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ABSTRACT The prostate tissue structure is complex, the shape and size change is relatively large, and
the surrounding anatomical structure is complex, so the task of segmenting prostate and prostate cancer
is somewhat challenging. In this paper, the idea of deformable convolution is combined with the U-net
algorithm widely used in medical image segmentation. By using the deformable convolution module at a
specific position in the ordinary U-Net network structure, additional offsets can be added to the convolution
operator and the spatial sampling position can be changed by learning the offset of the target segmentation
area. The fixed receptive field of the traditional convolution operator is shifted to an adaptive receptive field
that can feel the change of features, and the segmentation accuracy of the target area is improved. Experiments
show that the algorithm can improve the accuracy of prostate segmentation. In this paper, the segmentation
model trained with healthy prostate data is transferred to the prostate cancer data set for secondary training
by simulating the way doctors read pictures. Experiments show that the segmentation effect of the lesion
area is significantly improved compared with the network model trained directly with small sample prostate
cancer data. The research results can provide further exploration ideas for the application of medical domain
knowledge in deep learning models.

INDEX TERMS Precision medicine, magnetic resonance imaging, medical image fusion, medical image
segmentation, convolutional neural network.

I. INTRODUCTION
Since the 1980s, magnetic resonance imaging (MRI) has
been used for noninvasive evaluation of the prostate and
its surrounding structures [1]. Magnetic resonance imaging
has proven to be the most accurate noninvasive method for
detecting prostate cancer [2]. In recent years, due to the
rapid development of deep neural networks, medical image
analysis and computer-aided diagnosis (CAD) have made
considerable progress [3]. Therefore, accurate prostate seg-
mentation plays a vital role in many medical imaging and
image analysis tasks, such as cancer detection, patient man-
agement, and treatment planning, including surgical planning
[4], [5]. However, manual segmentation is a very time-
consuming task [6]; in addition, it is subjective and based
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on the level of experience, resulting in poor reproducibility
and high interobserver variability [7]. If a computer-aided
diagnosis can be used to accurately segment the prostate
structures in images, it will help doctors diagnose and judge
prostate diseases [7]. Therefore, reliable automatic segmen-
tation of the prostate area is very valuable in daily clinical
practice [6]. Automatic segmentation of the prostate from
MR images is very challenging [8]. There are several reasons.
First, the prostate is a small organ in males and usually only
occupies a small part of the entire MR image [9]. Second,
due to the accumulation of urine in the bladder or whether
a rectal coil is used during imaging, the position of the
prostate in images will also change [10], [11]. In addition,
the background area occupies a large part of the input image
volume and contains various complex objects. Due to the
ambiguity of the boundary of the gland, it is difficult to
distinguish it from the surrounding tissues, and the internal
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structure of the gland is quite different at different anatom-
ical levels. Using different imaging protocols to examine
different MR images can result in large differences in signal
strength [12]. Finally, the morphology of the prostate tissue
may change due to the stage and location of the tumor (e.g.,
in the PZ region, in the CZ region). In addition, the shape
of the tumor is generally irregular, which is a challenge for
the segmentation of the tumor area [13]. In clinical practice,
multiparameter magnetic resonance images are often used for
accurate prostate segmentation. Traditionally, prostate cancer
is diagnosed with a biopsy [14]. However, there is evidence
that multiparametric MRI scans can help locate the target
area, thus reducing the number of unnecessary biopsies by
half [15], minimizing the number of clinically meaningless
prostate cancer diagnoses, and increasing the recognition
of clinically significant prostate cancer [16]. The European
Society of Urogenital Radiology (ESUR) has established the
prostate imaging reporting and data system (PI-RADS) score
for mpMRI. The T2W image on the transverse section is con-
sidered to be the best image to describe the prostate anatom-
ical structure [17]. However, in many cases, T2W imaging
cannot be used to reliably distinguish prostate cancer from
prostate intraepithelial neoplasia, bleeding, postradiotherapy
changes, or prostatitis [18], [19], [20]. In the ADC (Apparent
diffusion coefficient) graph, a low ADC value means that
diffusion is limited, while a high ADC value comes from
tissues with relatively free diffusion. Since the cellularity of
the tissue and the integrity of the cell membrane are inversely
proportional to the diffusion of molecules in the tissue, the
measurement of water diffusion provides information about
the tissue structure in benign and malignant tissues [21],
[22]. Studies have shown that the ADC of prostate cancer
is lower than that of the surrounding healthy prostate tissue,
and the ADC graph shows a low signal. Research by Xu et al.
showed that bpMRI and mpMRI are comparable in detecting
prostate cancer and identifying clinically significant lesions
[23]. Kuhl et al. [24] surveyed 542 patients with PSA ≥

3 ng/mL and negative transrectal ultrasound-guided biopsy
results and showed that bpMRI and mpMRI had similar
diagnostic accuracy for clinically significant tumors.

The focus of this paper is on the use of the latest deformable
U-Net convolutional network structure to automatically seg-
ment the prostate from bpMR images, an important pre-
requisite for computer-aided design [25]. The division of
the prostate area is of great significance for medical image
analysis, but it is challenging due to the imbalance of the
labeled data, background interference, and high anatomical
variability. In this work, we propose a deformable U-Net
convolutional network structure that uses the basic local
features and U-shaped structure of the prostate to segment
prostate MR images in an end-to-end manner. In recent
years, a new deformable convolutional network [26], [27] has
been proposed. Inspired by this, we integrate the deformable
convolution into the proposed neural network, namely,
Def-UNet, and use an upsampling operator to improve

the output resolution. The purpose is to extract contextual
information and achieve precise positioning by combining
low-level feature mapping with high-level feature mapping.
Def-UNet can capture prostate regions with different shapes
and proportions through adaptive shapes. Experiments show
that the accuracy and reliability of this method for automatic
segmentation of prostate magnetic resonance images are bet-
ter than those of the existing methods.

Automatic prostate segmentation methods and algorithms
have always been a research hotspot. Before major break-
throughs in the field of deep learning, deformable atlas-based
segmentation [28] and spatially continuous max-flow [29]
models were proposed. In addition, somemethodswere based
on primary machine learning, such as random forest, edge
space learning [30], c-means clustering and zone morphol-
ogy [31], and pattern recognition methods [32]. Among these
methods, Martin et al. [33] combined a deformable model
and a probabilistic atlas-based model to segment prostate
MR images. The clustering method proposed by Zhang et
al. separates the prostate from the surrounding tissues and
then performs postprocessing through active contours. Chilali
proposed a prostate and region segmentationmethod based on
atlas and c-means clustering to segment the transitional and
surrounding regions of the prostate [34].

Since their development, deep convolutional neural net-
works (CNNs) have played an increasingly important role
as automatic segmentation methods in the field of medical
image semantic segmentation. CNNs are based on hier-
archical feature extraction. Compared with methods using
manual features, CNNs have higher performance.Many stud-
ies have explored CNN-based medical image segmentation
methods. Jia et al. [35] used coarse-to-fine segmentation.
They also used atlas registration and pixel classification
based on a CNN and finally proposed integrated learning for
fine segmentation and achieved better results. Furthermore,
Cheng et al. [36] proposed an overall nested network to seg-
ment the prostate and claimed that the Dice score is much
higher than that of the patch-based CNN. Tian et al. [37]
trained and tested a CNN called PSNet and segmented
the prostate using three independent datasets. The method
achieved aDice score of 85.0±3.8% and satisfactory segmen-
tation accuracy results. In CNN-based segmentation, small
differences in the shape and appearance of the prostate are
usually ignored. Therefore, Karimi et al. [38] proposed a
CNN that incorporates a statistical shape model. The results
show that compared with the normal CNN method, the
proposed method has significant differences that achieve
improved performance. Guo et al. [39] proposed a new
hybrid model that combines the deep learning model and the
deformable model and matches the features extracted by the
deep learning model with the mask line in the label through
the sparse matching method. The DSC of this method is
87.1%. In addition, U-net uses the skip connection opera-
tion to connect each pair of the down-sampling layer and
the up-sampling layer, which makes the spatial information
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FIGURE 1. Schematic diagram of the deformation convolution operation
on the prostate area.

directly applied to much deeper layers and a more accu-
rate segmentation result [40]. Zhu et al [41]providedmethods
based on 3D volume space segmentation, and Millitari et al.
[42] used 3D U-Net to segment the vestibular and transi-
tional regions (the DSCs were 0.85 and 0.60, respectively).
Zabihollahy et al. used two parallel U-Nets to segment the
prostate and its area on T2W and ADC maps [43]. Zhu et al.
[44] also provided methods to automatically segment the
prostate using multiparameter MR images. Qian et al.
designed a new method of prostate cancer detection based
on MR images, which is recorded as ProCDet, experimental
results show that the ProCDet can obtain competitive detec-
tion performance [45]. Qian et al proposed a new prostate
segmentation network based on MR images, denoted as
ProSegNet, which integrated the spatial attention mechanism
and the channel attention mechanism to focus on the impor-
tant features while ignoring the invalid features [46].

Inspired by the above work, we explore a U-Net with
deformable operations, namely, Def-UNet, as a neural
network structure that can effectively handle the large
anatomical variability of the prostate through a deformable
convolution block.

II. THE PROPOSED ALGORITHM
To better utilize the performance of deformable convolution,
three different network deformable convolution architecture
tests are designed to determine the most effective deformable
convolution network model, and the selected image prepro-
cessing technology is used to form the best possible training
framework. The Dice coefficient, average relative absolute
volume difference, average Hausdorff distance, and average
surface distance of symmetrical positions are used as evalua-
tion indicators to verify and test the segmentation mask and
compare it with other state-of-the-art methods. Our goal is to
establish a new segmentation method for prostate magnetic
resonance images based on deep learning. Because the deep
neural network that is used is easily affected by the complex
and changeable background regions that account for a large
part of the input image volume, the segmentation accuracy
of the prostate region is often low. We use a cascaded multi-
level U-Net model. In this model, the original convolution

FIGURE 2. Basic U-Net structure. Basic U-Net structure. (A) Overview of
Convolution Neural Network Structure,(B) Downsampling part, (C) Bottom
part, (D) Upsampling part.

filter is used in the first convolution layer of the model,
and a deformed convolution layer is added to the subsequent
four convolution layers for segmentation and refinement. The
advantages of the proposed unit and deformable network
are described in the following subsections. It is expected
that the prostate segmentation accuracy will be improved
by adding a deformable convolution block. To explore how
deformable convolution blocks improve the segmentation
effect, deformable convolution blocks are added to the U-Net
network in three structure modes to conduct experiments, and
the results are analyzed.

A. OVERALL NETWORK MODEL
We propose the Def-UNet network structure based on the
basic U-Net structure. The basic U-Net network structure
diagram of this architecture is shown in Figure 2. The network
is composed of a downsampling part, a bottom part, and a
upsampling part.

Seven basic convolution blocks are set in the downsam-
pling part, and seven basic convolution blocks with the same
structure are set in the upsampling part. At the bottom of the
U-shaped network structure, a special convolution block con-
nects the downsampling part on the left and the upsampling
part on the right.

In the downsampling part, as shown in Figure 2, the input
image is guided to the first basic block, and then the output
feature map (convolution output) of the first basic block is fed
as the input to the next basic block. This process is repeated
seven times in the seven basic convolutional blocks. After
each basic block of the downsampling part, the maximum
convolution pooling operation [47] is used to reduce the size
of the feature map by half.

At the bottom of the U-shaped structure, there is a special
block connecting the downsampling and upsampling parts.
In the upsampling part, there is a deconvolution layer (3 × 3
convolution with a step size of 2). After the feature map is
deconvolved, the size of the image is doubled, and then a
basic convolution block is connected. The final segmented
image output by the network has the same size as the input
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image (256 × 256). Since multiple convolutional layers and
maximum pooling layers are continuously used in the down-
sampling process, the spatial information of some images is
lost, which in turn causes more information to be lost in the
feature maps of the subsequent upsampling part. To improve
the quality of the upsampling part of the feature map, a long
connection is used to extract the data from the downsampling
part and copy it to the upsampling part to participate in the
calculation to improve the quality of the upsampling feature
map. In the architecture proposed in this paper, each of the
seven basic convolutional blocks uses seven long connections
to copy the extracted feature maps to the upsampling part and
connect them with the deconvolved feature maps.

B. BASIC CONVOLUTION STRUCTURE
Each basic convolution block contains two convolution oper-
ation layers and two batch normalization layers. The purpose
of BN (Batch Normalization) is to normalize the output of
the network layer during training, and this normalization can
speed up the training of the network [48].

A small 3×3 convolution filter is used in each convolution
layer. By using a small convolution kernel, the network will
apply more nonlinear layers, which can reduce the number of
model parameters. The BN layer is used after each convolu-
tion operation layer, and relu is used as the activation function
during the convolution operation. The special convolution
block is used at the bottom of the U-shaped structure. The
difference between this block and the general convolution
block is that after the first convolution and BN operation,
a dropout layer is added. Dropout is an effective method
that can eliminate complexity. The training data of the com-
mon adaptation can also be used for regularization. Dropout
randomly deletes some features by omitting hidden layer
units with a specified probability. Here, we set the dropout
operation at the bottom of the U-shaped structure to control
overfitting.

In each basic convolution block, we use the shortcut
connection proposed by He. et al [49]. The shortcut con-
nection allows the connection operator to combine the input
feature map of the block with its output. This bypass con-
nection directly connects the current block. The input is
provided to the next block. In the last layer of our pro-
posed network, we apply the sigmoid function [50] as a
nonlinear output function. A sigmoid function is usually used
for 2-classification tasks. Our final segmented image is a
2-classification result. The black part is the background, and
the white part is the detected prostate cancer area.

C. DEFORMABLE CONVOLUTION STRUCTURE
In conventional convolutional layers, for a set network struc-
ture, the convolution size does not change, so the receptive
field does not change. However, it is not ideal to use the
same receptive field for different sized objects. In the field
of target segmentation of medical images, the lesion area
to be segmented usually has an irregular shape and size.

FIGURE 3. Schematic diagram of the deformable convolutional network
structure. (A) Basic U-Net structure, (B) Def-UNet1 structure,
(C) Def-UNet2 structure, and (D) Def-UNet3 structure.

Based on previous experience, target segmentation can only
be performed by increasing the depth of the network or using
image enhancement algorithms, and the image is sent to
the network. Rotational scaling allows the neural network
to increase its tolerance to image irregularities. However,
even though this cannot solve the large deformation problem
in the object space well and simultaneously increases the
training difficulty and training time, we add the deformable
convolution module to the classic medical image U-Net seg-
mentation network to obtain more accurate segmentation
results.

In the basic U-Net model, we add the deformable convo-
lution to different parts of the network to find the structure
with the best effect. Because the first downsampled con-
volution block is used to extract the basic features of the
image, the experiments prove that after adding the deformable
convolution to the first downsampled convolution block, the
network training time will become very long, but the training
result will not greatly improve. In addition, after multiple
convolution and downsampling operations, the size of the
feature map becomes very small, the feature information is
abstracted, and the meaning of using the deformable convo-
lution is not obvious. Therefore, considering the above two
factors comprehensively, a deformable convolution opera-
tion is added to the basic convolution block of the second,
third, fourth, and fifth layers. After confirming the approx-
imate location where the deformed convolution should be
added, we design 3 ways to add the deformed convolution
layer.

Def-UNet1 does not change the original convolution based
on the conventional U-Net but adds a deformed convolution
layer after performing two convolution operations in each
general convolution block. The Def-UNet2 structure makes
certain changes to the original convolution based on the
conventional U-Net. In each general convolution block, the
second convolution layer is directly replaced with a deformed
convolution, and the resulting feature map and convolution
are the input connections of the block. Def-UNet3 is based on
the Def-UNet1 model. The shortcut connections mentioned
above are added before and after the deformable convolu-
tional layer.
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III. EXPERIMENTAL MATERIALS AND METHODS
A. DESCRIPTION OF THE EXPERIMENTAL DATASET
The data set used in this study is divided into two parts, one
is the healthy prostate data set, and the other is the prostate
tumor data set.

In this study, network pre-training is conducted on the
healthy prostate segmentation dataset named PROMISE12.
The dataset was divided into two parts: a training set and
a test set. The training set contained 50 healthy volunteers’
T2W sequence magnetic resonance imaging data collected
by radiologists. The ground truth of the prostate area was
outlined, and the magnetic resonance imaging of each patient
contained approximately 20–40 pictures. The data of these
volunteers come from the magnetic resonance equipment
of different hospitals. Therefore, the data vary in terms of
voxel size, dynamic range, position, and field of view, and
there were different collection protocols and differences in
anatomical appearances. The test set part contained the MR
image data of 30 patients. Each patient had 63 T2W sequence
magnetic resonance images, and the ground truths of the
prostate areas were outlined by the radiologist.

MRI data of prostate tumor downloaded from I2CVB
(http://i2cvb.github.io/#prostate-data). Therewere 19 patients
in the prostate cancer magnetic resonance dataset: 17 were
confirmed to have prostate cancer (CaP) by biopsy, and 2 had
a negative biopsy. Of the above 17 patients, 12 had CaP in the
peripheral zone (PZ), 3 hadCaP in the central gland (CG), and
2 had aggressive CaP in the PZ andCG zones. An experienced
radiologist segmented the prostate and prostate cancer areas
on the images. We randomly selected images from 13 of
the 17 prostate cancer patients as the training set and the
remaining patients’ images as the test set.

B. DATA PREPROCESSING
The scanned images of the PROMISE12 dataset were pro-
vided in raw 3D image format. We processed the dataset
into many axial two-dimensional images. The image size
was adjusted to 256 × 256. Due to the large grayscale range
of the images in the dataset, to facilitate the training of
this experiment, the medical images in DICOM format were
converted into 256 grayscale images (pixel value 0–255) and
input to the network for training. Due to the large number of
images in the PROMISE12 dataset, the following strategies
were used to enhance the images: random rotation from 0 to
10 degrees, random movement along the x-axis and y-axis at
one-tenth of the corresponding image size, random zooming
by a factor ranging from 1 to 1.2, and random horizontal or
vertical rotation.

C. TRAINING PARAMETER SETTINGS
In our experiments, the training and testing of the model
were implemented using the Python language. All experi-
ments were performed on a Windows workstation equipped
with 16 GB of memory, an Intel Core i5 7500 CPU and
an NVIDIA GTX1060 graphics card with 6 GB of video

FIGURE 4. The plot of network model training loss and validation set loss.

memory. The training time of the CNN model was 40 h,
and it was accelerated by CuDNN. The network parameters
were randomly initialized, Adma optimizer was used, and the
method of adjusting the learning rate was adopted. The initial
learning rate was 0.001, and the learning rate was reduced to
0.0001 at 150 epoch. A total of 200 epoch was trained. The
weight of each convolution block structure in the networkwas
initialized randomly. The batch size was set to 16.

In the training process of the network structure, the healthy
prostate images were used as the input images, and the
stochastic gradient descent algorithm was used to update
the weights. Keras and TensorFlow backends were used to
implement the proposed method. We used the same train-
ing set to train the three deformable convolutional network
structures and all comparison algorithms. During the training
process, each epoch was verified using the validation set.
After all training was completed, the test set was sent to
the trained network for testing, and the test results were
summarized.

In the training of this model, Dice_loss is adopted as the
loss function, which is defined as:

Dice_loss=log
N∑
n=1

pnrn + ε

N∑
n=1

pn + rn + ε

+

N∑
n=1

(1 − pn) (1 − rn) + ε

N∑
n=1

2 − pn − rn + ε

 (1)

where pn represents the nth predicted value, rn represents
the corresponding true value, N is the number of all pixels,
and ε =1e-15 is a constant. The model is validated by the
validation set in each epoch. If the val_loss embodied in the
validation set is low, the model parameters are retained.

Figure 4 shows the plot of the initial learning rate of 0.01
and the training loss function using 0.001 as the learning rate
at 150 epochs, where the blue curve represents the validation
set loss and the green curve represents the training set loss.
It is observed from the graph that both the validation set
loss and the training set loss decrease significantly during
the training process. The accuracy of the network training
can meet the requirements when the network is trained for
200 epochs, and the training/validation loss is less than 0.13.
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FIGURE 5. Flowchart of the segmentation and reconstruction of magnetic
resonance images after fusion.

D. SEGMENTATION AND RECONSTRUCTION OF
MAGNETIC RESONANCE IMAGES AFTER FUSION
In this study, a multiparameter magnetic resonance image
prostate cancer segmentation framework based on U-Net was
proposed. First, the Laplacian pyramid was used to fuse the
multiparameter magnetic resonance images into grayscale
images, and then the fused grayscale images were sent to
U-Net for training. The training network used the trained
model in Section III-C and the transfer learning method to
continue training on prostate cancer images. After all training
was completed, the prostate cancer test set was tested, and
the test results were summarized. Figure 5 shows that the
entire process is mainly divided into three steps: fusion, seg-
mentation, and reconstruction. Specifically, in the fusion step,
the medical image fusion algorithm [51] was used to fuse
T2W and ADC sequence images into one image, and con-
volutional neural network model training was used to extract
features from T2W and ADC sequence magnetic resonance
images. Then, the effective aggregation weight to fuse these
representations was predicted through the network. Different
types of magnetic resonance data were fused for downstream
tasks, and the extraction of effective information from the
multiparameter images was completed. The deformable con-
volutional neural network structure proposed in this chapter
was used to segment the fused images. The combined fused
dual-parameter magnetic resonance images could be used
as deep learning inputs. The image segmentation network
designed for the prostate area will be output to detect cancer
in images. As a result, the cancer tissue was segmented and
labeled. The entire process is shown in Figure 5. The output
result is binary images. The area with a pixel value of 1 (the
white part in the figure) represents the prostate cancer area,
and the area with a pixel value of 0 (the black part in the
figure) represents no prostate cancer tissue as background.

E. OBJECTIVE EVALUATION INDICES
In this experiment, the DSC, RVD, ASD, H-distance and
other indicators were used to evaluate the image segmentation
n results.

The basic evaluation standard of the Dice similarity coef-
ficient (DSC), which is commonly used in the segmentation
process, is a measure of ensemble similarity. The best value
is 1, and the worst value is 0. The formula is as follows:

DSC =
2 |SA ∩ SB|
|SA| + |SB|

(2)

where |SA| is the number of prostate target pixels from the
manual segmentation of the ground truth, and |SB| is the num-
ber of prostate pixels in the segmentation result of the
proposed method.

The calculation method of the absolute volume difference
divides the total volume of the segmented prostate image
mask by the real volume of the ground truth. Then, 1 is
subtracted from this number, and the result is multiplied by
100 to express the result as a percentage:

RVD =

(
|SA| − |SB|

|SB|

)
× 100 (3)

The Hausdorff distance is a measure that describes the degree
of similarity between two sets of points. It defines the distance
between two sets of points. Suppose there are two sets of
A and B. The Hausdorff distance between sets of points is
defined as:

h(A,B) = max(a ∈ A) {min(b ∈ B) ∥a− b∥} (4)

h(B,A) = max(b ∈ B) {min(a ∈ A) ∥b− a∥} (5)

H (A,B) = max(h(A,B), h(B,A)) (6)

Here, the maximum distance ||ai−bj||, from each point a_i in
point set A to point b_j in set B closest to this point are sorted
and represented as h(A, B). The meaning of the value of
h(A, B) is similar to that of h(B, A). The bidirectional Haus-
dorff distance H(A, B) is the maximum of the unidirectional
distances h(A, B) and h(B,A). It measures the maximum
degree of mismatch between the manually segmented ground
truth and the prostate region in the segmentation result.

The average symmetric surface distance (ASD) is given as:

ASD =

(
∑

a∈SA,b∈SB min ∥a− b∥ +
∑

a∈SA,b∈SB min ∥b− a∥)

|SA| + |SB|
(7)

IV. RESULTS
A. RESULTS OF PROSTATE SEGMENTATION
To evaluate the performance of the three models we designed,
we compared our method with the most common segmen-
tation methods. We chose U-Net [28], Dense U-Net [52],
3D-FCN [53], 3D-VNet [54], Attention U-Net [55], and the
GAN [56]. For a fair comparison, all the methods were repro-
duced. Through visual comparisonwithmanual segmentation
contours, the performance of the proposed deep learning
method was qualitatively evaluated. Figure 6 shows the pre-
dicted segmentation results. Several representative photos
are selected in the results. We compared U-Net, 3D-V-Net,
3D-FCN and attention U-Net. Compared with the tradi-
tional segmentation model, the performance is significantly
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FIGURE 6. Comparison of prostate segmentation results. (a) U-Net (b) Dense U-Net (c) 3D-FCN (d) 3D-VNet (e) Attention U-Net (f) GAN.(g) ef-Unet1
(h) Def-Unet2 (i) Def-Unet3.

TABLE 1. Objective evaluation results of prostate segmentation.

improved when using our model. This method can obtain
more accurate partition boundaries and shapes.

Overall, after adding the deformation convolution, the
accuracy of prostate region segmentation is improved. For
example, in Img23, the contour size and shape of the prostate
region segmented by the Def-UNet1 model in this article
are the most similar to those of the ground truth. In the
Def-UNet2 and Def-UNet3 models, the lower right parts of
the image are quite different from the ground truth. In sum-
mary, Img23 contains an irregularly shaped area that is diffi-
cult to segment. The contour of the prostate area of the tumor

area segmented by the Def-UNet1 model is roughly the same
as the ground truth, but the size is reduced.

The Def-UNet2 and Def-UNet3 models can segment a
relatively small area, but the contour shape is quite differ-
ent from the ground truth. The prostate area in Img12 is a
small irregular triangle-like area. OurDef-UNet1, Def-UNet2
and Def-UNet3 models all segment a triangle-like region.
In Img113, the prostate area is a semicircular area with a
defect in the upper part. All comparisonmethods can segment
the prostate area better, but the Def-UNet1 method in this
article is more refined, and the upper defect can also be
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TABLE 2. Objective evaluation results of prostate cancer region
segmentation.

FIGURE 7. Schematic diagram of the segmentation results of the same
anatomical structure of patient 3 with ADC sequence image (A), T2W
image (B), and fusion image (C). The red outline in the figure is the
boundary of the groundtruth area marked by the doctor, and the green
outline is the boundary of the results of the segmented prostate tumor
area.

FIGURE 8. Schematic diagram of the segmentation results of the same
anatomical structure of patient 4 with ADC sequence image (A), T2W
image (B), and fusion image (C).

segmented well. The prostate area in Img53 is a regular cir-
cular area. Almost all comparison methods can segment the
lesion area very well. In summary, this experiment proves that
in irregular prostate region segmentation, only the detection
result of our method is close to the real situation of the ground
truth.

The proposed method can be used because we have added
deformation convolution to better perceive the irregularity of
the region. The contour of the segmented prostate area ismore
accurate and closer to the irregular boundary drawn by the
ground truth. These results can explain and promote the use of
the convolutional neural network to more accurately identify
the prostate cancer area.

The detailed comparison results of the objective evalua-
tion indicators are shown in Table 1. The results show that
our proposed model can achieve better results, especially in
terms of accuracy, precision and DSC, compared with current
mainstream prostate segmentation methods.

FIGURE 9. A three-dimensional reconstruction of the segmented prostate
cancer region in patient 6.

Under similar conditions, the average DSC result of our
model on the validation set can reach 87.34, which is signifi-
cantly better than those of other advancedmethods. As shown
in the table, the proposed Def-UNet1 achieves the maximum
values in terms of the accuracy and Dice coefficient. Regard-
ing the degree, although the Mean Hass Dist is not the best
result, it is close to the optimal value, which also explains why
the GAN method can learn more spatial edge information
through the 3-dimensional space. Furthermore, Def-UNet3
can better improve the performance regarding the absolute
volume difference compared with the proposed Def-UNet1.

B. SEGMENTATION AND RECONSTRUCTION RESULTS OF
PROSTATE CANCER
In order to improve the segmentation accuracy of prostate
cancer regions, this paper proposes to fuse magnetic res-
onance images of T2W sequences and ADC sequences as
shown in Figure 5, and then send these fusion images as input
into Def-Unet network after pretraining in promise12 prostate
magnetic resonance image data set for retraining. In addition,
the Def-Unet convolutional neural network structure after
pre-training was used to train the separate T2W and ADC
sequence images respectively, and the segmentation results
were compared with the fusion image segmentation, so as to
explore whether the fusion magnetic resonance image as the
input can achieve a higher segmentation accuracy than the
single sequence image training. Figure 7 shows the results of
prostate cancer segmentation for patient 3.

The red frame represents the ground truth boundary
marked by the radiologist, and the green part is the bound-
ary of the prostate cancer region segmented by the deep
learning algorithm. The overall segmentation effect of the
three different images is acceptable, and the convolutional
neural network can achieve a good effect through training and
learning. The difference between the green edge and the red
edge is not large, but the segmentation effect of the fusion
image shown in Figure 7C is the best.

Figure 8 shows the results of prostate cancer segmentation
for patient 4. The figure shows that the overall segmentation
effect is not as good as that of patient 3. The boundary of
the green segmentation area is smaller than the boundary of
the red ground truth, and the fusion image in 8C improves the
segmentation accuracy of the prostate cancer area.
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In these steps, T2W, ADC, and their fusion images were
trained once, and their respective DSC averages were calcu-
lated. The three groups of neural networks were trained to
obtain the average DSC. Table 2 shows that the fusion and
U-Net network training designed in the article has a good
segmentation effect for prostate cancer. The segmentation
accuracy of the prostate tumor for the T2W sequence is only
0.5969, and the segmentation accuracy of the ADC sequence
is approximately 0.8205. The segmentation accuracy using
fusion images can be improved to approximately 0.92.

After obtaining the segmentation results of the prostate
cancer area, the layer thickness information in the origi-
nal MRI DICOM file (i.e., the sampling interval between
the two images) was read, and then the medical image
three-dimensional reconstruction software (AIMIS3D soft-
ware is developed by Xi’an Key Laboratory of Big Data
and Visual Intelligence Technology, Xidian University. The
software download website is www.cvnis.net/caimi/) was
used to reconstruct the segmentation results, and the three-
dimensional structure of the prostate was generated. The
model can be rotated, zoomed, and measured arbitrarily in
the software, and the model can also be generated into an STL
file for 3D printing of the physical model.

V. DISCUSSION
Generally, U-Net includes batch normalization and cascad-
ing.When processing image details by deepening the network
structure, more accurate segmentation results are expected
to be produced. With the development of technology, some
image segmentation algorithms based on three-dimensional
space, such as 3D-VNet and 3D-FCN, were introduced.
It is expected that more accurate segmentation in three-
dimensional space can be obtained through learning the three-
dimensional space, but this will increase the amount of data
and the training time. In recent years, some strategically
improved algorithms for U-Net segmentation, such as adding
an attention mechanism, were also proposed. The attention
mechanism in deep learning focuses the attention of the
network on important or key points in the U-Net segmen-
tation process while ignoring other unimportant points and
information to improve segmentation accuracy. By using
the idea of a deformable convolutional network, the tra-
ditional U-Net network can achieve a better segmentation
effect by training two-dimensional images, which is even
better than that of the segmentation algorithm based on three-
dimensional image training. The possible reason is the train-
ing of three-dimensional images, which requires a longer
training time and more training image data. In this work,
we propose a novel network architecture inspired by U-Net
and a deformable convolutional network.We propose a fixed-
point deformable U-Net network (Def-UNet) to address the
problem of the large variability in the anatomical structure
of the prostate and improve the selection of the location of
feature pixels in U-Net. Our method combines the advantages
of these two networks to segment the prostate and its regions.
Def-UNet appropriately offsets the sampling position of the

standard filter in the convolution based on the deformed
convolution, which makes the sampling grid more effective
for the irregular area of the prostate. The offset is obtained
from the input image through an additional convolutional
layer. Deformable U-Net can handle spatial transformation
in a simple and effective approach and improve the geometric
transformation modeling ability of U-Net.

Judging from the visual effect of the results of prostate
cancer segmentation, the segmentation effect of the prostate
cancer area in Figure 8 is better because its staging is rela-
tively late and the tumor tissue is relatively large. Regardless
of whether an ADC image or T2W image is used, the tumor
area shows a low signal and is significantly different from
the surrounding normal tissues. For this type of tumor area
with obvious characteristics, a single MRI sequence can be
used to achieve a good segmentation effect, but the use of
fusion will improve the accuracy of the edge of the segmented
area of the image. In Figure 7, the tumor is located in the
area between the prostate and the rectum. There are more
complex features in the prostate and rectum regions of the
image. Moreover, the tumor has irregular edges and is not as
large as that in Figure 8. This is an accurate segmentation
of the tumor and brings a certain challenge. The prostate
tumor regions segmented in T2W and ADC images were both
smaller than the ground truth. It may be that the junction
between the tumor and normal tissue is not obvious, and
the deep learning network has not extracted suitable feature
information. Using the fusion image for segmentation is
equivalent to extracting and fusing the useful information of
the two images, which can enable the network to obtain better
features during the training process. The segmentation results
show that compared to the separate T2W sequence or ADC
sequence, the segmentation performed after fusion greatly
improved the results, but the overall segmentation area was
still smaller than the ground truth. Figure 7 shows that the
segmentation effect near the rectum is not good. In general,
the segmentation accuracy of prostate cancer using the fused
image will be greater than that of a separate sequence of
magnetic resonance images in the segmentation of small
tumors. In addition, compared with the normal prostate tissue
area, the prostate tumor area has a more complex anatomical
structure, more variable position, and more irregular shape.
Therefore, compared with prostate segmentation in the objec-
tive evaluation standard results of image segmentation, the
overall average prostate tumor segmentation score is lower
than the healthy prostate tissue segmentation score.

The research in this article also has some limitations.
To make this method more universal and robust, the method
needs to be further verified in multicenter MR image experi-
ments with different anatomical regions, image resolutions or
image quality. It is expected that a more robust segmentation
network of prostate cancer lesion areas will be developed.
Another limitation is that the research in this article mainly
focuses on a single T2W and ADC sequence MR image, and
the current use of multiparameter MR sequence images to
diagnose prostate cancer has become increasingly common.
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In the future, we will seek to train effective prostate cancer
segmentation algorithms using different sequences, such as
DCE sequences and MRSI sequences. In future research, the
participation of clinicians will also be considered, and tar-
geted improvements will be made to the image segmentation
algorithm under the guidance of urologists.

VI. CONCLUSION
Inspired by the current popular deep learning models, three
Def-UNet models, which are U-Net-based MRI prostate seg-
mentation network structures, were proposed. After training
and cross-validation on the PROMISE12 training dataset,
we selected an optimal Def-UNet model and implemented
prostate segmentation based on the combination of the con-
ventional U-Net and a convolutional deformation network
on the PROMISE12 training dataset to form a new tech-
nology. The experimental results proved that the use of the
deformable convolution can improve the performance of
U-Net and achieve a good prostate MRI segmentation effect.
The above algorithmwas also used to segment prostate cancer
images. A convolutional neural network was applied to the
multiparameter magnetic resonance images to normalize the
images using a normalizationmethod. The fused images were
used as the input of the training and sent to Def-UNet for
training, and the test set images were used for testing. The
experimental results showed that this method can effectively
segment the prostate cancer area from MR images. The self-
designed three-dimensional reconstruction software recon-
structed the two-dimensional prostate segmentation results
into a three-dimensional model and visually displayed the
structure of the tumor area.
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