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ABSTRACT This study proposes an available transfer capability (ATC) assessment approach in an intraday
market that would enable wind energy participants to raise their level of integration without exposing them
to high risk. The presented methodology allows the transmission system operator (TSO) to assess ATC near
to the real state while considering voltage stability concerns as well as the uncertainties of the forecasted load
and wind power. The proposed formulation is designed so that the existing VAR sources are appropriately
exploited during the ATC assessment to maximize its anticipated value and boost the transaction between
various zones. To alleviate the complexity of analyzing N-1 contingencies in the ATC estimation, a linear
sensitivity technique is applied for ranking the most severe contingencies to be examined carefully. A two-
level hybrid algorithm using the primal-dual interior point method (PDIPM) and an improved grey wolf
optimizer (IGWO) is suggested for solving the problem. The performance of the proposed approach has been
evaluated by its application on IEEE 30- reliability test system (RTS). The outcomes confirm the viability
of the proposed approach for optimizing ATC value for various transactions through the best use of installed
VAR devices, considering different locations of wind farms. The obtained findings also demonstrate the
effectiveness of the suggested method for determining the most severe contingency associated with each
scenario under consideration.

INDEX TERMS Available transfer capability (ATC), improved grey wolf optimizer (IGWO), intraday
market, reactive power dispatch, wind power generation.

I. INTRODUCTION
Recently, the integration of wind energy into electrical energy
systems has increased considerably due to the economic
and environmental benefits relative to conventional energy
sources. However, because of the uncertainty and intermit-
tent nature of wind energy output, large-scale wind energy
integration has an obvious impact on the performance and
stability of the power systems [1]. Several factors limit the
increase of the penetration level of wind energy, particularly
in the deregulated systems. One such substantial factor that
should be precisely estimated is ATC to ensure a reliable
transfer of renewable energy to remote regions. ATC is the
additional transfer capability that can be transferred through

The associate editor coordinating the review of this manuscript and

approving it for publication was Ton Duc Do .

a transmission line above the committed uses without viola-
tion of operational limits as defined by the North American
Electric Reliability Council (NERC) [2]. To keep the power
system secure and ensure smooth electric energy transactions,
large-scale wind energy integration necessitates a thorough
analysis of ATC evaluation. Several studies in the literature
review examine ATC value, and the proposed computation
approaches are primarily divided into deterministic and prob-
abilistic methods. Related efforts employing deterministic
approaches such as the continuation power flowmethod, opti-
mal power flow methods, repetition power flow method, and
linear approximation methods are discussed in [3], [4], [5],
[6], [7], [8], [9], and [10]. Recently, because various power
system factors are unpredictable, probabilistic techniques are
increasingly being employed to estimate the statistical char-
acteristics of ATC by accounting for uncertainties such as
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load fluctuation, generator dispatch, transmission line inter-
ruption, and renewable energy intermittency. For instance,
ATC is calculated considering the system uncertainty using
Monte Carlo simulation in [11] and bootstrap algorithms in
[12]. In [13], the authors outline a comprehensive review
of all the different probabilistic techniques which are used
for ATC calculation. Prior researches [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29] have placed a greater emphasis on the influence of wind
uncertainty on ATC evaluations as wind energy becomes
increasingly integrated. In [14], ATC is evaluated based on an
interval optimization algorithm considering the specific range
of wind power uncertainty. A joint optimization approach
for transmission expansion with wind power to enhance
ATC is discussed in [15]. A probabilistic approach based
on canonical low-rank approximation is proposed in [16] to
evaluate ATC considering the uncertainties of wind power,
load, and outage of transmission lines. In [17], the authors
used the AC power distribution factor method to evaluate
ATC, considering the reactive capability curve of the wind
turbine. In [18], the author used graph theory approach to
investigate the influence of incorporating capacity benefit
margin in ATC assessment with considering wind energy. In
[19], a bi-level optimization is proposed in which the upper
level is formulated for the ATC evaluation and the lower level
for economic dispatch. Optimal power flow technique is pro-
posed in [20] to evaluate probabilistic ATC with considering
wind and load side uncertainty. ATC evaluation in hybrid
integrated systemwith consideringwind uncertainty based on
interval optimization technique is investigated in [21]. In [22],
the authors propose an ATC probabilistic evaluation based
on optimality decomposition approach and Latin Hypercube
sampling technique with incorporating wind energy. ATC
is calculated for online application using fast calculation
technique in [23]. In [24], an average transmission conges-
tion distribution factor method is proposed to determine the
optimal location of a wind farm for ATC enhancement. ATC
evaluation considering the uncertainty of wind energy based
on relative distance measure arithmetic approach is presented
in [25]. The solutions discussed above [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], and [25] allow incorpo-
rating wind power into ATC evaluation considerably easier.
However, they only evaluate ATC in terms of transmission
line (TL)thermal limits and voltage constraints, while over-
looking the voltage stability margin that could be violated
in the event of unscheduled outages, putting the system’s
security at risk.

Due to the complexity and computational burden, only a
few research studies [26], [27], [28], [29] focused on the
voltage stability issue in ATC assessment with wind energy
integration. A day ahead dynamic ATC evaluation based on
the Dragon Fly optimization algorithm considering high pen-
etration of wind energy is proposed in [26]. ATC evaluation
based on the risk approach with wind integration is proposed
in [27]. In [28], ATC is evaluated using the interior point
method while considering wind speed correlation based on

Copula theory, rank correlation coefficient, and Monte Carlo
simulation methods. In [29], ATC is calculated for online
applications using the continuation power flow method.

Despite the above-mentioned significant Despite the
above-mentioned significant contributions of the research
studies [25], [26], [27], [28] which realized the necessity of
taking the voltage stability issue into account in ATC assess-
ments in the presence of wind energy, some crucial issues
concerning wind power variability, contingency analysis and
the effective utilization of the installed VAR devices have
been overlooked and still need to be resolved. The installed
VAR sources that belong to TSO have a significant effect
on enhancing ATC value and ensuring voltage security. The
determination of these devices’ appropriate settings concur-
rently with the active power generation for the unexpected
transition states of the system, which offers more practical
solutions, has been disregarded in the preceding studies.
Implementing appropriate VAR device settings as a preven-
tive control for each individual operating period is a crucial
task for the TSO in order to protect the system against any
unanticipated events, such as T.L. contingency, wind power
variability, and load uncertainty. Moreover, by appropriately
utilizing its VAR devices, TSO can ensure precise ATC
assessment and hence improve transactions across various
sites. Therefore, it is essential to develop a new approach
that effectively makes use of TSO’ VAR devices to maintain
system security and improve ATC in the presence of wind
power.

This paper presents an ATC assessment methodology in
an intraday market that would permit wind energy providers
to improve their amount of integration with minimal risk.
The current study varies from prior methods in that it seeks
to properly utilize the installed VAR sources that belong to
TSO for enhancing ATC value while considering the voltage
stability issue as well as the uncertainties of both load demand
and wind power. Since TSO possesses these devices and their
control costs are inexpensive, the operator will make proper
utilization of them to increase anticipated ATC. In this way,
the network operator will be able to conduct, in a secure
manner, more precise ATC assessment and consequently
enhance transaction between different areas. Additionally,
the proposed methodology gives the possibility to specify
the most severe contingencies relevant for each scenario,
which is vital for TSO to take into account when scheduling
any transaction to endure a number of unexpected events.
A two-stage architecture is proposed to achieve this goal,
with the first stage determining appropriate VAR settings
that improve ATC value a few hours before the real state
and the second stage focusing on ATC evaluation close to
the delivery time to enhance the precision of the final ATC
evaluation. The proposed method incorporates the stochastic
nature of load and wind power generation using a scenario-
based approach, in which load and wind uncertainties are
represented by normal and Weibull probability distribution
functions, respectively. As the problem size gets very large
due to the inclusion of voltage stability concerns and wind
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power uncertainties in the proposed formulation, a linear
sensitivity technique is utilized to alleviate the computational
burden of ATC evaluation.

The contributions of this paper can be summarized as
follows:
1- Developing a framework for evaluating ATC value close

to the moment of delivery in an intraday market that
would permit higher levels of wind energy integration
with less risk.

2- Achieving ATC enhancement by appropriately utilizing
installed VAR sources while considering voltage stabil-
ity issue as well as load and wind power scenarios in the
presented problem formulation.

3- Constructing a two-level hybrid algorithm using the
PDIPM and an IGWO to determine the appropriate
VAR dispatch that maximizes the projected ATC and
subsequently improves the trade across various zones.

II. RELEVANCE OF ATC ASSESSMENT CONSIDERING
LOAD AND WIND POWER UNCERTAINTIES
ATC is a crucial component in the deregulated system that
the system operators must carefully assess to ensure market
transparency as well as the reliability and security of the
system. The precise estimation of power generated at the
source area and power used at the sink area is necessary for
the ATC’s accurate evaluation. However, the rapid expansion
of variable energy sources in several electrical markets has
resulted in less predictable generation patterns. In this situa-
tion, the placement of generation on the power system with
large-scale wind farms becomes uncertain, which may have a
substantial impact on the accuracy of theATC value estimated
several hours ahead of the real state. These uncertainties can
be reduced bymore precise projectionsmade closer to the real
state of operation. Currently, several European countries have
established continuous intraday markets that allow energy to
be traded until shortly prior to the delivery time. For instance,
in Austria, Belgium, and Germany, a quarter-hourly products
are traded continuously in an intraday market. Energy can
be traded up to five minutes before delivery, providing some
flexibility to market participants that deal with both renew-
able and conventional energy [30]. The intraday markets
give renewable energy providers the opportunity to minimize
their risk, which makes it possible to integrate intermittent
renewable energy sources more economically and in greater
quantities while enhancing system security. In such circum-
stances, since the ATC’s information forms the basis for
establishing purchase and sale contracts, it is essential to pre-
cisely assess its value close to the real state to ensure efficient
implementation of the market transactions. To achieve the
most accurate value of ATC, it is of the essence to simulate
the uncertainties of wind power outputs and loads near to the
delivery time in the ATC calculation as given below.

A. ATC DEFINITION
ATC is defined by NERC as the indication of the remaining
physical transmission network capability for further power

transactions over already committed uses. The mathematical
formulation for ATC is usually expressed as:

ATC = TTC − ETC − (CBM + TRM) (1)

where TTC defines the maximum transfer capability of the
transmission network without violating any of a specific set
of defined pre- and post-contingency constraints. ETC rep-
resents the amount of current power that can be transferred.
TRM is characterized by the amount of transmission transfer
capacity required to ensure that the interconnected transmis-
sion network runs securely and reliably under a reasonable
range of uncertainties in system conditions. CBM is defined
as the applicable margin that load-serving entities reserve to
ensure access to generation from interconnected systems to
meet generation reliability requirements [2]. In practice, the
transfer capability margins, TRM and CBM, are typically
treated as fixed values or percentages of TTC to satisfy
reliability requirements. In this study, because the proposed
formulation incorporates a number of factors, including load
and wind uncertainties, system contingencies, as well as con-
cerns about voltage stability, the problemwill be complicated.
Therefore, for the sake of clarity, the impact of these two
margins will not be considered as it is in [14] and [19].
This implies that the ATC value only equals the total transfer
capability less the existing power of the transmission line.

B. WIND POWER MODELING
In essence, wind speed is the main factor influencing the
power output of the wind farm. However, the precise pre-
diction of wind speed is a difficult task because it typically
exhibits high variability, both geographically and temporally.
According to earlier studies, the variance of wind speed
at a specific location is typically described by the Weibull
distribution’s probability function, which accurately captures
the stochastic nature of wind speed. As a result, the Weibull
distribution is employed in this paper tomodel the variation in
wind speed. This representation allows for the discretization
of the PDF to provide a large number of scenarios for each
study interval, which can be used to account for the unpre-
dictable wind power output. The probability density function
(PDF) of the Weibull distribution can be represented by:

f (v) =
k
c
(
v
c
)k−1exp(−(

v
c
)k ) (2)

where v is the wind speed, k is the shape parameter and c is
the scale parameter. Based on the methodology described in
[31] and [32], the PDF of the wind speed is segmented into
several intervals, each of which corresponds to a different
scenario. The probabilities of scenarios corresponding to their
estimated speeds are assessed as given in [31]. Then, the wind
turbine’s speed-power curve, which characterizes the rela-
tionship between wind speed and output power, is employed
to calculate the wind power output from the value of wind
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speed according to the following equation:

p (v) =


0 v ≤ vci, v ≥ vco

pr
v− vci
vr − vci

vci < v < vr

pr vr ≤ v ≤ vco

(3)

where vci, vco, vr are the cut-in, cut-out, and rated speed of the
wind turbine, respectively. pr is the rated power of the wind
turbine. It is important to note that the doubly fed induction
generator (DFIG) is implemented as a variable speed wind
generator in this study since it has the ability to control active,
reactive power, and voltage, and therefore, it can be modeled
as a PV or PQ bus. In this paper, the wind farm is modeled
as a PQ bus with a constant power factor as a probabilistic
negative load [33].

C. LOAD UNCERTAINTY MODELING
Based on historical data, the hourly forecasted load of the
power system is assumed to be defined by the existing fore-
casting tools. The expected load errors that represent the
uncertainties of the load can be described using a normal
distribution with a specified mean value µl and standard
deviation σl . The PDF of the generated normal distribution is
then separated into specified intervals, each of which repre-
sents a certain scenario of the load. Each scenario’s likelihood
associated with a certain anticipated load Pl is assessed by the
following equation.

πd
l =

∫ Pmaxl

Plmin

1√
2πσ 2

l

exp(−
(Pl − µl)2

2σ 2
l

)dPl (4)

where Pminl and Pmaxl are the limits of d-th load scenario.
Accordingly, for a more precise ATC assessment, a

scenario-based approach that combines the uncertainties of
the wind power and load will be employed in the proposed
approach [31]. For instance, if the normal PDF of load is
split into three segments with scenario probabilities [ π1

l , π
2
l ,

π3
l ], and the Weibull PDF of wind speed is divided into five

segments with scenario probabilities [ π1
w, π

s2
w , π3

w, π
4
w, π5

w],
then there are a total of 15 scenarios under consideration, and
their pertinent probabilities are as follows:

[π1
wπ1

l , π
1
wπ2

l , π
1
wπ3

w, . . . . . . . . . . . . , π5
wπ1

l , π
5
wπ2

l , π
5
wπ3

l ]

It should be noted that a key issue with our formulation is
that the problem’s size and complexity have grown greatly
in comparison to earlier formulations. This is because sig-
nificant factors such as load and wind uncertainty, N-1 con-
tingencies, and concerns about voltage stability have been
considered. Therefore, for the sake of simplicity, we assume
that the variability of the wind speed and load is constant,
and the specified mean and standard deviation relevant to
the wind speed and load demand are employed to represent
merely their uncertainties, as given above.

FIGURE 1. Proposed method.

III. PROPOSED METHOD
This section focuses on the suggested ATC assessment and
improvement method that takes into account the integration
of the wind power and load scenarios described in the pre-
vious section. The proposed approach is split into two layers
that can be summarized in Fig. 1. At the first level, we assume
that the wind power producers are integrated as a part of a
continuous intraday market and that the system operator is
supposed to evaluate ATC a lead time before the delivery
time. Depending on the rules of the market, this lead time
could be from an hour to a few hours prior to the actual state.
At this level, since the system operators are eager to precisely
assess and maximize the power transfer between different
areas, all of the system’s available existing controllers are
employed to achieve this purpose. Since the VAR dispatch
is one of the primary techniques contributing to the enhance-
ment of the ATC and system security, it has been employed
to determine the adequate settings of the VAR devices at the
first level. The VAR settings will be established and regarded
as fixed for a certain period specified by the system operators.
For instance, if the ATC is being evaluated four hours ahead
of the delivery time, the load will be forecasted and treated
as fixed for a specific interval that will be decided by the
system operator over the course of the following four hours.
This interval could be an hour, a half hour, or a quarter-hour
depending on how closely the first stage has been completed
and the required accuracy set by the system operator. The
optimal VAR dispatch will be carried out at each particular
interval, considering the previous wind power scenarios with
the goal of maximizing ATC. It is worth mentioning that the
first stage is solved using a hybrid approach that incorporates
IGWO and the conventional PDIPM as will be shown in
section V. Using the VAR dispatch obtained in this stage,
ATC will be assessed very close to the delivery time ‘‘an
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hour to 15 minutes before real-time’’ in the second level.
In the second stage, an integration of load and wind scenar-
ios at each time interval is employed for ATC evaluation.
It should be emphasized that even though at this stage only
the forecasted load can be employed and simulated at each
interval, integrating load and wind power scenarios greatly
enhances the precision of the final ATC assessment. The
problem at the second level is formulated as a large-scale
nonlinear programming problemwith the goal of maximizing
probabilistic ATC, and it has been solved using the interior
point approach, as will be described in section V.

IV. PROBLEM FORMULATION
In the following subsections, the detailed problem formula-
tion for the first and second stages is provided.

A. FIRST-LEVEL FORMULATION
At this stage, the system’s available existing controllers that
represent the decision variables are utilized to maximize ATC
for a set of wind power scenarios and different load levels.
The decision variables include the generator active power
of the conventional source as well as VAR control devices,
including SVCs, the generators’ reactive power, LTC trans-
former taps, and shunt capacitors. For each load level, the
problem is stated as an optimization problem given by Eq. (5)
to Eq. (7), where its objective function is the maximization of
the anticipated ATC, which is represented by the expected
load margin associated with the wind power scenarios as
given by Eq. (5). The objective function is achieved while sat-
isfying several operational constraints representing extended
power flow Eq. (6), and operational limits of the state and
control variables as defined by Eq. (7). The objective function
and operational constraints can be expressed as follows:

Maximize ATC = min(−(
∑ns

s=1
π s
wλs)) (5)

Subject to ys0 + λsysd − g
(
xs, usg, u

s
v

)
= 0, s = 1, 2, . . . ns

(6)

hmin ≤ h
(
xs, usg, u

s
v

)
≤ hmax , s = 1, 2, . . . ns

(7)

where superscript s = (1,2. . . , ns) indicates the wind power
scenario, λ is the scalar parameter representing load power
margin, π s

w represents the probability of s-th wind power
scenario, ns is the number of wind power scenarios, y0 is
the mismatch vector, yd is the load direction vector, g stands
for the power flow equations, x is the state variables vector
including voltagemagnitudes of load buses and loading of the
transmission line Pij from bus i to bus j, ug is the generator
control variables vector comprising real and reactive power
of generator buses, uv is the VAR control devices vector con-
sisting of shunt capacitors, transformer tap changer, SVCs,
and extra.

Note that the effect of wind power generation (active and
reactive power) is taken into consideration in the load flow

constraints as in Eq. (6), by integrating their values into
the mismatch vector y0. Furthermore, we assume that VAR
devices uv that are already present in the systems will be dis-
patched and considered fixed in the second stage. Since these
devices belong to TSO and their control costs are very cheap,
they will be appropriately utilized by TSO to maximize the
expected ATC.

1) RANKING BRANCH OUTAGE CONTINGENCIES
An ATC estimate requires analyzing the uncertainties regard-
ing the system contingencies, which include the probabilistic
outages of generators and transmission lines. In this study,
line outage will be merely considered in the ATC evaluation,
as in several previous studies. Furthermore, for a more con-
servative decision for TSO, the probability of a line outage is
assumed to be 100% in this paper, as it was in most earlier
studies on ATC evaluation. As the ATC estimation needs to
analyze N-1 contingencies, it will be a computational burden,
especially for large power system simulation. The inclusion
of wind power scenarios in the proposed formulation signifi-
cantly increases the size of the problem, and hence the amount
of required computational effort. Therefore, ranking contin-
gencies to quickly identify the ones that have the most serious
impact on the electrical power system’s voltage stability and
ATC value is a crucial issue to make computing time reason-
able. In this paper, the sensitivity-based approach introduced
in [34] and [35] that evaluates rapidly the load power margins
for outage contingencies is carried out to alleviate the com-
putational time concern. The post-fault load power margin
value is used for ranking the most severe contingencies since
it is widely accepted as the most informative index, directly
representing the degree of voltage stability problem. In order
to evaluate the post-fault load power margin for a specific
contingency, two main steps should be executed. First, pre-
contingency load power margin, bus voltages, and left/right
eigenvectors corresponding to the minimum eigenvalue at
the nose point should be determined. The point of collapse
method or singular value decomposition (SVD) technique can
be used to calculate these values for each wind scenario. This
calculation is performed just once and is regarded as a prime
computation. This implies that the obtained values at the
pre-contingency will commonly be used as fixed values for
all of the post-contingencies associated with each scenario.
To achieve that, the set of equations characterizing the condi-
tions for the saddle-node bifurcation in the post-contingency
case are linearized around the pre-fault bifurcation point. The
conditions of saddle-node bifurcation for each wind scenario
are given as follows:

f
(
xc, ucg, u

c
v, p

)
= yo+(λc)yd − g

(
xc, ucg, u

c
v, p

)
= 0

(8)

wT gx
(
xc, ucg, u

c
v, p

)
= 0, ||w|| ̸= 0 (9)

or

gx
(
xc, ucg, u

c
v, p

)
η = 0, ||η|| ̸= 0 (10)
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where superscript c indicates the collapse point, gx is the
power flow Jacobian matrix, w is the left eigenvector, η is
the right eigenvector. To characterize branch outages, each
branch admittance is expressed using the contingency param-
eter p as follows:

(1 − pk )yij

where yij depicts the admittance of line to be faulted, pk =

0 denotes the pre-fault situation and pk = 1 refers to postfault
for contingency k .

In accordance with the proposal published in [34] the
aforementioned Eq. (8) to Eq. (10) are linearized around the
pre-fault bifurcation point. The linearized equations are then
rearranged to provide the following equation (11) to predict
the change in load margin 1λ for the post-fault contingency.

1λ =
−wT fp
wT fy

(11)

Then, the post-fault λ̄ may be easily determined using the pre
contingency λ found by Eq. (5) to Eq. (7) as follows:

λ̄ = λ + 1λ (12)

One can get more information about Eq. (8) to Eq. (10), and
the derivation of Eq. (11) in [34] and [35].

2) FIRST-LEVEL SOLUTION STEPS
Based on the above equations, the calculation steps for ATC
evaluation using PDIPM can be summarized as follows:
1- Read system data and define transfer patterns ‘‘point to

point’’ and ‘‘area to area’’ for ATC evaluation.
2- Maximize pre-contingency load margin λ by using Eq.

(5) to Eq. (7) and specifying its value for each scenario.
3- For each wind scenario, define the pre-contingency

x,w and η using the SVD method.
4- For each scenario, estimate λ̄ for all contingencies using

Eqs. (11) and (12), then choose the most severe contin-
gency related to each scenario that is the smallest one.

5- Evaluate the expected ATC using Eq. (5) to Eq. (7), for
the most severe contingencies.

It is worth mentioning that the above procedures will be
carried out while the VAR control devices µv are fixed for
the pre- and post-contingency instances. This implies that the
preventive control mode is assumed by setting 1µv = 0.
This presumption guarantees that the VAR dispatch will be
executed without adjustment for the base case and contin-
gency circumstances for a given period while considering
wind power scenarios.

B. SECOND-LEVEL FORMULATION
As discussed before, the second stage is interested in the ATC
evaluation very close to the delivery time in order to enhance
the precision of the final ATC value. The two key distinctions
between the second level and the first level are the incorpo-
ration of the load scenarios into problem formulation and the
treatment of usv, which is regarded as fixed in this situation.

Hence, at this stage, the decision variables are identical to
those at the first level, except for uv, while the state variables
vector is the same as the first level. The proposed problem
formulation, which deems usv is fixed while integrating the
load and wind scenarios, can be stated as follows:

ATC = min(−(
∑nc

s1=1
π s1
c λs1)) (13)

Subject to GL2
(
xs1, us1g , µv, λ

s1
)

= 0,

s1 = 1, 2, . . . . . . .nc (14)

HL2
(
xs1, us1g , µv

)
≤ 0,

s1 = 1, 2, . . . . . . .nc
π s1
c = π s

wπd
l , nc = nsnd (15)

where GL2 and HL2 are identical to the constraints as in
Eqs. (6) and (7), respectively, except that the superscript
L2 denotes the second stage. πd

l is the probability of the d-th
load scenario. nd is the number of load scenarios.

It is important to note that, although the load scenarios
are included in the calculation above, it is still possible to
simulate the forecasted load ‘‘without its related scenarios’’
for the specified time if the load is anticipated perfectly. The
decision of whether to take the load forecasting errors into
consideration or not depends on the accuracy that the system
operator requires.

V. PROPOSED SOLUTION ALGORITHM
The problem formulations of the first and second levels
introduced in the previous section are stated as large-scale
nonlinear optimization problems. In the first level, while wind
power scenarios are taken into consideration, the load for the
designated period is treated as constant. The purpose is then
to achieve the proper dispatch of VAR devices that maximize
expected ATC for the particular time period selected by the
system operator. These VAR devices will be the same for each
simulated wind power scenario. The problem in this instance
cannot be handled by using standard nonlinear optimization
techniques alone due to the complexity and the scale of the
problem formulation. Therefore, a hybrid algorithm using
IGWO and PDIPM is used to solve the first-level problem
as in Eq. (5) to Eq. (7). At the second level, the VAR dis-
patch that was obtained at the first level is then regarded
as fixed. With this treatment, the second level’s problem
size is drastically reduced, making it much simpler to solve
than the first level. Consequently, PDIPM has been employed
straightforwardly at the second level to obtain the best ATC
assessment close to the real state. Fig. 2 provides a summary
of the computational procedures of the proposed approach
for solving the first-level problem. The proposed solution,
as depicted in the figure, starts with random initial candidates
‘‘m’’, with each candidate in the population standing for a
potential VAR dispatch solution. Each candidate pattern is
used commonly for eachwind power scenario associated with
the base case and all contingency states under investigation.
In the base case, the optimization problem as in Eq. (5) to
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FIGURE 2. A hybrid GWO/PDIPM solution method (Fist level problem).

Eq. (7) is solved using PDIPM for each scenario separately to
determine λ. Meanwhile, SVD method is performed to deter-
mine, x,w and η to be used for the contingency screening
where Eqs. (11) and (12), are utilized to quickly ascertain the
approximate value of λ̄ for each contingency. Accordingly,
the most severe contingency associated with each wind power
scenario is defined. The optimization problem as in Eq. (5)
to Eq. (7) is then solved for the most severe contingencies
separately using PDIPM to identify the precise value of λ̄

associatedwith eachwind power scenario. Then, the expected
ATC related to each candidate can be calculated using the
probability of the wind power scenario and the value of λ̄

related to each scenario. These procedures are performed for
each candidate in the population. Among the candidates, the
actual expected ATC for the current iteration is picked as
the maximum expected ATC. The IGWO operators are then
utilized to update the next populationwhere each individual is
a new candidate for VAR devices. This procedure is repeated
till the termination criterion is satisfied.

In this work, IGWO is used because it is indicated in [36]
that it achieves the balance between exploitation and explo-
ration in the search space and has a faster convergence rate
than other heuristic algorithms for reaching the global opti-
mal solution. The following subsection shows an overview
of GWO and its computational procedures for solving the
proposed formulation.

A. GWO OVERVIEW
The GWO is a metaheuristic technique that was first pre-
sented in [36] and [37]. It is based on the natural hunting
strategy of grey wolves, who have a social hierarchy system
with four groups designated α, β, δ, and ω. The algorithm
considers wolves α, β, and δ as the best candidates to guide
the ω wolves toward the searching area in order to find the
overall solution. The three basic components of the hunting

mechanism are searching for the prey, encircling the prey, and
attacking it can be mathematically described as given below.

1) ENCIRCLING PREY
During the hunt, grey wolves encircle their prey. Below is a
mathematical representation of the encircling behavior:

D = |C .GP (N ) − G(N )| (16)

G (N + 1) = GP (N ) − A · D (17)

where GP stands for the position of the prey, G is a grey
wolf’s position vector, and N is the current iteration. The
coefficient vectors C and A are as follows:

A = 2a⃗ · rand1 − a⃗ (18)

C = 2 · rand2 (19)

where the components of the vector a⃗ are linearly lowered
from 2 to 0 throughout the iterations, rand1 and rand2 are
random vectors in the range [0, 1].

2) HUNTING
The mathematical modeling of the hunting behavior assumes
that α, β and δ wolves have better knowledge about the loca-
tion of the prey, Therefore, the other wolves ω update their
positions in accordance with α, β and δ wolves’ positions as
they consider them to be the three best solutions as follows:

Dα = |C1 · Gα−G(N)| ,

Dβ =
∣∣C2·Gβ−G(N)

∣∣ ,Dδ = |C3 · Gδ−G(N)| (20)

G1 (N ) = Gα − A1 · Dα, G2 (N ) = Gβ − A2 · Dβ ,

G3(N ) = Gδ − A3 · Dδ (21)

G (N + 1) = (G1(N ) + G2(N ) + G3(N ))/3 (22)

where C1, C2, and C3 are computed by (19). Gα , Gβ , and Gδ

are the first three best positions at iteration N. A1, A2, and A3
are calculated as in Eq. (18), and Dα , Dβ , and Dδ are given
by Eq. (20).

3) ATTACKING
When the prey stops moving, the hunting process is ended,
and the wolves launch an attack. Mathematically, this is
represented by the value of a⃗, which progressively decreases
from 2 to 0 over the duration of iterations, controlling the
exploration and exploitation.

B. IMPROVED GWO
The position of each wolf is updated in the conventional
GWO with the aid of the three best grey wolves as a mean
value of them. This results in slow convergence and a limita-
tion of population diversity, and the wolves may as a result get
trapped in local optima. In order to improve the search strat-
egy of wolves while hunting, the presented method in [36]
is employed to overcome these deficiencies. This strategy
is called dimension learning-based hunting (DLH). In DLH,
each individual wolf is learned by its various neighbors that it
can be a potential candidate for the new position of Gm (N ).
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FIGURE 3. Solution procedures for the first stage.

As a result, IGWOhas both candidate wolves produced by the
GWO and the DLH search hunting methods for each iteration
in order to get a superior position. The IGWO algorithm then
evaluates the two candidates to identify the best candidate
wolf for updating the current position in the following itera-
tion. The details of the IGWO are given in [36]. In this paper,
the IGWO is implemented with PDIPM for solving the first-
level problem. The computational steps combining IGWO
and PDIPM for solving the first level problem in Eq. (5) to
Eq. (7) are simplified by the flow chart shown in Fig.3.

Note that, in the second level, the final expected ATC close
to the real state is evaluated using the VAR dispatch acquired
at the first level in accordance with the algorithm presented
in Fig. 3, where the PDIPM technique is merely applied as a
solution methodology for the problem in Eq. (13) to Eq. (15).

VI. SIMULATION RESULTS AND DISCUSSION
The proposed method has been implemented on IEEE 30-bus
RTS, which is divided into three areas as shown in Fig. 4. The
simulations were conducted in the MATLAB platform using
a PC with an Intel Core i7-7500U CPU, 2.7 GHz, and 8 GB
RAM. The original system has beenmodified to incorporate a
100MWwind farm, which is an aggregate of several turbines.

FIGURE 4. Single line diagram of IEEE-30RTS.

The technical parameters of the employed wind turbines are
provided in [31]. The impact of the 100 MW wind farm
on ATC value will be analyzed when it is independently
installed at bus 2 ‘‘generation area’’ or bus 28 ‘‘sink area’’,
respectively. The bus voltage magnitudes are specified to be
within the range of 0.9–1.1 p.u., while the installed VAR
devices ‘‘capacitor banks and SVCs’’ are supposed to vary
between 0 and 0.4 p.u., and the limits of on-load tap changers
are between 0.9 and 1.1 p.u. Since the ATC is assessed at
two levels in the proposed formulation, it is important to
first identify the initial requirements explicitly for each stage.
At the first stage, ATC is supposed to be estimated 4 hours
ahead, where their associated load levels are 100%,120%,
130%, and 110% of the original system load. Since the ATC
is being evaluated preliminary at this stage, it is unessential
to examine numerous scenarios for the sake of reducing the
computational burden. Therefore, in the first stage, we have
examined only the five wind power scenarios given in Table 1
for each load level. The proposed hybrid IGWO/PDIPM solu-
tion technique is used to solve this stage, where the population
size of wolves is assumed to be 25, and the maximum number
of iterations is set to 50. The results of the VAR dispatch
obtained at the first level will be settled in the second stage
to evaluate ATC close to real time. In the second stage, as the
ATC assessment is the final expected value that affects the
ultimate decision of market participants, a more precise esti-
mation is conducted by including the combination of the load
scenarios and more scenarios from wind power. The wind
power and load scenarios with their associated probabilities
employed in the second stage are given in Table 2 and Table 3,
respectively. The ATC values at the first and second stages are
determined by simulating single-bilateral transaction T1 and
multilateral transaction T2, given in Table 4. The following

VOLUME 11, 2023 39055



H. W. Reyad et al.: Probabilistic Assessment of ATC Incorporating Load and Wind Power Uncertainties

TABLE 1. Wind power scenarios of the first stage.

TABLE 2. Wind power scenarios of the second stage.

three cases are thoroughly examined for simulating T1 and
T2 to assess the developed method.

A. CASE I: WIND FARM AT THE GENERATION CENTER
In this case, the location of the wind farm is assumed to
be at bus 2. ATC is evaluated for bilateral transaction T1
and multilateral transaction T2. For each load level listed in
Table 3, the five wind power scenarios and their associated
probabilities given in Table 1 are employed in this stage.
Table 5, which displays the settings of VAR devices and

TABLE 3. Load scenarios of the second stage.

TABLE 4. Transaction classification.

provides the maximum predicted ATC value for each load
level, gives the results for this stage. It should be noted that
the values in the table for Qc10 and Qc24 correspond to
shunt capacitors installed at buses 10 and 24, respectively.
Additionally, T(6-9), T(6-10), T(4-12), and T(28-27) refer to
the on-load tap changer settings for the respective lines (6-
10), (6-9), (4-12), and (27-28). The results show that the ATC
value for any transaction decreaseswith increasing load levels
for each transaction. Fig. 5 depicts the convergence curve for
T2 at 100% of the system’s typical load. According to the
convergence characteristic, the objective function converges
smoothly after 25 iterations. The execution time for this stage
is 2639 seconds.

In the second stage, ATC is evaluated very close to the
delivery time. In order to improve the accuracy of the final
ATC assessment, the wind power scenarios shown in Table 2
are combinedwith the load scenarios of each load level shown
in Table 3. Therefore, this stage is solved for 36 scenarios
acquired by combining the 12 wind power scenarios depicted
in Table 2 with the 3 load scenarios given in Table 3, where
their overall associated probabilities are obtained by mul-
tiplying the respective probabilities of the wind power and
load. For each of the 36 examined scenarios, the obtained
VAR settings from the first stage have been considered con-
stant values. Table 6 lists the results for this stage, which
shows the expected ATC value for the base case and post-
contingency case for each load level. As shown in the table,
the post-contingency case values are lower than the base case
values, and the ATC value drops as transaction load levels
rise. The ATC values are lower when compared to the first
stage’s results, which are displayed in Table 5. This is because
in this situation, more scenarios are investigated, and one of
the examined load levels is higher than the predicted load by

39056 VOLUME 11, 2023



H. W. Reyad et al.: Probabilistic Assessment of ATC Incorporating Load and Wind Power Uncertainties

FIGURE 5. Convergence characteristic of the proposed method for T2.

FIGURE 6. Maximum and minimum voltage magnitudes for all scenarios for T2.

about 3.1%, leading to a more conservative decision. Also,
the table lists the most severe contingency case related to
each scenario, which is important for the system operator
to take into account for any line outages that might occur
for any transaction. For example, the most severe lines for
100% of the original system load for T1 are lines (1-3), (2-6),
and (22-24). This implies that the evaluated ATC value in the
proposed method addresses not only one severe contingency,
but numerous serious ones correlated with the invigilated
scenarios, making it more conservative for a variety of poten-
tially uncertain circumstances. Fig. 6 shows the minimum
and maximum voltages for each scenario for the load level
of 130% of the normal load for T2. The figure shows that
the transaction can be obtained using the proposed method

while maintaining the voltage for all scenarios between the
minimum and maximum voltage limits. The execution time
for this stage is 112 seconds.

B. CASE II: WIND FARM AT THE LOAD CENTER
In this case, the wind farm is presumed to be situated near
the load center at bus 28, and ATC is then assessed for bilat-
eral transaction T1 and multilateral transaction T2. Table 7
illustrates the final solution of the first stage, displaying the
maximum expected ATC value for the post contingency for
each load level as well as the settings of the VAR sources.
The results, which are shown in the table, indicate that the
ATC value for any transaction decreases as the load level is
increased.
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TABLE 5. Settings of VAR devices and expected ATC value for the first stage.

TABLE 6. Expected ATC value for the second stage.

It is clear that the value of ATC at any transaction for the
same load level is slightly higher compared to the outcomes
of the first stage of Case I. For instance, the ATC in Case II
for transaction T2 at load level 1.1 is 0.615 while it is 0.506 in
Case I. This is due to the wind farm’s proximity to the load
center in Case II, which lowers transmission losses and hence
improves transfer capacity. The convergence characteristic
for T1 at a load level equal to 130% of the original system

load is shown in Fig. 7. The execution time for this stage is
2276 seconds.

In the second stage, load uncertainty is considered instead
of the forecasted load for each interval, and simulation has
been performed using the same 36 scenarios that were used
in Case I. With the help of the VAR settings decided at the
first stage, which are shown in Table 7, Table 8 presents the
outcomes of the expected ATC values for the base case and
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TABLE 7. Settings of VAR devices and expected ATC value for the first stage (Case II).

FIGURE 7. Convergence characteristic of the proposed method for T1 (Case II).

FIGURE 8. Maximum and minimum voltage magnitudes for all scenarios for T1 (Case II).

post-contingency scenarios. The results, which are displayed
in Table 8, demonstrate that as the load level is raised, theATC
value for any transaction lowers. It is also obvious that, when
compared to the results of the second stage of Case I, the value
of ATC at any transaction for the same load level is marginally
higher. The most severe contingencies associated with each
load level are also exhibited in the table, illustrating how
the estimated ATC value was established by accounting for

several severe contingencies to enable the system to endure
a variety of potentially uncertain conditions. Fig. 8 presents
the lowest and highest voltages for each scenario for the
second-level problem at 100% of the system’s typical load
for T1. The diagram shows that the proposed approach can be
used to achieve the transaction in all cases while keeping the
voltages within the minimum and maximum voltage limits.
The expected ATC values in Case II are higher than Case I for
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FIGURE 9. Expected ATC values of T1 for the case I and case II.

TABLE 8. Expected ATC value for the second stage (Case II).

each transaction, as illustrated in Fig. 9. This is because the
wind farm is situated in the sink area of the transaction, which
reduces tie line losses and, as a result, increases transmission
capacity.

C. CASE III: INCREASING PENETRATION LEVEL OF WIND
POWER AT THE GENERATION AREA
In this examination, the penetration level at the genera-
tion area is steadily increased under normal system load to
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TABLE 9. Settings of VAR devices and expected ATC value for the first stage for T1 (Case III).

TABLE 10. Settings of VAR devices and expected ATC value for first stage for T2 (Case III).

illustrate how it influences ATC values. With the wind power
scenarios utilized in the earlier cases, the first stage is solved.
The settings of VAR devices and the anticipated ATC values
are listed in Tables 9 and 10, respectively, for T1 and T2. The
results show that the predicted ATC values for T1 and T2 are
greater than those for the first stage of the preceding cases.
Additionally, the results showed that the expected ATC value
increases with increasing penetration level up to a point where
the TL power losses are raised, at which event the ATC value
begins to decline. The rise in TL losses indicates that the TL
is being heated up more, which would lead to the TL thermal
limit, one of the primary constraints in the ATC evaluation,
being reached.

Another crucial aspect is that the increase in the reac-
tive losses can result in inadequate reactive power supply,
which will decrease the voltage stability load margin. This
indicates that the system is getting close to being unstable
and that the penetration level increase needs to be stopped.
The maximum penetration is 140% for T1, while for T2 it is
260%, as shown in Table 9 and Table10. The second stage is
solved by using the same wind and load scenarios employed
in the previous cases for a more accurate ATC evaluation.
Table 11 lists the results for T1, which shows the expected

ATC value for the base case, the post-contingency case, and
the most severe contingency case relevant to each scenario.
The results indicated that the predicted ATC value rises with
increasing penetration level up to a point of 140%, after
which it decreases due to the increased power losses of the
transmission lines.

D. CASE IV: ATC EVALUATION WITHOUT VAR DISPATCH
To demonstrate the effect of VAR dispatch of the installed
devices on the anticipated ATC value, the simulation is per-
formed for similar prior scenarios with a fixed setting of
VAR devices provided in the system data. ATC is evalu-
ated for bilateral and multilateral transactions with the wind
power scenarios depicted in Table 2 combined with the load
scenarios of each load level shown in Table 3. Table 12 and
Table 13 list the results for the case of the location of a wind
farm at bus 2 (source area) and bus 28 (sink area), respec-
tively. The results display the expected ATC value for the base
and post-contingency cases for each load level, as well as the
most severe contingency related to each scenario. As shown
in the tables, the expected ATC values are lower with a fixed
setting of installed VAR devices when compared to similar
cases with VAR dispatch. Also, as observed from the results
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TABLE 11. Expected ATC value for the second stage for T1 (Case III).

TABLE 12. Expected ATC value for Case V for wind farm at the source area.

at 130% of the normal load, the system cannot transfer power
except in the case of a multi-lateral transaction with the wind
farm at the sink area.

This observation demonstrates VAR dispatch’s superiority,
as the system can transfer power for any transaction at higher

load levels due to more reactive injection. The case of raising
the penetration level for T1 as simulated in Case III has also
been explored here when fixing VAR devices. The outcomes
for the same prior instance of increasing penetration level
for T1 with a fixed setting of VAR devices are shown in
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TABLE 13. Expected ATC value for Case IV for wind farm at the sink area.

TABLE 14. Expected ATC value for Case IV with increasing penetration level.

Table 14. As compared to the identical scenario with VAR
dispatch of installed devices, the results show that expected
ATC values were reduced. The results of this case show that
the most severe lines for most load levels for any trans-
action are less than they were in the previous cases (VAR
dispatch cases). This indicates that the dispatch of installed
devices allows the system to be more secure by withstanding
more significant outages that might unintentionally occur.
The above results emphasize the significance of effectively
utilizing the installed VAR sources regulated by the TSO to

improve power transfer between zones as well as increase
system security.

Finally, the contributions of this work have been validated
in the simulation results as follows:

• The achieved results of the second stage in the previous
cases ensure a more precise ATC evaluation close to
real time by including more scenarios of the load and
wind power into the problem formulation. As a result,
projected ATC values are provided with more precision,
giving renewable energy participants the chance to trade
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with less risk and enhancing the efficiency of market
transactions.

• The acquired results for case V when compared to other
cases demonstrate the critical role that installed VAR
devices play in maximizing ATC values for various
transactions at various wind farm locations.

• The first-stage results for the prior cases have shown that
the proposed hybrid IGWO/PDIPM solution approach
has been able to determine the common adequate setting
for installed VAR devices for all investigated hourly
scenarios. These settings are employed as a preventive
control in the second stage, where they are held constant
for a predetermined period of time to reduce unwanted
status changes and excessive operation of VAR devices.

VII. CONCLUSION
This paper introduces a method for evaluating available
transfer capacity in an intraday market while considering
the concerns of voltage stability as well as the uncertain-
ties of the anticipated load and wind power. The presented
approach seeks tomaximize expectedATC value and increase
transaction between various zones by enhancing the usage
of the existing VAR sources. A two-stage framework has
been proposed to achieve this purpose, with the first stage
concentrating on the selection of appropriate VAR settings
that improve the ATC value a few hours before the real state,
and the second stage focusing on the ATC assessment near
the delivery time to enhance the accuracy of the ultimate
ATC value. The proposed methodology enables the trans-
mission system operator to assess ATC near the actual state,
allowing wind energy participants to increase their level of
integration without putting them at severe risk. The problem
is solved using a two-level hybrid approach that combines the
improved grey wolf optimizer with the primal-dual interior
point method. The proposed approach is implemented on the
IEEE 30-RTS. The outcomes show the applicability of the
proposed technique to evaluate and maximize ATC value for
bilateral and multilateral transactions while considering the
placement of wind farms at the source area and sink area.
The results indicated that wind farms had a greater beneficial
impact on ATC value when installed close to the sink area
than when installed at the source area. Additionally, it is
indicated that the proposed method could identify the most
severe contingency related to each scenario, which is crucial
for the system operator to take into account when planning
for any transaction to withstand a number of unexpected
circumstances. The investigation of the impact of wind power
penetration on the predicted ATC value has shown that the
level of penetration is an important factor that should be pre-
cisely assessed to positively affect the ATC value; otherwise,
its effect may be adverse. The results also emphasize the
significance of carrying out optimal VARdispatch of installed
VAR devices owned by TSO along with dispatch of generated
active power in the ATC estimate in order to achieve more
efficient power transfer across zones and improve system
security. Even though the viability of the problem and the

validity of the formulation have been demonstrated in this
work, additional issues are required to be incorporated into
the presented formulation in order to make it more compre-
hensive. The expansion of the current formulation to take into
account the TRMandCBM, the variability of wind power and
load, as well as the reactive power capability of the DFIG are
the concerns that are now being investigated. The formulation
can also be easily expanded to explore the optimal placement
of new FACTS devices, which primarily influence the ATC
value for the anticipated stressed network due to the increase
in network load. Such research is essential for the Egyptian
system, which has recently undergone a significant integra-
tion of renewable energy sources in locations beyond the load
center.
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