV problem. DeepCom [6] performs poorly and gener-
ates irrelevant words and unnatural sentences. In Case B,
it is demonstrated that the ALSI-Transformer is good at

handling a long length of source code. TheALSI-Transformer
employs specific words, such as ‘array’ and ‘offset’ and
consequently generates comments matching the reference
comments. In Case C, we observe that the ability to resolve
OOVs of our proposed method is still effective with long
source codes. While SeTransformer and Hybrid-DeepCom
generate <unk> tokens for OOVwords, our proposed method
generates the same sentence as the reference comment by
using ‘sample’ in the sentence, which other models miss.
DeepCom generates numerous words that are irrelevant to
the source code. In the last case, it is demonstrated that the
ALSI-Transformer can deal with user-defined identifiers. The
ALSI-Transformer is the only one that clarifies user-defined
identifiers ‘cachexmlgenerator’ and ‘xml’ and completes the
comment almost identically to the reference.

2) TRAINING EFFICIENCY
To demonstrate the training efficiency of ALSI-Transformer,
we compared our proposed model with the state-of-the-art
model, SeTransformer [4], which has the most competitive
performance. For accurate comparison, the experiment was
conducted under the same conditions as the experimental
environment. ALSI-Transformer adopted the hyperparameter
that achieved the best performance, and SeTransformer was
implemented according to [4]. Each experiment was con-
ducted three times, and the average values were compared.

The results of comparison between ALSI-Transformer
and SeTransformer are shown in Table 7. The experimental
results indicate that ALSI-Transformer is computationally
more efficient than SeTransformer. ALSI-Transformer out-
performs the state-of-the-art model with a simple trans-
former model of one encoder. SeTransformer has a total
number of parameters of 167,308,038 and ALSI-Transformer
has 146,939,910, which shows a smaller number of
parameters. In terms of training time, ALSI-Transformer
took 174,279 seconds, whereas SeTransformer took
265,140 seconds. The training time of ALSI-Transformer
was 1.52 times less than that of SeTransformer, and even con-
sidering the cost of calculating CAT in the original code, our
proposed approach can be considered efficient. Additionally,
the size of our proposed method was also 8.3 GB, which is
smaller than the 10 GB of SeTransformer.

3) AGGREGATION METHODS OF MULTI-MODAL
EMBEDDINGS
The ALSI-Transformer uses Gate Network as an aggrega-
tion method of multi-modal information. To demonstrate the
effectiveness of this embedding aggregation layer design,
we designed and compared five methods of aggregating code
sequences and CAT. In detail, Alternation and Seperation
methods aggregate the code sequence and CAT in the step
before the CNN layer. Alternation alternately merges the
tokens of the code sequence and CAT, and Seperation uses
a special token called <code> to connect the code sequence,
<code> token, and CAT in that order. On the other hand,
Addition, Average and Concatenation methods aggregate the
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TABLE 5. BLEU, n-gram BLEU, and METEOR score for ALSI-transformer compared with six baselines.

FIGURE 3. Example of five aggregation methods. Code sequence and CAT extracted from original source code used for Alternation and
Separation methods. Code sequence embedding and CAT embedding are generated through the CNN layer. Two embeddings are used for
Addition and Avgerage. Concatenation makes embedding in different ratios.

code sequence and CAT embeddings in various ways after the
CNN layer. Addition adds the values of the code sequence
embedding and CAT embedding to combine the two, and
Average uses the average of the two values. Concatena-
tion uses data obtained by concatenating the embedding
of code sequence and embedding value of CAT. In all the
methods, the input was set to 768 dimensions, the same as
the ALSI-Transformer. In particular, Concatenation adjusted
the embedding ratio of code sequence to CAT to match the
dimensions of the input embedding to 768. From the results
of the experiments with the embedding ratios of 756 to 12,
750 to 18, and 700 to 68, we adopted the embedding ratio of
756 to 12, which yielded the best results. An example of the
five methods is illustrated in Figure 3.
As shown in Table 8, the results of comparing various

aggregation methods of code sequence and CAT confirm that
the model performed best when using the Gate Network.
The Gate Network improved by 0.59%-3.05% in BLEU and
0.22%-2.65% in METEOR compared to other models. This
indicates that the Gate Network helps effectively aggregate
code sequences and CAT. Therefore, in this paper, Gate Net-
work was adopted as the optimal method and the model was
called ALSI-Transformer.

4) ENCODER DESIGN
ALSI-Transformer uses one encoder to simultaneously
encode multi-modal information. To verify the effectiveness

of this encoder design, we compared it with a model that
encodes lexical and syntactic information separately using
two encoders. For a more accurate comparison, we designed
a two-encoder ALSI-Transformer model using each code
sequence and CAT as inputs instead of leveraging the exist-
ing model using two encoders. All other settings were the
same. To ensure model adequacy, we also checked the model
size after training. Model sizes on disk are measured in
gigabytes (GB).

The comparison results are presented in Table 9. ALSI-
Transformer was superior to the two-encoder ALSI-
Transformer in all two indicators with BLEU 3.75% and
METEOR 2.81%, and the model size was small at 8.3 GB.
Furthermore, the single-encoder model achieved better per-
formance than the two-encoder model. Because a single
encoder is more suitable for this task, as shown in Table 5,
our ALSI-Transformer model using one encoder had higher
BLEU and METEOR scores than Hybrid-DeepCom and
SeTransformer, which use two encoders.

5) DIFFERENT LENGTHS OF SOURCE CODE
AND COMMENTS
We further analyzed the impact of code and comment
length on the performance of ALSI-Transformer. Code and
comment length is one of the main factors affecting the
performance of the code comment generation model. There-
fore, we compared the performance of three baselines,
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TABLE 6. Examples of generated comments by ALSI-Transformer and other baselines. These examples cover both long and short code snippets. Four code
examples are selected from the test set to compare the reference comments and hypothesis comments. The hypothesis comments are generated by
ALSI-Transformer and three baselines.
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TABLE 7. Comparison of the number of model parameters, training time, and model size between ALSI-Transformer and SeTransformer.

FIGURE 4. Performance of ALSI-Transformer, Deepcom, Hybrid-Deepcom, and SeTransformer with different lengths of code and comments.

TABLE 8. Results of comparison between ALSI-Transformer (Gate
Network) and five aggregation methods in terms of BLEU and METEOR.

DeepCom [6], Hybrid-Deepcom [11], and SeTransformer [4]
with ALSI-Transformer when the code and comment lengths
are different. The performance of our proposed approach and
the other three baselines with different lengths of code and
comments is illustrated in Figure 4.

In Figure 4(a), ALSI-Transformer outperforms the base-
lines in terms of BLEU score. As the length of the source
code increases, the score tends to decrease, and the model
has excellent performance when the length of the code is
50 or less. This shows that the model can better extract lexical
information and syntactic information when the source code
length is short. Performance fluctuates significantly when the
length of the source code is 175 or more. This phenomenon
can be attributed to the learning ability of our proposed
approach being limited because there is little data with a
length of 175 or more in the java method-comment code
corpus we used.

As shown in Figure 4(b), our proposed approach does
not show significant differences in performance in terms of

comment length and has consistently higher BLEU scores
than the baselines. When the length is 15-20, the score rises
sharply, but this is the same phenomenon in all models, and it
can be considered a dataset distribution problem rather than
a problem of the model. For comments with a length of 30,
ALSI-Transformer significantly outperformed DeepCom and
Hybrid-Deepcom. However, long code comment generation
task is still a challenge. This aspect is left for future work.

From the analysis, we surmised that the code comment
generation ability was reduced when there are too many
variable names, when a user-defined API was used, and when
the source code processing complexity increased because
the source code is written in one line. It is insufficient to
generalize because the above cases were analyzed through
human evaluation by three authors, but it would be interesting
to find additional processing methods for source codes that
yield poor performance through whole-case analysis.

V. THREATS TO VALIDITY
In this section, we discuss the following threats to our study:

A. INTERNAL THREATS
The first internal threat is the potential error of our exper-
imental code. To alleviate this threat, the program code was
checked and validated through multiple experiments. In addi-
tion, we used well-known mature open-source, such as Ten-
sorFlow,3 to ensure correct operation of the neural network.

The second internal threat is our training environ-
ment and hyperparameter configuration. We adopted the

3[Online]. Available: https://www.tensorflow.org/
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TABLE 9. Comparison results between ALSI-Transformer and ALSI-Transformer (two-encoder).

hyperparameters commonly used in other code comment
generation studies [4], [11], [22]. In addition, to ensure fair-
ness, additional comparative experiments were conducted
using a test set and validation set, which is discussed
in Section IV-A3.

The last internal threat is the result correctness of the base-
line methods. To alleviate this threat, we re-implemented the
structure and parameter settings of the baselines according to
their respective studies.

B. EXTERNAL THREATS
The first external threat comes from code-comment corpus.
To alleviate this threat, we selected a corpus, which was
provided byHu et al. [18]. This corpus consists of Java, which
is the most popular programming language. Moreover, the
quality of this corpus has been improved by preprocessing.
It has also been used in previous studies on code comment
generation [6], [7], [11], [29], [30], [33].

However, code comment generation ability may reduced
when there are too many variable names, when a user-defined
API was used, and when the source code processing com-
plexity increased because the source code is written in one
line. Therefore, In the future, we intend to collect more
higher quality code-comment corpus and to apply our pro-
posed method to the corpus of other programming languages
(Python and Javascript).

C. CONSTRUCT THREATS
The construct threat is the performance metric used in our
study. We use three metrics, BLEU and METEOR, which are
popular performance metrics in NMT. These measures have
also been widely used in previous code comment generation
studies [4], [6], [7], [11], [24], [34].

VI. CONCLUSION AND FUTURE WORK
In this study, we proposed a transformer-based code comment
generation model ALSI-Transformer. Inspired by natural lan-
guage translation, we first introduced CAT, which is aligned
to code sequences. We improved its performance by further
learning the syntactic representation. We also compressed the
dimensions of the data to speed up the training process of
neural networks with CNNs.

We conducted experiments to compare the performance
of ALSI-Transformer with baselines on Java datasets. ALSI-
Transformer achieved state-of-the-art performance. On com-
paring the training efficiency of ALSI-Transformer with
existing state-of-the-art models, it outperformed the model
because the size and training time were relatively small
in ALSI-Transformer. In addition, we experimented with

various methods of aggregating CAT and Code sequence and
evaluated performance according to the number of encoders.

Because CAT, a key element in ALSI-Transformer, can be
created by extracting the structure information of the source
code using a parser, a parser specialized for each program-
ming language can be used to generate CAT from the source
code written in the corresponding programming language.

The proposed approach is a an NMT task from program-
ming language to natural language. ALSI-Transformer can
generate better functional-level code comments than existing
models; however, it still does not provide relevance between
functions or project-level descriptions. However, this is a
common challenge in the study of code comment generation.
The proposed model is applicable to project-level comment
generation, which will be studied in the future.

In future work, we intend to apply the proposed model
to different code corpus (e.g., Python and Javascript) and
evaluate its effectiveness. Furthermore, to improve the per-
formance of the proposed method, we plan to explore addi-
tional information available and apply other deep learning
models. Recently, integratedmodels, such as CodeBERT [35]
and CodeT5 [36], which simultaneously perform program-
ming language understanding and generation tasks simulta-
neously have also emerged. Our proposed method can also
be extended to tasks other than code comment generation.
Additionally, because no case of using a new data type such as
CAT has been reported, we intend to create a model applying
these data types.
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