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ABSTRACT Spiking Neural Networks (SNNs), the third generation of artificial neural networks, have
been widely employed. However, the realization of advanced artificial intelligence is challenging due to
the dearth of efficient spatiotemporal information integration models. Inspired by brain neuroscientists, this
paper proposes a novel spiking neural network - Blended Glial Cell’s Spiking Neural Network (BGSNN).
BGSNN introduces glial cells as spatiotemporal information processing units based on neurons and synapses,
and also provides four new network dynamics connection models which extend the information processing
dimension, enhance the network global information integration in the spatiotemporal domain, as well as
the plasticity of neurons and synapses. In this paper, a BGSNN application - Sudoku solver is designed
and implemented on the ‘‘WenTian’’ neuromorphic prototype. On the Easybrain dataset, the BGSNN solver
achieves 100% accuracy, outperforming the same structure SNN solver by 97% at the Evil difficulty level,
and has faster converges speed compared with the SOTA Sudoku solver LSGA. On the kaggle dataset,
the BGSNN solver achieves over 99.99% accuracy, outperforming the publicly available optimal DNN
solver under this dataset by 3.82%. In addition, BGSNN exhibits good parallelism and sparsity, decreasing
computation by at least 92.9% compared to serial solvers and reducing sparsity by 88% compared to
the equal fully dense DNN. BGSNN improves the expression, feedback, and regulation capabilities of
neural networks while maintaining the advantages of SNN parallel sparsity, making it simpler to implement
advanced artificial intelligence.

INDEX TERMS Glial cell, spiking neural networks, spatiotemporal information integration, sudoku solver.

I. INTRODUCTION
The biological brain is a highly intelligent system existing in
nature. SNNs adopt the biological neural computing model
of the biological brain [1], which is more biointerpretable
than the Deep Neural Network (DNN) [2]. The informa-
tion transmission method of SNNs take the spike form, and
enables it to obtain the unique temporal information process-
ing capability, while the sparse firing also gives it low power
consumption [3]. Therefore SNNs are considered as network
models to achievemore advanced artificial intelligence. How-
ever, SNNs that rely solely on neuron dynamics models and
synaptic connections have a limited information capacity, and
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may have spike errors or even spike disappearance in complex
networks due to the decay of spikes during the transmission
process, resulting in disconnected neurons not being able
to effectively transmit distal information and thus making it
challenging to achieve advanced brain-like intelligence.

As brain neuroscience research progresses, researchers
have discovered and demonstrated that the biological brain
relies on more than just neuronal and synaptic networks to
process and integrate information as well as achieve advanced
intelligence functions. Glial cells, which were once thought
to only provide support for the biological activities of the
brain, are likely to be one of the key players in the realization
of higher brain intelligence functions [4]. The feasibility of
such approaches has been corroborated by researchers who
have drawn on the regulatory mechanism of brain astrocytes
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on neuronal synapses to optimize neural networks [5], [6].
Although it is not fully understood biologically how glial
cells are involved in integrating information and regulating
and optimizing networks, we attempts to draw on this regu-
latory mechanism and idea to carry out new exploration for
achieving more advanced intelligence.

Usually, the research of SNN is built on neuromorphic
computing platforms, such as SpiNNaker [7], Loihi [8],
TrueNorth [9], Tianjic [10], etc. The neuromorphic com-
puting architecture established based on SNN, with fea-
tures such as massive parallelism and in-memory-computing,
is more energy efficient than the traditional von Neu-
mann system computing architecture [11]. In addition to
the above neuromorphic systems, SNNs can also be imple-
mented in memristor-based hardware systems as accelera-
tors [12], [13], [14].

In this paper, we propose a novel spiking neural net-
work called Blended Glial Cell’s Spiking Neural Networks
(BGSNN). The BGSNN introduces glial cells and four new
network dynamics connection models, offering the network
multiple information processing dimensions and global infor-
mation interaction mechanisms. In addition to modifying
neuron nodes and synaptic connections, such a structure
can also support information integration and processing in
the global spatiotemporal domain. The BGSNN expands the
plasticity of neurons and synapses, strengthens the informa-
tion integration capability of the network, and enhances the
expressiveness and coupling of the network.

The contributions of our work can be summarized as fol-
lows:

• Proposed a novel spiking neural network, BGSNN,
with a global information interaction mechanism and a
diverse network structure. It supports global spatiotem-
poral domain information integration and can plasticize
neurons and synapses. This enables feed-forward and
feedback optimization of the network, enhancing its
expressiveness. To verify the performance of BGSNN,
we designed and implemented a Sudoku solver appli-
cation for BGSNN based on the ‘‘WenTian’’ neuro-
morphic prototype, evaluated on the Easybrain and the
kaggle dataset. The experiments show that the BGSNN
has excellent parallelism and sparsity performance with
the Sudoku solving accuracy exceeding 99% over all
datasets.

This paper is organized as follows: Section II introduces
the related work; Section III introduces the method in detail;
Section IV reports the experimental results and analysis and
the conclusion is given in Section V.

II. RELATED WORKS
A. GLIAL CELL BIOLOGY RESEARCH
Glial cells are the collective name for a class of neuron cells
in the brain. Existing research suggests that the glial cells are
effectual for the brain far more in the aspect of offering struc-
tural support of metabolic substances for the brain activities.

Many studies have found that there is information interaction
and regulation between glial cells and neurons through mes-
senger substances such as molecules, ions, or proteins. For
example, the receptors of glial cells will affect the synaptic
transmission activity of neurons in activated state; thereby
affecting the long-term memory of neurons in the hippocam-
pus [15]. Neuronal activity can significantly affect the activity
of glial cells, and the cholesterol complexed to apolipoprotein
E-containing lipoproteins, and adenosine provided by glial
cells can in turn regulate the growth and development of brain
synapses [16], [17]. It shows that the whole process of the
growth and development of the brain neural network is the
result of the interaction between the activity of neurons and
glial cells.

In addition, researchers have found that information inter-
action between glial cells also exists through messenger
substances such as molecules and ions. Glial cells enhance
intercellular communication through the diffusion of Ca2+ in
the glial space [18]. The communication between glial cells
is the basis for the brain to distinguish different cognitive
properties and is a key element for the brain to achieve
cognitive functions [19], [20].

The researchers found that brain glial cells and neu-
ronal synapses are physically connected and affect the
function and efficiency of synapses. Neuronal synapses
have three-dimensional connection structures of glial pro-
trusions [21], [22], which adhere to the synapses through
Ca2+ permeable glutamate receptors to maintain structural
stability [23]. Glial protrusions are capable of transmitting a
variety of molecules and ions, such as K+, amino acid trans-
mitters, tumor necrosis factor α (TNFα), ATP, and adeno-
sine [24], [25], [26], which can affect the function and effi-
ciency of synapses, in order to regulate neuronal activity and
integrate information in a spatiotemporal domain comple-
mentary to neurons [27], [28], [29], [30].

B. SNN PLASTICITY
Most of the existing SNN learning algorithms are only related
to synaptic parameters, such as synaptic weights, whereas the
neuron related parameters in the network are often defined
as hyperparameters, which to some extent limits the expres-
siveness of SNNs. It has been pointed out that there are dif-
ferences in membrane time constants of neurons in different
brain regions [31], [32], [33], and these differences play a cru-
cial role in learning and memory work [34], [35]. Fang et al.
proposed to learn membrane time constants along with SNN
synaptic weights to achieve enhanced SNN learning [36].
This shows that SNN plasticity can be reflected not only in
synapses but also in neurons.

C. GLIAL CELLS REGULATE NEURAL NETWORKS
The application of glial cells in neural networks has gradually
been noticed by researchers, Tang et al. implemented a triple
synapse model based on glial protrusions on Intel’s neuro-
morphic chip Loihi, and some special ways of biological
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brain information processing are realized, like synchronous
excitation and local plasticity [5]. Ivanov and Michmizospro-
posed a neuron-astrocyte liquid state machine (NALSM) [6],
which addresses the low performance of LSM through
self-organized near-critical dynamics and verifies that the
brain-inspired machine learning methods have the poten-
tial to achieve comparable performance to deep learning
while supporting robust and energy-efficient edge computing.
At present, there is no precedent for using glial cells and their
network structure in SNN for parameter learning and global
spatiotemporal information integration in SNN. Therefore,
the purpose of this paper is to apply the glial cells network
structure in SNN and elaborate the subjected research.

D. NEUROMORPHIC COMPUTING PLATFORM
Neuromorphic computing has become a new generation of
research boom, and several excellent neuromorphic comput-
ing platforms such as SpiNNaker [7], Loihi [8], TrueNorth [9]
and Tianjic [10] have emerged in the market. SpiNNaker,
which designed by the University of Manchester, is a
massively parallel, many-core supercomputer architecture
based on a spiking neural network, able to simulate the
human brain, providing new possibilities for neuroscience,
robotics, and computer science. ‘‘Tianjic’’, developed by the
Tsinghua University, is the world’s first heterogeneous fusion
brain-like computing chip, adopts a many-core architecture,
reconfigurable components, and a streamlined dataflow with
hybrid coding schemes, can support both machine learn-
ing algorithms and existing brain-like computing algorithms.
This chip, integrating neuroscience and computer science,
is expected to enhance the capability of each system, promote
the research and development of artificial general intelligence
(AGI), and provide a hybrid collaborative development plat-
form for AGI technology.

In this paper, the ‘‘WenTian’’ neuromorphic prototype
developed by Nanjing Institute of Intelligent Technology
is selected for the simulation design and implementation
of BGNN. The prototype consists of thirty FPGA boards
installed on the cabinet in three layers of 10 boards each,
forming a 3 × 10 torus (circular surface) topology network.
Each individual node in the network, i.e., each board, is a
many-core systemwith the ability to work independently. The
‘‘WenTian’’ neuromorphic prototype can support 480 Cortex
M4 processors running in parallel, enabling the simulation
of millions of neurons and billions of synapses. It also has a
supporting programmable simulation softwae system, which
only needs to add new network nodes and connection types
based on SNN, and adapt the original neuron model to com-
plete the BGSNN simulation environment. Therefore, it has
the simulation ability of BGSNN.

III. BLENDED GLIAL CELL’S SPIKING NEURAL NETWORK
Existing artificial neural networks are composed of two basic
units: neurons (network nodes) and synaptic connections
(network connections). Inspired by the advanced character-
istics of glial cells, a Blended Glial Cell’s Spiking Neural

Network (BGSNN) is proposed in this paper. In addition to
neurons and synapses, BGSNN introduces glial cells and four
corresponding network dynamics connection models, which
expand the original single information processing dimension
of SNN. Glial cells can not only act as both spatiotemporal
information processing units to process and transmit infor-
mation but also as modification units to modify neuronal and
synaptic states in the network based on supervised signals and
global spatiotemporal information.

A. NETWORK STRUCTURE OF BGSNN
Organization of all nodes and connections in BGSNN is
diagrammed in Fig. 1.

Inspired by biological brain research, BGSNN adds a spe-
cial information processing unit called the glial cell, as well
as four types of connections between neurons or synapses:
neuronal ion connection, glial ion connection, glial gap con-
nection, and glial protrusion connection.

Neuronal ion connections are the channels working
between neurons and glial cells, where neurons can release
messenger factors to glial cells, and neuronal ion receptors
can receive messenger factors transmitted by neuronal ion
channels [15], [17]. Glial ion connections are the channels
also working between neurons and glial cells, that glial cells
can release regulatory messenger factors via channels to
neurons, and glial ion receptors can receive the messenger
factors transmitted by glial ion channels [4], [27], [30]. Glial
gap connections are the channels working between glial cells
that there has the mutual transmission of messenger fac-
tors between glial cells, and glial gap receptors can receive
the messenger factors transmitted by the glial gap chan-
nels [18], [19], [20]. Glial protrusion connections are the
channels working between glial cells and neuronal synapses
that glial cells can transmit regulatory messenger factors to
neuronal synapses [21], [22], [23], [24].

Fig. 2 illustrates the general structure of the BGSNN,
including the BGSNN neuronal cell populations and connec-
tions relationships. in BGSNN, each glial cell population is
both a recognizer and a sharer of local area information.

B. DYNAMICS MODELS OF BGSNN
As scientists make further study on glial cells, corresponding
dynamics models of glial cell were proposed which mainly
started frommolecular and ionic changes [37]. These models,
however, oversimplified the mechanism of glial cell activity
and hardly reflected the advanced functions of glial cells
in information processing. Therefore, the current glial cell
biodynamic model is not suitable for directly applied to
SNNs, and necessary to build dynamicsmodels by combining
the biological properties of glial cells with the engineering
properties of neuromorphic computing.

As shown in Fig. 3, this paper gives a general glial cell
dynamics model framework, which contains three parts:
the neuronal spike event processing module, the glial gap
event processing module, and the spatiotemporal information
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FIGURE 1. Schematic diagram of the connection relationship between glial cells and neurons and synapses.

FIGURE 2. General structure of BGSNN.

integration processing module. The main structure of this
framework is consistent with the biological structure of glial
cells, and the designer can customize the dynamic algorithm
of each module according to different engineering require-
ments. Considering that BGSNN adds the structure of glial
cells, the framework of neuron dynamics model will change
accordingly, as shown in Fig. 4. Based on the original neu-
ronal spike event processing module, the neuron dynamics
model framework adds three parts: a glial ion event process-
ing module, a glial protrusion event processing module, and a
spatiotemporal information integration and processing mod-
ule. The neuron dynamics model and the glial cell dynam-

ics model constitute the computing model of BGSNN. The
details of two models will described in the next subsection.

The glial cell dynamics model is a time-driven model,
different from the event-driven model of neurons. Glial
cells perform corresponding operations, such as mak-
ing state judgments and spike firing, within a specific
time cycle. Its information processing and responding
time cycle is shown in Fig. 5. A complete cycle Tg is
divided into four subperiods: Tng (information process-
ing period from neural network to glial cells), Tgg (infor-
mation processing and response period from glial net-
work to glial cells), Tgn (information response period from
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FIGURE 3. A generalized framework of neuron dynamics model.

FIGURE 4. Single-layer feedforward BGSNN network and connection
diagram.

glial cells to neural network), Tre (glial cell non-response
period).

During the Tng the period, the glial cells only process
the input neuronal spiking information, i.e., obtain the activ-
ity information of local neuron populations; during the Tgg
period, glial cells diffuse valuable activity information of
local neuron populations through glial gaps, and receive
activity information of neuron populations diffused from glial
cells in other regions; during the Tgn period, glial cells inte-
grate the activity information of the local neuronal population
with those of other regions, and regulate the local neuron
population activity accordingly; during the Tre period, glial
cells are resting.

Taking a single-layer feedforward neural network as an
example, as in Fig. 6, the BGSNN network computation
model can be expressed mathematically as follows according
to dynamic models.

1) GLIAL CELL DYNAMICS MODEL
a. Neuronal Spike Event Processing Module

This module operates during the Tng period and is
responsible for processing the neuronal spike events
received by glial cells through the neuronal ion connec-
tion channel. And the glial cell obtain the input current
in Tng period through this connection channel, as shown
in (1):

Ing(t) = f (t,
n∑
i=1

wngi × Si(t)). (1)

where Ing(t) denotes the input current value of neuronal
ion channels in the glial cell; wng denotes the weight of

the neuronal ion connection; and Si denotes the output
spike of neuron.

b. Glial Gap Event Processing Module
This module operates during the Tgg period and is
responsible for processing glial gap events received
by the glial gap connection channel, and the glial cell
obtain the input current in time period Tgg through this
connection channel, as shown in (2):

Igg(t) = h(t,
n∑
i=1

wggi × Oggi (t)). (2)

where Igg(t) denotes the input current value of the glial
gap channel of the glial cell; wgg denotes the weight
of the glial gap connection; and Ogg denotes the glial
gap output event of glial cell, which is the output by
the spatiotemporal information integration processing
module of the glial cell.

c. Spatiotemporal Information Integration and Processing
Module
The module can output three different events in the
form of spike, including glial ion events, glial gap
events, and glial protrusion events. The output results
can be expressed in Fig. 7 as (3):

O⃗glial(t) =

OggOgn
Ogp

 = g⃗(t, Ing, Igg). (3)

where Ogg denotes the output of glial protrusion chan-
nels, i.e., glial protrusion events;Ogn denotes the output
of glial ion channels, i.e., glial ion events; Ogp denotes
the output of glial gap channels, i.e., glial gap events;
Ing denotes the input current value of the neuronal ion
channel in glial cells; and Igg denotes the input current
value of the glial gap channel in glial cells.
where:

• Glial ion events: generated during the Tgn period,
glial cells transmit glial ion events to neurons
through glial ion connection channels, which can
be used to modulate neuronal plasticity.

• Glial gap events: generated during the Tgg period,
glial cells diffuse glial gap events between glial
cells through glial gap connection channels, which
can be used for global information interaction.

• Glial protrusion events: generated during the Tgn
period, glial cells transmit glial protrusion events to
neurons via glial protrusion connection channels,
which can be used to modulate the plasticity of
neuronal synapses.

2) NEURON DYNAMICS MODEL
a. Neuronal Spike Event Processing Module

As the spatiotemporal information computing unit,
after the neuron receives the spike event. The input
of the neuronal spatiotemporal information integration
and processing module is obtained through calculation,
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FIGURE 5. Glial cell information processing and response cycle.

FIGURE 6. Single-layer feedforward BGSNN network and connection
diagram.

FIGURE 7. Glial cell spatiotemporal information integration and
processing module.

which can be expressed as (4):

Nn(t) = H (t,
n∑
i=1

wi × Si(t)). (4)

wherewi represents theweight of the ith fan-in synapse,
Si representing the input spike event.

FIGURE 8. Neuron spatiotemporal information integration and processing
module.

FIGURE 9. Glial protrusion event processing module.

b. Glial Ion Event Processing Module
After the neuron receives the glial ion event through the
glial ion connection channel, it will correspondingly
change its state parameters to realize neuron plasticity,
as shown in (5):

Pn(t) = G(Pn(t − 1),
n∑
i=1

wgni × Ogni (t)). (5)

where Pn(t) denotes dynamic parameters of the neuron
adjusted by glial ions at time t; wgni denotes the weight
of the glial ion connection; Ogni denotes the glial ion
output event of the glial cell, given by the glial ion event
in the spatiotemporal information integration process-
ing module of the glial cell model.

c. Neuron Spatiotemporal Information Integration and
Processing Module
This module receives the processed neuron spike input
and neuron dynamic parameters adjusted by glial ion
events, then integrates and processes their information.
As shown in Fig. 8, outputs neuronal spike events can
be expressed as (6):

On(t) =

{
Pn(t)
F(Nn(t)).

(6)
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FIGURE 10. Schematic diagram of the feedforward and feedback path construction of BGSNN.

FIGURE 11. The processing flowchart of the BGSNN for spike events.

where On(t) represents the neuronal spike event output
by the neuron; Pn(t) represents dynamic parameters of
the neuron adjusted by glial ions; Nn(t) represents the
neuron spike input; F represents the neuron model.

d. Glial Protrusion Event Processing Module
After the neuron receives the glial protrusion event
through the glial protrusion connection channel, it will
adjust the weight of the neuron synapse, i.e., the plas-
ticity of the neuronal synapse, as shown in Fig. 9 can
be illustrated by (7):

w(t) = K (w(t − 1),
n∑
i=1

sgpi × Ogpi (t)). (7)

where W (t) represents the synaptic weight of the neu-
ron at time t;W (t−1) represents the synaptic weight of
the neuron at time t-1; Ogp denotes the glial protrusion

event of the glial cell, given by the spatiotemporal
information integration processing module of the glial
cell model. wgp denotes the weight of glial protrusion
connection.

C. SPATIOTEMPORAL INFORMATION PROCESSING
INTEGRATION AND PLASTICITY PRINCIPLE OF BGSNN
This section will describe the mechanism of BGSNN for
information processing and integration in the spatiotemporal
domain, and explain how BGSNN implements the neural
node and connection modification in the network.

The spike transmission of BGSNN is shown in Fig. 10.
Without glial cells, spikes can only be transmitted from presy-
naptic neurons to postsynaptic neurons via axons, synapses,
and dendrites, and feedback transmission is impossible. With
the introduction of glial cells, spikes can be secondary
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processed by glial cells and transmitted by feedforward or
feedback networks, giving the networks the ability to inte-
grate spatiotemporal information and plasticity.

In feedforward networks, spikes can be transmitted to
fan-out synapses or postsynaptic neurons by feedforward
networks1 or 2 via glial gap connections and glial cells, giving
the BGSNN the ability for secondary deep processing of
spatiotemporal information and feedforward optimization or
plasticizing of the network.

In feedback networks, spikes fired by the postsynaptic
neuron can be transmitted to the fan-in synapse via feedback
network 1, which is composed of glial cells and glial pro-
trusion connections, to adjust the parameters of the fan-in
synapse; or to the presynaptic neuron via feedback network 2,
which is composed of glial cells and glial gap connections,
to adjust the parameters of the presynaptic neuron.

Therefore, BGSNN has the capabilities of feedforward and
feedback optimization or plasticizing of the network. The
processing flowchart of the BGSNN for spike events is shown
in Fig. 11. For a complete glial cell, the neuronal ion channel
is the direct sensing channel for short distance coupling of
spatiotemporal information; the glial gap channel is the indi-
rect sensing channel for distant coupling of spatiotemporal
information; the glial cell is the smallest unit for integra-
tion and processing global spatiotemporal information of the
network; the glial ion channel or glial protrusion channel is
the direct optimization channel of glial cells to the neuronal
network.

To summarize the BGSNN, it adds the glial cell as a special
information processing unit and four new types of connec-
tions between neurons or synapses. These changes enable
BGSNN to have the capabilities of global spatiotemporal
information integration, feedforward and feedback network
optimization, enhancing the expression ability and the cou-
pling of networks. Because of the addition of the glial cell
structure, BGSNN supports not only the general SNN train-
ing method but also the direct network adjustment through
network feedback, so that inference can be performed directly
without training.

IV. EXPERIMENTS AND RESULTS
In this section, an application example is designed and imple-
mented to demonstrate the spatiotemporal information inte-
gration and plasticity of BGSNN. According to the applica-
tion requirements, the glial cell dynamics model and neuron
dynamics model are instantiated, and the details can be found
in Appendix A.

A. BGSNN APPLICATIONS-SUDOKU PUZZLE SOLVER
Sudoku is an NP-complete problem [38], as shown in Fig. 12.
The Sudoku board is composed of 9 blocks, each of which in
turn consists of 9 cells. The rule is to infer the numbers of all
remaining spaces based on the known numbers on the 9 ×

9 board and to satisfy that the numbers in each row, column,
and block contain 1-9 without duplication. Every qualified
Sudoku puzzle has one and only one answer, and the inference

FIGURE 12. Sudoku rules.

is based on this; any unsolved or multiple-solution puzzle is
ineligible.

When solving Sudoku problems, people try to fix a number
in a cell choosing from 1 to 9 according to the rules. This
process can be thought of as accumulating each number’s
possibility in the cell, and the cell will be filled with the num-
ber with the highest probability. This process of accumulation
fits well with the computation mechanism of spiking neural
networks. At the same time, Sudoku problems are a class of
problems that require local and global synergy, which can
highlight the performance improvement of glial cell structure
brought by global spatiotemporal information integration and
plasticity. Therefore, we designed a Sudoku puzzle solver
based on BGSNN as a case study to demonstrate the imple-
mentation of BGSNN for intelligent decision-making and its
effectiveness. The software and hardware of the neuromor-
phic platform are designed for spiking neural networks with
good parallelism, so to ensure the optimal performance of
the BGSNN solver, we deployed the BGSNN solver on the
‘‘WenTian’’ neuromorphic prototype for experiments.

The population structure of the BGSNNSudoku solver net-
work is shown in Fig. 13A, which consists of a total of three
populations: 1) the Sudoku initial input neuron population; 2)
the Sudoku board neuron population; 3) the Sudoku analysis
and decision-making glial cell population.

The Sudoku initial condition input neuron popu-
lation establishes a one-to-one excitatory connection
(one_to_one_excite(input)) to the Sudoku board neuron pop-
ulation, allowing the initial condition to be represented on
the Sudoku board. For the Sudoku board neuron popula-
tion, describes rules of the Sudoku game by establishing
inhibitory connections (sudoku_rule_inhibit) within the pop-
ulations. For the Sudoku analysis and decision-making glial
cell population, enables glial cells to make a rule-based
analysis of the current state of the Sudoku board by estab-
lish excitatory connections (sudoku_rule_excite) internally
that satisfy the rules of Sudoku. The one-to-one excita-
tory connection (one_to_one_excite) established from the
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FIGURE 13. BGSNN Sudoku solver. A) Sudoku solver network population structure. B) Sudoku solver network structure (with the number
‘‘1’’ as an example): the Sudoku initial input neuron population will input the initial condition ‘‘1’’ into the known cell, then the ‘‘1’’ in
the same block, line and column will be inhibited, and the remaining numbers in the cell except ‘‘1’’ will also be inhibited. The ‘‘1’’ in
this cell transmits excitatory signals to the corresponding glial cell neurons, causing the glial cells to adjust accordingly, i.e., the ‘‘1’’ in
the same block, line, and column is excited, and the rest of the numbers in the cell except for the ‘‘1’’ are also excited. And it also
receives excitatory signals from the corresponding glial cells to make adjustments to the Sudoku board.

Sudoku board neuron population to the Sudoku analysis and
decision-making glial cell population can transmit the state
of the Sudoku board to glial cells for the perception of the
local state of the Sudoku board by glial cells. The one-
to-one excitatory connection (one_to_one_excite (adjust))
established from the Sudoku analysis and decision-making
glial cell population to the Sudoku board neuron population
enables to regulate the state of the Sudoku board neuron
population. The Sudoku solver network structure (with the
number ‘‘1’’ in a cell as an example) is shown in Fig. 13B. The
BGSNN Sudoku solver can directly infer to obtain solution
results without network model training.

B. EXPERIMENTAL RESULTS AND ANALYSIS
Two sets of data are used to verify the completeness of
BGSNN: the public 1 million-scale Sudoku dataset of kaggle
[39]; data form the Sudoku puzzle website [40] developed
by Easybrain. The following experiments were performed on
the Easybrain dataset: a) glial cells necessity evaluation; b)
the accuracy evaluation over runtime of the BGSNN Sudoku

solver; c) the BGSNNSudoku solver performance evaluation;
d) parallelism evaluation. The following experiments were
conducted on the kaggle dataset: a) the BGSNN Sudoku
solver solution accuracy evaluation; b) the network approach
Sudoku solver performance evaluation; c) sparsity evaluation.

Since there is no published research data related to SNN
solving Sudoku, this paper selects Sudoku solvers of tradi-
tional algorithms, deep learning algorithms and DNN meth-
ods as experimental control groups for comparison experi-
ments.

1) EASYBRAIN DATASET
The EasyBrain website provides five difficulty levels of
Sudoku puzzles: easy, medium, hard, expert, and evil. The
mean values of clues for each difficulty level are 37.33, 31.4,
28.26, 23.71, and 22.0, respectively. 150 Sudoku puzzles
(30 for each difficulty level) were selected as the dataset in
this paper. A total of three sets of controlled experiments
were conducted with this dataset to verify the necessity of
glial cells; to evaluate the performance of BGSNN Sudoku
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FIGURE 14. SNN Sudoku solver. A) Sudoku solver network population structure. B) Sudoku solver network structure (with the number
‘‘1’’ as an example).

FIGURE 15. Sudoku puzzle solving process: A) Sudoku puzzle initial conditions. B) spiking activity of Sudoku puzzle solving. Until a
solution to the Sudoku puzzle is solved, glial cells will fire spikes with Tg as the interval. The neurons that correlate to the board will
stay active throughout the solving process, while glial cells will help the equilibrium state arrive more quickly. When the equilibrium
state is attained, only the neurons matching the solution’s corresponding number will fire, leaving the other neurons inactive. C)
solution of Sudoku puzzle.

TABLE 1. Average accuracy of BGSNN solver and SNN solver at different difficulty levels.

solver; and to verify the superiority of parallel computing of
BGSNN.

a. Glial Cells Necessity Evaluation
A SNNSudoku solver, as a control group, was designed
based on the network structure of the BGSNN Sudoku
solver. This SNN network only lacks the glial cell
module compared to the BGSNN network, and the
schematic diagram of the network structure is shown
in Fig. 14.

We took a Sudoku puzzle of hard difficulty level
as an example as shown in Fig. 15. The Sudoku anal-

ysis and decision-making glial cell population were
adjusted for 15 iterations to finally bring the Sudoku
board neuron population to the expected state, i.e., the
correct solution.

The experiment uses the Easybrain dataset to run
the BGSNN solver and the SNN solver respectively,
then recorded the average computational accuracy of
Sudoku solvers at different difficulty levels, as shown
in Table 1.

It can be seen from the Table 1 that the SNN
Sudoku solver is difficult to solve correctly at the Hard
level and above, while the BGSNN Sudoku solver
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FIGURE 16. The accuracy over runtime of the BGSNN solver that the
answer can be completely and correctly solved.

can solve correctly at all difficulty levels under the
same conditions with a stable accuracy of over 99%.
Evil had an average of 1.71 fewer clue values than
Expert difficulty level, but the SNN Sudoku solver
accuracy was reduced by 20.41%. It is proved that
the accuracy of SNN solver without global regulation
depends greatly on the number of initial clues. The
difficulty in transmitting information throughout the
entire board to achieve overall balance without global
regulation may be the cause of this situation since
there are too many cells to fill in and a great distance
to cover.

The only difference between the two Sudoku
solvers was the glial cell structure. Therefore, the
experiments showed that the global information pro-
cessing and the plasticity of neurons brought by glial
cells can effectively help the network converge to the
correct answer, which verified the necessity of the glial
cell structure.

b. Evaluation of accuracy over runtime
The BGSNN Sudoku solver is a time-driven net-

work solver, and the network completes the solution
task through periodic iterations. To show how the accu-
racy of the BGSNN Sudoku solver varies with runtime,
we set the runtime to ten intervals, each interval is
30 in length, and a runtime has 1ms step size. Using
the Easybrain dataset, for each difficulty level, the
accuracy with which the BGSNN solver can fully solve
for the correct answer in each interval is counted. The
BGSNN Sudoku solver was tested on the dataset with
30 puzzles per difficulty level, for a total of 750 trials
(each puzzle was repeated 5 times).

Fig. 16 shows the accuracy of the BGSNN solver
in each interval that the answer can be completely and
correctly solved. The accuracy of the BGSNN solver
increases with the increase of runtime, and the most
difficult level, Evil, requires at most 300 runtimes to
complete the solution. Since the probabilistic stochas-

tic down-sampling function in the glial cell dynamics
model used in the experiment (see Appendix A for
details), there is stochastic in each initialization, and
poor initialization will lead to an increase in solution
time. Therefore, the accuracy curve is not completely
smooth, but maintains an upward trend. As with other
iterative algorithms, the accuracy of BGSNN increases
with the number of iterations until the task is com-
pleted.

c. the BGSNN Sudoku Solver Performance Evaluation
The BGSNN Sudoku solver is compared with

SOTA’s Sudoku algorithm for performance evalua-
tion. LSGA [41] is an evolutionary algorithm to solve
Sudoku and performs well in terms of accuracy and
convergence speed. The dataset used by LSGA in the
original paper is WebSudoku [42], which has four dif-
ficulty levels: Easy, Medium, Hard, and Evil, and the
mean values of clues for each difficulty level are 36.25,
30.75, 27.63, and 25.62, respectively. According to the
difficulty levels, this dataset can correspond to the first
four levels of Easybrain.

In the original paper, the number of generations
needed by LSGA to obtain the optimal solution is used
as an evaluation criterion, and this data is independent
of the hardware. BGSNN is a time-driven network
solver that iterates according to the period, and each
iteration updates the network state and parameters until
the correct solution is found, while the number of iter-
ation periods is hardware-independent. In the compar-
ison experiment, we consider one complete cycle of
BGSNN as a generation and evaluate the performance
with 100% accuracy guaranteed.

In this experiment, the BGSNN solver was tested
on the dataset for a total of 750 times (5 repetitions
per puzzle). The test results were compared with the
published test results of the LSGA solver, as shown in
Table 2. From the comparison results, it can be seen
that the LSGA solver requires a higher number of gen-
erations to find the correct solution than the BGSNN
Sudoku solver at all difficulty levels, and the BGSNN
can solve puzzles at higher difficulty levels. This proves
that the BGSNN Sudoku solver can converge faster
with guaranteed accuracy.

d. Parallelism Evaluation
The BGSNN Sudoku solver experiments run on

the ‘‘Wentian’’ neuromorphic prototype, which sup-
ports parallel computing. Parallel computing has sig-
nificant advantages over serial computing in multi-loop
complex problems, saving significant runtime and
reducing algorithmic time complexity. The backtrack-
ing algorithm uses depth-first search to solve the
Sudoku puzzle, traversing all the cells until the cor-
rect solution is obtained, which is a typical serial
logic algorithm; BGSNN supports parallel comput-
ing and can calculate multiple neuron spikes at the
same time.
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TABLE 2. The number of generations obtaining the optimal solution.

In this paper, a set of control experiments were
designed to compare the number of loops required by
the solver when solving the same Sudoku puzzle to
verify the advantages of parallel computing in time
complexity. There was no random function in the back-
tracking algorithm solver, and there was only one loop
count when a puzzle was completely solved. Since
there was a probabilistic random downsampling func-
tion in the spatiotemporal information integration and
processing module of the glial cell dynamics model
used by the BGSNN solver, it may have a different
number of loops for the same puzzle. To make the
results comparable, for one puzzle, the experiment was
repeated 10 times using the BGSNN solver, and the
average number of loops was compared with the results
of the backtracking algorithm solver. In particular, the
glial cell dynamics model in BGSNN was time-driven,
and one timestep could correspond to one loop in
the backtracking algorithm during hardware execution.
Experimental results are shown in Table 3.

In this experiment, to ensure the accuracy and
stability of the solution results, we assumed that the
BGSNN Sudoku solver correctly solved this puzzle
when the same result could be output stably for three
consecutive glial cell response cycles (Tg). Taking this
experiment as an example, Tg was set to 900ms, so the
number of BGSNN in the table was equal to the number
of loops required for the BGSNN solver to obtain the
correct solution, plus the length of the two additional
response cycles, that is, 1800. As can be seen from
Table 3, BGSNN can reduce the computation by at least
92% through parallel computing, which helps improve
the computing speed and reduce the computing cost.

2) KAGGLE DATASET
This dataset contains 1 million Sudoku puzzles with corre-
sponding solutions. After statistics, the maximum clue value
for this dataset was 37, the minimum was 29, and the average
was 33.81279. In this paper, three sets of controlled exper-
iments are conducted to verify the accuracy of the BGSNN
Sudoku solver on a large scale dataset; to verify the perfor-
mance of BGSNN compared with DNN on the same scale
dataset; to verify the superiority of BGSNN sparse comput-
ing.

a. Accuracy Evaluation of the BGSNN Sudoku Solver
The experiment ran the BGSNN Sudoku solver on this
1 million scale dataset, recorded the result of each

FIGURE 17. The solution accuracy of the BGSNN Sudoku solver under the
kaggle dataset.

solution and the solution accuracy. The correct solution
rate is shown in Fig. 17.

According to the experimental findings, the solu-
tion accuracy of the BGSNN Sudoku solver can reach
99.9999% with this dataset. In the 1 million-scale
dataset, the solution accuracy of two puzzles was
less than 100%, which were 90.1235% and 85.1852%
respectively. In this experiment, the upper limit of the
running time was artificially set to 20000ms. If the
upper limit was reached, the solver would automat-
ically terminate. Meanwhile, there is a probabilis-
tic stochastic down-sampling function in the glial
cell dynamics model used in the experiment (see
AppendixA for details).When the initialization is poor,
the solution time will increase accordingly.

In response to the above, three additional control
experiments were conducted for the two puzzles, and
the statistical solution accuracy was 100%. Therefore,
it was analyzed that in the first large-scale validation
experiment, the case where the accuracy does not reach
100% may be due to the poor random initialization,
resulting in the runtime exceeding the upper limit.

b. the different Approach Sudoku Solver Performance
Evaluation

Since the BGSNN Sudoku solver is a network
approach solver, several representative Sudoku solvers
are chosen from the various Sudoku solving algorithms
released in the kaggle dataset to evaluate the perfor-
mance of the BGSNN solver.
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TABLE 3. Number of loops of solving Sudoku puzzles.

TABLE 4. Comparison of BGSNN and DNN Sudoku solvers.

The accuracy of the backtracking solver is up to
100% [43] with O(n7) time complexity, but its compu-
tation is substantially greater than that of the BGSNN
solver. This analysis has been described in subsection
c of the Easybrain dataset.

‘‘Solve Sudoku with CNN acc 97%’’ [44] is cur-
rently published the DNN solver with the highest accu-
racy except for the backtracking algorithm. As the
control group, it used an 11-layer network structure,
including 8 convolutional layers, 2 fully connected
layers, and 1 softmax classification layer. The solver
used 12 epochs for training, each epoch size was 12500,
and the final training accuracy is 0.9617. The compared
results are shown in Table 4.

The table demonstrates that BGSNN outperforms
DNN in terms of accuracy, the number of layers,
and parameter quantity. The final solution accuracy
of the DNN model depends on the training data set
and training algorithm. If the data set or training algo-
rithm is inappropriate, the final accuracy will decrease.
BGSNN is different from DNN, the model supports
directly infer, so the final solution accuracy does not
depend on the training process. When the data samples
are insufficient, BGSNN can effectively resolve the
problem that the model cannot be trained, and provides
a new solution for small sample scenarios.

In addition, we chose ‘‘Sudoku Solver - 97.45%
Accuracy on 1M Games’’ [45], which employs a sys-
tematic approach and achieves 97.45% accuracy with-
out using neural networks, and its time complexity
is O(n6). However, this is still less than the 99.99%
accuracy of the BGSNN Sudoku solver.

c. Sparsity Evaluation
BGSNN transmits information in the same form

of spikes as SNN, and the sparse spike firing makes
its low computation. The BGSNN Sudoku solver runs
on the ‘‘Wentian’’ neuromorphic prototype, which sup-
ports sparse matrices instead of full matrices in com-
puting. Ran the BGSNN Sudoku solver on this 1 mil-
lion size dataset, and recorded all its sparse matrices
involved and the corresponding full matrices. The dif-
ference between the average computation of the two
was counted as the reduction of computation by sparse

TABLE 5. Comparison of BGSNN and DNN Sudoku solvers.

computing of BGSNN compared with the equal fully
dense DNN. The experimental results are shown in
Table 5.

According to the experimental findings, BGSNN
can reduce roughly 88% of the computation through
sparse computing, which contributes to lowering com-
puting costs and increasing computing speed.

V. CONCLUSION
In Summary, this paper proposes a novel Spiking Neural Net-
work, called Blended Glial Cell’s Spiking Neural Network
(BGSNN), which is inspired by the glial cells. BGSNN intro-
duces glial cells and four corresponding network dynamics
connection models, thus realizing the modification of neural
node and synaptic connection, improving the capability of
the network in deep local information processing and global
information integration, and enhancing the expression abili-
ties of the network.

In experiments, based on the ‘‘WenTian’’ neuromorphic
prototype, this paper instantiates dynamics models of glial
cell and neuron based on the application scenario, and design
the BGSNN Sudoku solver and series of experiments to
evaluate on the Easybrain and kaggle datasets. The solution
accuracy of the BGSNN solver exceeds 99% on all datasets.
With 100% accuracy, the BGSNN solver improves accuracy
by over 97% over the same structure SNN solver at the evil
difficulty level in the Easybrain dataset, demonstrating the
need for glial cells. In the performance evaluation, compared
with the SOTA Sudoku solver LSGA, the BGSNN Sudoku
solver has a faster converge speed. It also achieves over 99%
accuracy on the million-level dataset, which is 3.82% better
than the publicly available optimal DNN solver on the same
dataset. BGSNN performs well in sparsity and parallelism
experiments. BGSNNN improves sparsity by about 88% over
the equal fully dense DNN and reduces computation by at
least 92.9% compared to the serial logic algorithm.

During the experiments, it has been demonstrated that
in the absence of multi-dimensional information processing
mechanisms and the global information interaction mecha-
nism, neurons can only communicate with the neurons con-
nected to them. When the network size is large, this kind
of transmission process limits disconnected neurons from
efficiently transmitting the distal information since there is
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attenuation in the transmission of spikes. BGSNN has the
ability of global regulation and secondary processing of infor-
mationwhile solving the bottleneck of the single-dimensional
information processing mechanism, which can significantly
improve the quantity and quality of information. And it has
a more diversified network structure while maintaining the
advantage of SNN parallel sparsity, which can effectively
improve the expression ability of the network and realize
more advanced artificial intelligence.

APPENDIX A
INSTANTIATION OF BGSNN
The BGSNNvariant GLIFmodel of the LIF (Leaky integrate-
and-fire model) model [46] was chosen as the neuronal
dynamics model applied in the experiments of this paper, and
a mean disbursement strength encoding bandpass conduction
error feedback glial dynamics model (mEIC_bPT_eFB) was
proposed. The parameter setting of this model is shown in
Table 6.

A. GLIF MODEL
1) NEURONAL SPIKE EVENT PROCESSING MODULE
As the spatiotemporal information computing unit, after the
neuron receives the spike event, the spike input of the neu-
ronal spatiotemporal information integration and process-
ing module is obtained through calculation, which can be
expressed as (8):

Nn(t) =

n∑
i=1

wi × Si(t). (8)

where wi represents the weight of the ith fan-in synapse, Si
representing the input spike event.

2) GLIAL ION EVENT PROCESSING MODULE
After the neuron receives the glial ion event through the glial
ion connection channel, it will correspondingly change its
state parameters to realize neuron plasticity, as shown in (9):

Pn(t) = Pn(t − 1) +

n∑
i=1

wgni × Ogni (t). (9)

where Pn(t) denotes the dynamic parameters of neurons
adjusted by glial ions at time t; Pn(t−1) denotes the dynamic
parameters of neurons adjusted by glial ions at time t-1; wgni
denotes the weight of the glial ion connection; Ogni denotes
the glial ion output event of the brain glial cell, given by the
glial ion event in the spatiotemporal information integration
processing module of the glial cell model.

3) NEURON SPATIOTEMPORAL INFORMATION
INTEGRATION AND PROCESSING MODULE
The mathematical expression of the module is shown in (6),
where the neuron model is chosen as the LIF model, whose

first order differential equation is described in (10): τm
dv
dt

= RmI−V + Vrest , V < Vth ∪ (t ∈ Tr )

V (t) = Vreset , V ≥ Vth ∪ (t /∈ Tr ).

(10)

where τm = RmCm is called the membrane time constant; I
is the sum of the synaptic currents generated by the firing
behavior of the individual presynaptic neurons. When the
membrane potential V is greater than or equal to the threshold
potential, the neuron immediately generates excitation and
fire a spike that accompanies the conduction of the action
potential, while resetting the membrane potential to Vreset ,
and holding it during the absolute refractory period (Tr ).

4) GLIAL PROTRUSION EVENT PROCESSING MODULE
After a neuron receives a glial protrusion event through the
glial protrusion connection channel, the weight of the neuron
synapse changes as shown in (11):

w(t) = w(t − 1) +

n∑
i=1

wgpi × Ogpi (t). (11)

whereW (t) represents the synaptic weight of neurons at time
t;W (t − 1) represents the synaptic weight of neurons at time
t-1; Ogp denotes the glial protrusion events of glial cells,
given by the glial protrusion events in the spatiotemporal
information integration processing module of the glial cell
model. wgp denotes the glial protrusion connection weights.

B. mEIC_bPT_eFB MODEL
Based on the framework of brain glial cell model and
combined with practical engineering experience, this paper
proposes a mean disbursement strength encoding band-
pass conduction error feedback glial dynamics model
(mEIC_bPT_eFB). The driving method of this model
adopts a time-driven approach, i.e., the state judgment and
event firing are made only when a specific time period
arrives.

1) GLIAL PROTRUSION EVENT PROCESSING MODULE
Ing denotes the input current value of neuronal ion channels
in glial cells, as shown in(12):

Ing =

{
0, t%Tg ≥ Tng
II (t,Tng), t%Tg ≤ Tng.

(12)

where t denotes the current time, Tng denotes the informa-
tion processing period from the neural network to the glial
cells; Tgg denotes the information processing period from
the glial network to the glial cells; Tgn denotes the infor-
mation processing period from the glial cells to the neural
network.
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TABLE 6. Parameter setting of BGSNN Sudoku solver.

2) GLIAL GAP EVENT PROCESSING MODULE
Igg denotes the input current value of glial gap channels in
glial cells, as shown in (13):

Igg =

{
0, t%Tg < Tng ∪ t%Tg > (Tng + Tgg)
II (t,Tgg), t%Tg ≥ Tng ∩ t%Tg ≤ (Tng + Tgg).

(13)

where t denotes the current time, Tng denotes the information
processing period from the neural network to the glial cells;
Tgg denotes the information processing period from the glial
network to the glial cells; Tgn denotes the information pro-
cessing period from the glial cells to the neural network.

The channel input current values II (t,T ) in (12) and (13)
are used to extract information about the input spike events,
which are encoded by the average release intensity as shown
in (14):

II (t,T ) =


0, t%T = 0∫ t

t−(t%T )

⃗s(t) · W⃗
T

dt, t%T > 0.
(14)

where ⃗s(t) is a 1 × k-dimensional vector representing the k
fan-in connections of the glial cell at the current moment of
binary spike input, where the convention is ‘‘0’’ for no spike
and ‘‘1’’ for the opposite. W⃗ is a k × 1-dimensional vector
representing the weight size of the k fan-in connections of
the glial cell, and T indicate the time window size.

3) SPATIOTEMPORAL INFORMATION INTEGRATION AND
PROCESSING MODULE
The mathematical expression of the mEIC_bPT_eFB model
is (15), as shown at the bottom of the page, where ⃗Oglial is
the output vector of glial cells, Ogg for the output of glial gap
channels,Ogn for the output of glial ion channels, andOgp for
the output of glial protrusion channels.
Vm(Ing, Igg) in (15) is the information integration function

of glial cells, which is used to represent the membrane poten-
tial of glial cells, as shown in (16), where Rng is the neuronal
ion channel input resistance and Rgg is the glial gap channel
input resistance.

Vm(Ing, Igg) = Rng × Ing + Rgg × Igg. (16)

⃗Oglial(t, Ing, Igg) =

OggOgn
Ogp

 =



0
0
0

 , t%Tg < TngmSIC(bP(Vm(Ing, Igg)))0
0

 , t%Tg ≤ (Tng + Tgg) ∩ t%Tg ≥ Tng 0
mSIC(eFB(Igg,Vm(Ing, Igg)))
mSIC(eFB(Igg,Vm(Ing, Igg)))

 , T%Tg > (Tng + Tgg)


. (15)
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mSIC(x) in (15) represents the average pulse release inten-
sity encoding function, as shown in (17):

mSIC(x) =

{
0, x < 0
pS(x), x ≥ 0.

(17)

where x denotes the value to be encoded at the current
moment of the type of channels, and pS(x) is a function that
determines with probability whether to fire a spike or not,
and is used to encode the information to be delivered in the
form of a spike event, as shown in (18). Where Vsa denotes
the saturation threshold and RAND(0, 1) is a function that
generates a random number in the range (0,1).

pS(x) =

{
0, x/Vsa < RAND(0, 1)
1, x/Vsa ≥ RAND(0, 1).

(18)

bP(x) in (15) is a bandpass filter function for processing
local spatiotemporal domain information i.e., to obtain valid
local neuronal population activity information and diffuse
it to other regions of the glial cells. The trapezoidal filter
function is used here, as shown in (19), by setting the a, b, c, d
parameter, the glial cells can select or filter the specific
neuron activity information.

bP(x) =



0, x ≤ a

x ×
x − a
b− a

, a < x < b

x, b ≤ x ≤ c

x ×
x − d
c− d

, c < x < d

0, x ≥ d .

(19)

In (15), eFB(i, v) is the error feedback calculation function,
which is used to process the global spatiotemporal informa-
tion, and in turn adjust the local neuron population activ-
ity, as shown in (20); where S(i) is the switching function,
as shown in (21), Ith is the effective current threshold of the
glial gap input; where D(v) is the error correction function,
as shown in (22),P is the feedback polarity coefficient, andVe
is the expected average spike firing intensity value, Vthreshold
is the minimum effective information threshold.

eFB(i, v) = S(i) × D(v). (20)

S(i) =

{
0, i < Ith
1, i ≥ Ith.

(21)

D(v) =

{
0, v < Vthreshold
max(0,P× (Ve − v)), v ≥ Vthreshold .

(22)
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