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ABSTRACT The development of salient object detection is crucial in ubiquitous applications. Existing
state-of-the-art models tend to have complex designs and a significant number of parameters, prioritizing
performance improvement over efficiency. Hence, there pose significant challenges to deploying them
in edge devices. The intricacy in these models stems from the complicated encoder-decoder that
aims to effectively generate and integrate coarse and semantic features. To address this problem,
we introduced EC2Net, an efficient attention-based cross-context network for salient object detection.
To start with, we introduce the shallow crossed-context aggregation (SCCA) mechanism to enhance
and preserve object boundaries for shallow layers. We introduced a deep cross-context aggregation
(DCCA) mechanism to enhance semantic features in deep layers. Subsequently, we introduced the dual
cross-fusion module (DCFM) to efficiently merge shallow and deep features. The proposed modules
complement each other, enabling EC2Net to accurately detect salient objects with reduced computational
overhead. Through experiments on five standard datasets, the proposed method demonstrated competitive
performance while utilizing fewer parameters, FLOPS, and memory storage than other resource-intensive
models.

INDEX TERMS Attention mechanism, convolutional neural network, EC2Net, salient object detection.

I. INTRODUCTION
Salient object detection (SOD) has attracted a lot of research
attention over the years as its primary aim is to mimic
the human visual system by identifying the most visually
prominent objects in an image. This field of research has
found applications in various fields, such as segmentation,
image tracking, image retrieval, image editing, and scene
classification [1], [2], [3], [4], [5]. Conventional SOD
models mainly rely on handcraft features to extract low-level
information to derive saliency maps in top-down and bottom-
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up pathways [6], [7], [8], [9], [10]. Although these models
can locate salient objects, the absence of global semantic
information makes it challenging to detect salient objects
accurately in complicated scenes. Recently, substantial
advancements for SOD have been made in the deep-learning
era with the help of large-scale datasets. Among of deep-
learning techniques, convolution neural networks (CNN)
provide end-to-end trainable neural networks, conquer the
limitations in traditional models and substantially accelerate
the accuracy of salient object detection. Especially, Fully
Convolutional Neural Networks (FCNs) [11] can perform
dense prediction on input images of any size has captured
the attention of researchers. This architecture enhances the

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 39845

https://orcid.org/0000-0002-6539-2725
https://orcid.org/0000-0002-6080-9720
https://orcid.org/0000-0003-0184-6975
https://orcid.org/0000-0002-8804-2787


N. T. Thu et al.: EC2Net: Efficient Attention-Based Cross-Context Network for Near Real-Time SOD

receptive field by stacking multiple convolution and pooling
layers, which produces intricate features at multiple levels.
Besides, the features aggregation mechanism also becomes
an important part of SOD models. Since high-level features
are abundant in semantic features for localizing objects, but
they lack fine details, whereas low-level features are rich in
preserving object boundaries but lack semantic information.
Therefore, an efficient mechanism such as Feature Pyramid
Networks [12] has been proposed to aggregate these two
features for detecting salient objects. However, the advance-
ments of these models [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35] come with a computational
burden as they have large-size models, huge parameters,
a high number of FLOPS and difficulties in deploying in
edge devices. Particularly, existing models adopt encoder-
decoder architecture with robust backbones, comprising
multiple layers to extract both shallow and deep features, and
utilizing a complex feature integration mechanism. However,
this leads to a high number of parameters and computational
complexity. For example, DGRL [23] has 161M parameters,
requires 646MB to store the model in memory, and has a high
computational cost (191.28G FLOPS). EGNet [30] has 108M
parameters, 432MB memory disk. Therefore, the heaviness
of these models makes them less suitable to deploy in edge
devices. As the result, this necessitates the development of
an efficient and lightweight method for SOD that balances
accuracy and efficiency.

Several approaches have been proposed to develop a
lightweight model for classification tasks (MobileNet [36],
ShuffleNet [37]). However, merely applying these networks
is not sufficient for salient object detection because they have
few layers and are not optimized for SOD tasks. As evident
from these networks, the lack of features in multi-level
restricts their ability to accurately detect salient objects.

Based on our analyses, we have developed EC2Net,
which comprises several modules for feature enhancement.
We have introduced the shallow crossed-context aggregation
mechanism (SCCA) to enrich features in shallow layers.
We have introduced the deep crossed-context aggregation
mechanism (DCCA) that enhances semantic features in
deep layers. We have incorporated the parallel separable
compact enhancement (PSE) module to capture multi-scale
features. Finally, we have incorporated the dual cross-
fusion mechanism (DCFM). Our proposed model efficiently
complements feature representations in both shallow and
deep layers by leveraging attention mechanisms. These
modules work together to create a compact architecture
that can accurately detect salient objects while reducing
computational overhead and the number of parameters. The
main contribution is as follows:

- We propose the shallow crossed-context aggregation
mechanism that employs channel attention and residual
spatial attention to recover and enhance low-level features for
preserving boundary information.

- We present the deep crossed-context aggregation mech-
anism module that employs the lightweight self-attention

mechanism to enhance semantic features and locate objects
accurately.

- We present the dual cross-fusion module that employs
criss-cross attention to merge features from shallow to
deep layers that consider the inter-relationship between two
features.

- With these proposed modules, we introduced EC2Net
architecture for salient object detection and conducted several
experiments on various datasets to demonstrate its efficiency
compared to other methods.

The structure of this paper is summarized as: in section II
we provide an overview of related works, then section III
presents the proposed model and the details of each
component. Section IV covers the experiment results on
various datasets, while Section V examines the proposed
modules through an ablation study. Finally, the conclusion
can be found in Section V.

II. RELATED WORKS
A. SALIENT OBJECT DETECTION METHODS
In the last decades, conventional approaches have derived
visual information from handcrafted features like local and
global contrast [7], [8], prior cues [9], low-rank matrix
recovery [10], etc. While these techniques demonstrate
good performance, their lack of robust semantic information
leads to lower accuracy in identifying prominent objects
in complex scenes. Recently, CNN-based models have
surpassed handcrafted models due to their powerful capa-
bility in extracting robust semantic features. With continued
advancements, numerous models have been proposed and
have demonstrated outstanding performance in salient object
detection. FCN-based models are favored over other models
due to their ability to generate multi-level features, which
is the pioneer that has garnered significant attention in the
research community [11], [18], [19], [20], [23], [24], [27].
Luo et al. [18] employed a multi-level grid to integrate
both local and global information. Amulet [19] incorpo-
rated features in a multi-level manner at multiple res-
olutions to enhance the feature aggregation mechanism.
UCF [20] addressed model uncertainty by incorporating a
re-formulated drop-out mechanism after designated convo-
lutional layers. Wang et al. [23] have introduced a recurrent
mechanism to enhance the feature maps through multiple
iterations. Additionally, Zhuge et al. [35] introduced a
new feature aggregation mechanism to combine features
with different receptive fields and enhance feature diversity.
While these methods have improved performance, they
are associated with high computational complexity, slow
inference speed, and largemodel size. These limitationsmake
it difficult to implement these large-scale methods in edge
applications. Our motivation for this work stems from the
necessity to devise a solution for salient object detection that
achieves a balance between accuracy and efficiency.

With the growing use of deep learning in edge AI
environments, there has been a surge in the development
of lightweight CNN models to enhance the efficiency of
salient object detection. CPD [38] used a partial decoder
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FIGURE 1. The overall architecture of EC2Net. The SCCA module efficiently enhances and aggregates features in shallow layers, PSE module captures
multi-scale context while the DCCA module refines semantic context in deep layers. The dual cross fusion mechanism (DCFM) aggregates both features
using an attention mechanism before generating the saliency map.

to filter out features from shallow layers and utilize
the initial map to refine the features. PoolNet [33] uses
pyramid pooling to merge deep semantic information with
shallow features based on the Feature Pyramid Network
(FPN) structure. U2Net [39] proposes a residual U-block
to increase network depth and capture more contextual
information without significantly increasing computational
costs. HVPLNet [40] introduces a hierarchical perception
module designed to mimic the structure of the primate visual
cortex. SAMNet [41] developed a stereoscopic attention
mechanism as a basic unit for their framework for effective
multi-scale learning. They are some of the lightweight CNN
models that have been developed to balance performance and
efficiency in salient object detection. Although these methods
have made improvements in reducing complexity, the limited
architecture of the lightweight models still constrains their
accuracy performance.

B. ATTENTION IN SALIENT OBJECT DETECTION
Numerous deep-learning models in computer vision have
employed the attention mechanism for refining features.
Multiple research studies have endeavored to enhance the
performance of various baseline models by incorporating
attention modules. Woo et al. combine channel and spatial
attention in a sequential manner in their CBAMmodule [42].
Hu et al. [43] introduced the SE attention mechanism
which considers channel inter-dependencies by embedding
global information in each channel using its contextual
information. Self-attention has been successfully recognized
for its capacity to capture global information in natural
language processing [44]. Huang et al. [45] devised a new
attention mechanism, which acquires contextual informa-
tion and reduces computational complexity for semantic
segmentation. Besides, numerous attention mechanisms have

been employed in salient object detection, demonstrating
encouraging outcomes. SAMNet [41] utilized attention
modules as fundamental building blocks for learning features
at multiple scales and levels. Wang et al. [46] provide a hier-
archical attention mechanism to explore multi-scale saliency.
Chen et al. [26] introduce reverse attention to guide the side-
out residual learning. Zhang et al. [47] introduced a bilateral
attention mechanism to complement attentive features in
background and foreground regions for RGB-D images.
Through the use of these techniques, it has been demonstrated
that the inclusion of an attention mechanism can improve
a network’s ability to detect significant objects. Despite
these models, we employ multiple attention mechanisms to
capture cross-context in both shallow and deep layers. They
complement each other to enhance the features in a cross
manner.

III. THE PROPOSED METHOD
A. OVERVIEW OF NETWORK ARCHITECTURE
After analyzing the limitations of current heavy models,
we propose a framework that effectively leverages multiple
attention mechanisms to enhance and combine features
from coarse to fine, resulting in improved efficiency and
reduced computational overhead. Our proposed network,
called EC2Net, as illustrated in Figure 1, is built on
Resnet-50 [48] as the feature extraction backbone. We have
eliminated the fully connected layers and final pooling to
customize the backbone network for SOD. The input image
is fed into the encoder backbone for feature extraction,
which produces five feature layers, denoted as Fi, where i
∈ {1,. . . ,5}. To reduce the number of channels, we apply
1 × 1 convolution on all five layers. First, we design a
shallow crossed-context aggregation mechanism (SCCA) to
efficiently capture and enhance cross features in shallow
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FIGURE 2. The architecture of shallow crossed-context aggregation
(SCCA) mechanism.

layers. Secondly, in order to supplement multi-scale semantic
information for locating salient objects accurately, we use the
parallel separable compact enhancement (PSE) followed by a
deep cross-context aggregation (DCCA) module to enhance
high-level features. In the end, a dual cross-fusionmechanism
(DCFM) is utilized to combine two branches of features for
generating the final saliency map.

B. SHALLOW CROSS CONTEXT AGGREGATION
MECHANISM (SCCA)
To effectively detect salient objects, it is crucial to capture
detailed spatial information from shallow layers. However,
downsampling operation in the encoder can significantly
damage the spatial features obtained from these layers.
To overcome this issue, we propose an SCCA mechanism
to recover and aggregate discriminative features in shallow
layers effectively. As depicted in Figure 2, SCCA comprises
two attention modules followed by a cross-aggregation
operation.

Due to the fact that prominent objects are typically
situated in the foreground areas, indiscriminately treating
all spatial pixels as equal can result in incorrect detections.
Moreover, different channels provide different contextual
information, so treating all channels in the same manner, can
lead to inaccurate outcomes. Hence, to extract the optimal
features in shallow layers, we use cross-aggregation operation
on channel-wise attention (CA) and residual spatial-wise
attention (RSA) respectively.

First, the CA module calculates a channel-wise attention
map by considering the inter-correlation among different
channels [43].We use the second layer F2 to compute channel
attention features Fca as below formula:

ca = σ (FC(GAP(F2))) (1)

Fca = F3 × Sigmoid(ca) (2)

where GAP is the global average pooling, FC performs the
dimensional reduction on the output of GAP, and σ is the
ReLU activation function. Next, we use the third layer F3 to
calculate the spatial-wise attention features Frsa. RSAmodule

FIGURE 3. The architecture of parallel separable compact enhancement
(PSE) mechanism.

helps highlight important features at each spatial location.
Particularly, the process of RSA is followed as:

sa = conv3(GAP(F3) + GMP(F3)) (3)

Frsa = conv3(F × Sigmoid(sa)) + F3 (4)

where GAP and GMP denote the global average pooling
and global max pooling respectively, and conv3 denotes
3 × 3 convolution, followed by Batch Normalization (BN)
and ReLU activation function.

Finally, the SCCA module aggregates the above attentive
features to capture cross-context in shallow layers. Since
low-level features carry more abstract information and
mid-level features contain less semantic but more detailed
information. We combine two feature maps in a cross
manner to complement feature representations in low andmid
features, resulting in enhanced quality of the output features.
The two outputs from two attention modules are denoted
as Fca ∈ RH×W×C , and Frsa ∈ R

H
2 ×

W
2 ×1. To account

for the difference in spatial resolutions between Fca and
Frsa, we apply upsampling and downsampling operations
before the crossing process. Specifically, we upsample Frsa
to the same size as F2, resulting in dimensions of RH×W×1.
Similarly, we downsample Fca to the size of F3, resulting in
dimensions of R

H
2 ×

W
2 ×C . We then multiply these features in

a cross manner as depicted in Fig.2. Then, we concatenate the
output from two branches and 1×1 convolution to reduce the
number of channels, before using another 3 × 3 convolution
followed by BN and ReLU functions to refine the features.
The crossing aggregation process is summarized below:

Fsca1 = upsample(Frsa) × F2 (5)

Fsca2 = downsample(Fca) × F3 (6)

Fscca = σ (BN (conv3(conv1(Fsca1 + upsample(Fsca2)))))
(7)

By using the SCCA module, we can obtain a richer feature
representation while preserving fine-grained information in
shallow layers. Moreover, the attention-based concept helps
reduce noise and recover lost information more effectively.
The output of this module is denoted as Fscca.

C. PARALLEL SEPARABLE COMPACT ENHANCEMENT
(PSE) MECHANISM
Salient objects can manifest in various sizes and shapes in
real-world scenarios. Previous methods have utilized pooling
layers to obtain features in a multi-scale manner, which may
not effectively handle complicated structures with accuracy.
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FIGURE 4. The architecture of deep cross-context aggregation (DCCA)
mechanism.

To address this, we introduced the parallel separable compact
enhancement module (PSE) that efficiently emphasizes
important semantic features and captures multi-scale context.
As depicted in Fig.3, the PSE module is motivated by
the structure of ASPP+ [49]. Since different channels
provide distinct contextual information, we employ channel
attention to generate an attention map by analyzing the inter-
correlation among different channels, as in equations (1)
and (2). The enhanced features are then separated into four
parallel branches to capture multi-scale features. We employ
dilated separable convolution in this module to leverage its
advantage of both dilated and separable convolutions. Dilated
convolution extends the receptive field block, allowing for
the capture of multi-scale semantic features, while separable
convolution [50] factorizes the convolution into two smaller
convolutions, resulting in a more efficient operation with
fewer computations.

The first branch of PSE module contains a 3×3 depthwise
separable convolution, the last three branches contain a
3 × 3 depthwise separable convolution, a 1 × 1 convolution,
and a 3×3 dilated separable convolution with different rates.
We insert 1×1 convolution in between two 3×3 convolutions
is to reduce the number of input channels to the next
3 × 3 convolution layer. After each convolutional layer,
we apply BN and ReLU functions. We use three 3×3 dilated
separable convolutional layers with a dilation rate of 3,5,7,
respectively. This helps to expand the receptive field block
and capture multi-scale context without increasing the kernel
size. The three outputs are concatenated with the input
features before being passed through a 1 × 1 convolution
layer to obtain the final features, resulting in the multi-scale
features denoted as Fpse.

D. DEEP CROSS-CONTEXT AGGREGATION (DCCA)
MECHANISM
After capturing multi-scale features from the PSE module,
we possess valuable semantic information using DCCA
module to capture the cross-context in deep layers. This help
enhance the global context that plays a vital role in accurately
detecting significant objects. First, we introduce a lightweight
self-attention module to filter rich semantic features in two
deep layers separately. Later, we generate the cross-context
in high-level features by aggregating their output in cross-
manner. The visualization of DCCA is depicted in Figure. 4.
In several vision-related tasks, researchers have found

self-attention to be a successful approach for capturing

long-range dependencies. Nevertheless, the computational
complexity of self-attention can be challenging, particularly
in lightweight models, as it computes attention maps for all
pairwise positions. To enable efficient salient object detec-
tion, we have integrated a lightweight self-attention module
that can extract global information in high-level features
and overcomes the challenge. The traditional self-attention
approach, described in Vaswani et al.’s work, operates on an
input feature image X∈ RH×W×C , where H,W, and C denote
height, width, and number of channels, respectively. In this
approach, 1 × 1 convolutions are employed to transform the
feature map X into three sub-spaces, designated as Q, K,
V ∈ RH×W×C ′

, where C’ is the reduced number of channels
compared to C. Subsequently, a weight matrix is obtained by
calculating the correspondence between all positions in Q and
K, resulting in a similarity matrix A ∈ RHW×HW . The weight
matrix A is then normalized using a soft-max function and
utilized to linearly combine the values in the V sub-space,
which generates the output of the self-attention layer. This
mathematical process can be expressed as follows:

Hsa = Softmax(QTK )V (8)

In the above equation, A = σ (QTK ), and A ∈ RHW×HW .
To obtain the self-attentionmap, the features V and theweight
matrix A are multiplied and summed. The time complexity
of calculating the weight matrix A using conventional self-
attention is O(C ′H2W 2), with the dot products between
every pair of input representatives being the dominant factor.
To reduce the complexity of computing A, after performing
1 × 1 convolution to transform input feature to sub-spaces,
we use a 3 × 3 convolution with strides 3 to perform spatial
dimensional reduction on K and V vectors. The number of
pixels in the weight matrix A is reduced from HxW to P,
where P is smaller than HxW. Given the input from the
PSE module, the mathematical equation for the lightweight
version of self-attention can be presented as follows:

Hlsa = σ (QT d(K ))d(V ) (9)

Flsa = Hlsa + Fpse (10)

where d denotes the 3 × 3 convolution with stride 3. The
attentive features Hlsa are then connected to the input itself,
followed by the loop-edge embedding concept for intra-
attention [51]. In this way, the time complexity of the total
process is scaled down from O(C ′H2W 2) to O(C ′HWP).
This process facilities the use of self-attention on resource-
constrained devices.
After processing self-attention on the output of PSE

module, we got two outputs Flsa1 and Fls2 respectively.
To produce the cross high-level features denoted as Fdcca,
we multiply two features Flsa1 and Flsa2 with the input
features F4 and F5 in a cross manner to complement semantic
information in deep layers. The concatenated features are
processed through 1 × 1 convolution to generate the output
Fdcca. The whole process is described below:

Fdcca = conv1(Flsa1 ∗ F5 + Fla2 ∗ F4) (11)
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E. DUAL CROSS FUSION MODULE (DCFM)
Shallow layers offer local details that preserve object
boundaries and fine-grained information, while deep layers
provide more semantic features to extract salient objects.
Although shallow layers provide less semantic information,
they are still valuable in conjunction with the high-level
information provided by deep layers. Consequently, feature
fusion has become a crucial component in integrating
different levels of features in SOD. A simple combina-
tion operation such as element-wise or concatenation can
ignore the relationship between these two features and
introduces the loss of semantic features and the degra-
dation of object boundaries. By considering this issue,
we designed a dual cross-fusion mechanism (DCFM) to
employ the inter-correlation between shallow and deep
features. We employ a criss-cross attention [45] mecha-
nism to aggregate both features by reweighting the fusion
process.

As shown in Figure 5, we modify the original version
of criss-cross attention by using two input features. Given
feature maps Fscca ∈ RH×W×C and Fdcca ∈ R

H
4 ×

W
4 ×C ,

we upsample Fdca to the same size as Fscca before sending
to DCFM module. Then we apply 1 × 1 convolutions to
calculate key (K) and value (V) Fdcca and calculate query
(Q) from low-level features Fscca. Where query Q and Key
V ∈ RH×W×C ′

and C’ has fewer channels. After generating
Q and K, we compute the feature map 3, where 3 measures
the correlation energy between the two features in horizontal
and vertical directions. First, we calculate Qz ∈ RC ′

at each
spatial position z in features Q and the set ωz by generating
features from the key vector K that has a similar position with
position z, where ωi,z ∈ RC ′

is the components of ωz. The
affinity operation is calculated as follows

3iz = Qz(ωi, z)T (12)

where 3i,z refers the correlation energy between Qz and ωi,z.
Then we apply the Softmax function to the energy matrix 3

over the horizontal and vertical dimensions to generate the
attention map D. Similarly, we obtain vector Vz and the set
υz from features map V. The final feature attention is finally
obtained as below equation:

F ′
z =

∑
i∈|υz|

Di, zυi, z (13)

where F’z ∈ RH×W×C is the features vector at position z in
the output feature F’. Di,z is the scalar value at channel i and
position z in A. The attention features are added to the input
features Fdcca before sending to 3 × 3 convolution to refine
the feature representation, as below equation

Fdcfm = conv3(F ′
z + Fdcca) (14)

F. LOSS FUNCTION
A loss function is a crucial element in SOD, as it assesses
how well the algorithm performs on the experimental dataset.
Binary cross-entropy (BCE) [52], also called log loss, is a

FIGURE 5. The architecture of dual cross fusion mechanism (DCFM).

frequently used loss function in SOD tasks. It measures the
discrepancy between the predicted output and the true binary
label (0 or 1) for each sample in a dataset. In this work, we use
this binary cross-entropy formula that can be represented as:

Lbce = −

H∑
i=1

W∑
j=1

G(i, j) log(S(i, j))

+ (1 − G(i, j) log(1 − S(i, j) (15)

IV. EXPERIMENTS AND RESULTS
A. DATASETS
We performed a comprehensive performance evaluation
of our proposed approach on five prominent benchmark
datasets: ECSSD [53], DUT-OMRON [54], HKU-IS [55],
SOD [56], and DUTS [57].

The ECSSD dataset, an Extended Complex Scene Saliency
Dataset, consists of 1000 images that showcase complex
textures and structures similar to real-world scenarios. The
SOD dataset comprises 300 images with their corresponding
labels. The DUTS dataset has two subsets: DUTS-TR,
a training set with 10,553 images, and DUTS-TE, a testing
set with 5019 images, both of which exhibit complicated
scenes. The DUT-OMRON dataset comprises 5019 images
with varying content and complex backgrounds. Lastly, the
HKU-IS dataset includes 4447 images featuring multiple
salient objects under low-contrast conditions.

B. IMPLEMENTATION DETAILS
We implemented EC2Net using Pytorch 3.8 and conducted
experiments on Ubuntu PC, using Geforce GTX 1080 GPU.
EC2Net is trained on the DUTS-TR dataset using the Adam
optimizer, with parameters set as a weight decay of 5e-3,
learning rate of 5e-5. To avoid model overfitting, we employ
data augmentation strategies such as random cropping,
flipping, and normalization. All images are scaled to the
size 336 × 336 during the training and testing process. Our
network converged in 45 epochs, which took approximately
9 hours to train from scratch.

C. EVALUATION METHODOLOGY
We assess the performance of our approach from two
perspectives: performance and efficiency. Given both N
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TABLE 1. The performance comparison of existing methods and state-of-the-art methods in terms of F-measure, Mean Absolute Error(MAE), and
S-measure. ↑ (↓) indicates higher (lower) values are better.

FIGURE 6. The visualization of the efficiency comparison, shows the trade-off between accuracy and efficiency. F-measure is averaged on five
datasets. Our proposed method is marked as a big brown circle.

TABLE 2. The efficiency comparison of State-of-the-art methods and
EC2Net on four metrics #Params, FLOPS, FPS and Size (MB).

(predicted saliency map) and G (ground truth map) are within
the range of [0,1], the Mean Absolute Error (MAE) [7] value
is calculated using the following equation::

MAE =
1

Width× Height

Width∑
i=1

Height∑
j=1

|N (i, j) − G(i, j)| (16)

A smaller MAE value indicates better performance. The
F-measure [58] is a measure to combine precision (p) and
recall (r) into a single score. The MaxF score is calculated
from the maximum F-measure value obtained across all
images in each dataset. A higher F-measure value indicates
better performance. The definitions for F-measure are
provided below:

Fβ =
(1 + β2)rp
β2 ∗ p+ r

(17)

where β is set as 0.3 to maximize the precision. Finally,
S-measure [59] assesses structural information that cannot be
captured by pixel-based metrics such as precision and recall.
S-measure is defined as:

Smeasure = λ × S0 + (1 − λ) × Sr (18)

where S0 measures the objectness of the predicted saliency
map and Sr measures the region similarity. We set λ = 0.5.
A higher value of S-measure indicates that the model has
better structural performance.

Besides, we evaluate the effectiveness of EC2Net in
comparison to other models based on several metrics,
including the number of parameters (#Params), FLOPS,
inference speed (FPS), and size (MB). FLOPS represents a
measure of the computational complexity of themodel, where
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FIGURE 7. The qualitative comparison between EC2Net and state-of-the-art SOD methods. Our proposed network has good accuracy and fine boundary
compared to others.

a higher FLOPS value corresponds to a more computationally
intensive model. Size refers to the amount of memory
required to store the network, while FPS denotes the number
of frames processed by the model per second. #Params are
measured in Mega (M), whereas FLOPS are expressed in
Giga (G).

D. COMPARED WITH STATE-OF-THE-ART SOD MODELS
In this section, we compare the performance of EC2Net
with 14 state-of-the-art methods, we select the below models
for doing experiments. RFCN [15], DHS [16], DCL [17],
NLDF [18], Amulet [19], UCF [20], SRM [21], DSS [22],
DGRL [23], RAS [26], PiCANet [27], BASNet [29],
EGNet [30], CKT [31], AFNet [32]. We collect the pre-
computed saliency maps from the author’s project website.
As shown in Table 1, we perform the quantitative analysis on
five widely used datasets based on three metrics: maximum
F-measure, average MAE, and S-measure. The findings
indicate that EC2Net performs at a similar level of accuracy
across different popular datasets for all three metrics.
Particularly, the proposed approach achieves comparable per-
formance to other heavyweight state-of-the-art models such
as EGNet, DGRL, and RFCN, but with significantly fewer
parameters and FLOPS. Specifically, ourmethod achieves the
second-best F-measure score on the ECSSD dataset with a
score of 0.932, compared to CKT’s score of 0.907 EC2Net
requires only 17.5% of CKT’s parameters and has twice

FPS. The proposed model also beats DGRL at the score
of 0.922, while using only 14.9% of DGRL’s parameters.
EC2Net significantly outperforms RFCN with a score of
0.896 while only taking 17.8% number of the parameters.
These results suggest that EC2Net efficiently trades off
between performance and computational complexity.

In addition, we present an efficiency comparison between
the proposed approach and existing models in Figure 6.
Specifically, we plot the F-measure against the number
of parameters, FLOPS, and FPS. For each sub-figure,
we compute the average F-measure score across the five
datasets. In the sub-figures depicting F-measure versus
Parameters and FLOPS, our method, EC2Net, is positioned
in the top-left quadrant of the chart, indicating a favorable
trade-off between accuracy and efficiency.

In order to qualitatively compare EC2Net with other
methods, we present a selection of representative scenes in
Figure 7 to highlight the advantages of our approach over
other methods. The saliency maps were chosen to represent a
variety of scenarios, including images with one or multiple
objects, large and small objects, and low-contrast images.
EC2Net generates saliency maps that exhibit distinct and
precise boundaries, closely resembling the ground truth.

E. ABLATION STUDY
To evaluate the significance of each module in EC2Net
and their efficiency, we conducted ablation experiments on
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TABLE 3. The effectiveness of each module in terms of F-measure, MAE,
and S-measure on ECSSD, DUTS-TE, DUT-OMRON, and HKUIS datasets.

ECSSD, DUTS-TE, DUT-OMRON, and HKUIS datasets
using three metrics as presented in Table 3. We evaluated the
performance of EC2Net with each module SCCA, DCCA,
DCCA without LSA, and DCCA without PSE. Besides,
we test inference speed with the input size 224 × 224 and
achieved a real-time FPS of 35 on overall five datasets. The
results show that SCCA and DCCA modules contribute to
enhancing features in both shallow and deep layers, while
PSE and LSA complement each other to enrich the multi-
scale semantic features.

V. CONCLUSION
In this paper, we focus on balancing performance and
efficiency, despite the prior research in this area. We propose
three new modules to enhance and combine cross-level
features. The first module, attention-based SCCA,workswith
shallow layers to complement cross-level features. SCCA
effectively complement features low-level features and mid-
level features. The second module, DCCA, captures cross-
semantic features using lightweight self-attention. Hence,
DCCA enhances semantic features to locate objects more
accurately. Lastly, the DCFM module aggregates feature
from both shallow and deep layers using a modified criss-
cross attention mechanism. Our experiments on five datasets
show that our approach achieves comparable performance to
heavier models while using fewer parameters, FLOPS, and
overall model size.
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