
Received 29 March 2023, accepted 15 April 2023, date of publication 18 April 2023, date of current version 2 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3268214

An Evaluation of Mathematical Programming and
Lower-Bound Methods for Hybrid Flow Shop
Problems With a Makespan Criterion
YARONG CHEN1, YA-CHIH TSAI2, AND FUH-DER CHOU 1
1College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
2Department of Hotel Management, Vanung University, Taoyuan City 32061, Taiwan

Corresponding author: Fuh-Der Chou (fdchou@tpts7.seed.net.tw)

This work was supported by the National Natural Science Foundation of China under Grant 51705370.

ABSTRACT This paper considers the hybrid flow shop scheduling problem, where jobs are processed
in m stages with the same route of the stage. Each stage has identical parallel machines for processing
jobs. Some mathematical programming formulations and lower bound calculations have been proposed in
the literature for such cases. Nevertheless, there is a lack of complete comparisons of these mathematical
programming formulations and lower bounds in the hybrid flow shop literature. This paper proposes a new
mixed integer programming model and two new lower bounds based on the bin-packing concept for the
considered problem. To evaluate the proposed model, two sets of small and small-to-medium problems are
used to compare our model with the existing models. Moreover, two propositions are discussed for lower
bounds. The experimental results show that the proposedmixed integer programmingmodel efficiently found
optimal solutions because it needs a smaller number of binary variables and a smaller number of constraints,
and the proposed lower bound can also serve as a strong indicator to evaluate the distances between the
solutions obtained by heuristic algorithms and the optimal solution.

INDEX TERMS Hybrid flow shop, makespan, mixed integer programming, lower bound.

I. INTRODUCTION
The pioneering study on flow shop scheduling problems is
that of Johnson [1]. This type of flow shop problem (FSP)
has received increasing attention from researchers. In the FSP,
a set of jobs flow through multiple stages in the same order,
each stage having only one machine. In the literature, var-
ious FSP extensions addressing industry-specific situations
have been developed. For example, the distributed permu-
tation flow shop scheduling problem (DPFSP) with multi-
factory manufacturing is an extension of the FSP in response
to the development of globally distributed production [1].
The hybrid FSP (HFSP) is another well-known example
of FSP generalization motivated by the fact that parallel
machines are usually required in the flow stages to prevent the

The associate editor coordinating the review of this manuscript and

approving it for publication was Shih-Wei Lin .

production system from being blocked by the unavailability
(e.g., breakdown) of a single machine. Additionally, multiple
identical machines are added at some given stages in a way
that not only increases the overall throughput of the shop but
also further reduces the impact of the bottleneck stage on the
overall shop efficiency [2]. Numerous applications of HFSPs
have been studied in the literature. These include industries as
diverse as textile processing [3], glass and paper making [4],
furniture manufacturing [5], plastic manufacturing [6], and
steel making [7], [8].

In recent years, more complex variant FSPs combining
multiple factories and parallel machines have attracted many
researchers [1], [9], [10]. Overall, the relationship of variants
of FSPs can be illustrated in Fig. 1.

In this paper, we consider HFSPs. Recall that, these prob-
lems consist of n jobs that are processed in a flow shop,
following the same route of the stages; i.e., the jobs are first

41368

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0003-0055-7450
https://orcid.org/0000-0003-1343-0838

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

FIGURE 1. The relationship among variants of FSPs.

processed in stage 1, then stage 2, and so on until the last
stage, and more than one machine is necessary for at least
one stage.

Our objective is to minimize the makespan. The makespan
is related to the maximization of machine utilization or
system throughput [11] and has been studied very inten-
sively in the literature. Employing the three-field notation
α/β/γ [12], the deterministic HFSPminimizing themakespan
can be defined as HFk//Cmax , where HFk specifies a k-
stage hybrid flow shop production system and Cmax refers
to the makespan. Since effective resource allocation and
task sequences play a key role in manufacturing systems to
achieve the company’s goal, good scheduling is very impor-
tant.

Mathematical programmingmodeling in the form ofmixed
integer programming (MIP) is an essential tool for under-
standing the problem characteristics and obtaining optimal
solutions by formulating constraints and objective functions
explicitly. In our search for MIP models solving HFk//Cmax
problems in the literature, all except one of the studies we
found only formulate MIP model, without giving a compar-
ison with other models. The only exception was the study
proposed by Naderi et al. [13], in which the performance of
four different MIP models was evaluated. However, in their
comparison, other MIP models for HFk//Cmax problems
were not included.

In the scheduling literature, in addition to the optimal
solutions, lower bounds are frequently used as benchmarks
for evaluating the performance of heuristic or metaheuristic
algorithms. For HFk//Cmax problems, three lower-bound
calculations based on different problem relaxations, which
will be described later he Section III, have been proposed
in the literature [14], [15]. Although the global lower bound
proposed by Santos et al. [14] has often been adopted in many
HFSP studies, there is still room to develop other powerful
lower bounds.

Our study considers the problem of HFk//Cmax due
to its significance in both NP-hard features and produc-
tion applications, and we formulate a new MIP model and
two lower-bound methods. In addition, we adopt the same
testbeds proposed by Fernandez-Viagas et al. [16] to fairly
examine the performance of the MIP models and obtain a
detailed benchmark for all instances in the testbeds. Regard-
ing lower bounds, we make two propositions to analyze

their dominances and further suggest a better lower bound
calculation.

The rest of this paper is organized into five sections. In
Section II, we review previous related HFSPs. We define the
considered problem and assumptions in Section III. Different
existingMIP models are also preliminarily examined to show
their verification and validation. Moreover, our MIP model is
proposed here. In Section IV, we discuss three different lower
bounds and then propose two new lower-bound methods
based on the bin-packing concept. The dominance proper-
ties associated with these lower bounds are also proposed.
In Section V, numerical experiments are carried out, and the
results are presented. Finally, some concluding remarks are
given in Section VI.

II. LITERATURE REVIEW
Starting with the study of Arthanari and Ramamurthy [17],
the area of HFSP scheduling problems has grown consider-
ably, and currently, the variants of HFSP scheduling problems
in the literature are vast. First, we focus on our consid-
ered problem, i.e., HFk//Cmax . The HFk//Cmax problem is
theoretically NP-hard, as shown by Gupta, even when the
problem has only two stages, and one of the stages contains
a single machine [18]. Some existing solution approaches,
such as branch-and-bound methods [17] and heuristic algo-
rithms [18], [19], [20], [21], [22], [23], have been developed
for the HFk//Cmax problem with two or three stages [24].

Regarding HFSPs with more than three stages, Brah
and Hunsucker [25] developed the branch-and-bound (B&B)
method to find optimal solutions, and later, some improved
B&Bmethods were designed to optimally solve a larger range
of HFSPs [26], [27], [28]. In addition to B&B methods,
MIP models have been utilized to solve HFSPs by many
researchers [29], [30], [31]. Since these problems are NP-
hard, theB&Bmethods andMIPmodels can only solve small-
sized problems. Consequently, some well-known heuristic
algorithms used to solve traditional permutation flow shop
problems have been modified to solve HFSPs [25], [32], [33].
Regarding metaheuristic algorithms, Nowicki and Smut-
nicki [34] developed a tabu search (TS) algorithm, which
was one of the first metaheuristic to solve large-scale HFSPs.
Alaykyran et al. [35] proposed an ant colony optimization
(ACO) method and showed that this algorithm is quite com-
petitive compared to the B&B method of Néron et al. [28].
Engin and Döyen [36] proposed an artificial immune sys-
tem (AIS) algorithm for solving HFSPs to minimize the
makespan. Liao et al. [4] presented particle swarm opti-
mization (PSO) combined with a bottleneck heuristic. Later,
the discrete artificial bee colony (DABC), proposed by Pan
et al. [37], outperformed the PSO of Liao et al. [4] and
the AIS of Engin and Döyen [36]. Marichelvam et al. [5]
solved HFSPs using the cuckoo search algorithm. Kahraman
et al. [38] developed a genetic algorithm (GA) and compared
it with the AIS and B&B of Carlier and Neron [27], with
1600 s as a termination criterion. Kizilay et al. [39] proposed

VOLUME 11, 2023 41369

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

an iterated greedy (IG) method and showed that DABC was
the best-performing method and that IG outperformed AIS,
with 50 · n · m milliseconds as a stopping condition. Many
metaheuristic algorithms require algorithm-specific param-
eters to be tuned to attain high-quality solutions, which is
rather sensitive and time-consuming. Hence, Buddala and
Mahapatra [40] proposed the teaching-learning-based opti-
mization (TLBO) and JAYA algorithms, which do not have
any algorithm-specific tuning parameters, to solve the HFSP.

Some researchers have also considered other factors of
HFSPs; for example, Jiang et al. considered a three-stage
HFSPmotivated by steelmaking and continuous casting man-
ufacturing, in which processing continuity, setup time, and
intraflow constraints are involved [41]. Qi et al. considered
job family and sequence-dependent setup times for the HFSP
and developed a MIP and an IG algorithm [42]. Liu et al.
considered multiskilled workers and fatigue factors for the
HFSPs and developed simulation-based optimization (SBO)
to solve these problems [43]. Other HFSPs involving different
constraints can be found in [44].

Compared with HFSPs, where a single factory is consid-
ered, research on distributed HFSP scheduling has increased
recently since the multifactory manufacturing strategy to
enhance a company’s competitiveness was introduced to pro-
duction systems [1], [9], [10], [45], [46].

As stated earlier, we focus on the HFk//Cmax prob-
lem. For the considered problem, different MIP models and
lower bounds are proposed in the literature; however, they
are likely to be compared using different conditions or not
compared with other methods. Motivated by the study of
Naderi et al. [13] and the testbeds proposed by Fernandez-
Viagas et al. [16], this study develops a MIP model for
HFk//Cmax problems to obtain optimal solutions as bench-
marks. It provides a fair comparison with the existing MIP
models for the HFk//Cmax problem using the same test
instances. Moreover, we propose two lower-bound methods
as strong indicators when the optimal solutions cannot be
obtained.

III. PROBLEM DEFINITION AND RELEVANT
MATHEMATICAL PROGRAMMING MODELS
The HFSP can be defined as follows. The set of n jobs is to
be processed in each stage in order from stage 1 to stage k,
following the same route. In stage k , there are Mk identical
machines, each machine can only process one job at a time,
and each job can be processed by at most one machine at a
time. The processing time of job j when it is processed in
stage k is denoted by pjk . Other assumptions that are usually
used for the HFSP under consideration are as follows [31]:

• No preemption is allowed.
• All jobs are ready for processing at the same time (i.e.,
the release times of the jobs are set to 0).

• All machines are available in the whole scheduling plan-
ning horizon.

• Transportation times are either insignificant or constant.

TABLE 1. Processing times for an example problem.

TABLE 2. Results of examining ten existing models using the CPLEX
solver.

• Setup times are considered insignificant.
• The inventory buffer between stages is unlimited.

We first review ten models suggested by researchers between
2005 and 2021 and determine whether they can execute and
obtain correct optimal solutions with the CPLEX solver.
Based on the results, it is found that the two models proposed
by Paternina-Arboleda et al. [31] and Lin et al. [30] are
incomplete; for example, constraints (5) and (6) in Lin’s
model [30] lack an extremely large number that would force
these constraints to be reasonable. In addition, some models
cannot guarantee that they will obtain optimal solutions even
though they may work. For example, the model of Kis and
Pesch [29] solves an instance with four jobs afourd four
stages, where all stages have three machines; as shown in
Table 1, the obtained solution is 213, which is not equal to
the optimal solution, 269. Table 2 shows the results after
executing the models using the CPLEX solver. The first
column denotes the corresponding model from the reference
paper, where the symbol ‘‘∗’’ indicates that the model has
been modified in this paper to obtain optimal solutions. For
details about the MIP models, we refer the interested reader
to the corresponding studies.

A. MIXED INTEGER LINEAR PROGRAMMING MODEL
Before mathematically modeling the HFSP, the indices,
parameters, and decision variables are defined, as shown in
Table 3.

The mixed integer programming model adapted from
Naderi et al. [13] can be stated as follows:

Minimize Cmax (1)

Subject to Yjhk + Yhjk ≤ 1, j, h = 1, . . . , n;

j ̸= horj < h; k = 1, . . . ,m (2)

Sjm + pjm ≤ Cmax , j = 1, . . . , n (3)

41370 VOLUME 11, 2023

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

TABLE 3. Indices, parameters, and decision variables.

∑M

i=1 k
Xjki = 1, j = 1, . . . , n; k = 1, . . . ,m

(4)

Sjk + pjk ≤ Sj,k+1, j = 1, . . . , n;

k = 1, . . . ,m− 1 (5)

(Y jhk + Yhjk − 1)+BigM × (2 − Xjki−Xhki)≥0

j, h = 1, . . . , n, j < h; k = 1, . . . ,m;

i = 1, . . . ,Mk (6)

Shk − (S jk + pjk) + BigM × (1 − Yjhk) ≥ 0 (7)

j, h = 1, . . . , n; j < h; k = 1, . . . ,m∑K

k=1

∑M

i=1 k
Xjki = n k = 1, . . . ,m (8)

Sjk ≥ 0 (9)

Xjki ∈ {0, 1} (10)

Yjkh ∈ {0, 1} (11)

In this model, BigM is a very large constant, i.e., greater
than the sum of all job processing times. The makespan
minimization of the considered problem is expressed by (1).
Inequalities (2) imply that at each stage, there is a pair of jobs
(j, h) such that job j is only processed before job h or after
job h. Inequalities (3) ensure that the completion times of all
jobs at the last stage are less than or equal to the objective
makespan. Constraints (4) ensure that each job is processed
on a machine once at each stage. Constraints (5) ensure that
the process of each job in one stage starts after the process
completed in the previous stage. Constraints (6) state the
relation between any pair of jobs on the same machine at
each stage with respect to the sequence, i.e., that one is a
predecessor of the other or vice versa. Constraints (7) state
the relation between any pair of jobs on the same machine at
each stage that forces themachine to process one job at a time.
Constraints (8) ensure that each job goes through the stages.
Finally, constraints (9), (10), and (11) define the decision
variables.

B. THE COMPLEXITY OF THE MODELS
Suppose that there are n jobs, m stages, and Mk machines
in each stage k . The proposed model is compared with the

above models, excluding MIP(P), using a size complexity
evaluation proposed by Naderi [13]. The size complexity
evaluation includes the numbers of binary variables, con-
tinuous variables, and constraints. The comparison results
are shown in Table 4. From Table 4, it can be found that
MIP(K), MIP∗(N4), and MIP(C) (the proposed model) have
few binary variables, integer variables, and constraints. Due
to this fact, the computational burdens of these three models
will be lower, and they will be more efficient, which is shown
in the experiment section later.

IV. LOWER BOUNDS
A. SIMPLE LOWER BOUND
An intuitive job-based lower bound is based on the idea that
no job can finish processing earlier than its total processing
time, i.e.,

∑m
k=1 pjk . Thus, the simple lower bound is:

LB0 = max
1≤j≤n

{
∑m

k=1 pjk}, and it can be computed in O(n)

time [14].
The second lower bound is modified from the lower

bound derived for the scheduling problem of identical
parallel machines with heads and tails [14]. The lower
bound of Carlier [15] is defined as LBc (J) = min

j∈j
rj +⌈

1
m

∑
j∈J pj

⌉
min
j∈j

+qj. Inspired by Carlier’s lower bound,

we generate a set ofm artificial problems for identical parallel
machines with heads and tails from the original m-stage
HFSP. Next, the bound is obtained using the lower bound of
Carlier [15] for each of the m subproblems; the maximum
bound among the m subproblems becomes the lower bound
of the considered problem. Thus, the second lower bound is:

LB1 = max
1≤k≤m

{LB− 1(k)}

where LB1 (k) = H1 (k)+B1 (k)+T1(k).H1 (k), B1 (k), and
T1 (k)indicate the heads, bodies (identical parallel machines),
and tails for stage k , k = 1,. . . ,m, respectively, and are
described as follows:

H1 (k) =

 0 k = 1

min
1≤j≤n

{∑k−1

i=1
pji

}
k > 1;

B1 (k) =

⌈
1
Mk

(
∑n

j=1
pjk)

⌉
;

T1 (k) =

 min
1≤j≤n

{∑m

i=k+1
pji
}

k < m

0 k = m.

B. A STAGE-BASED LOWER BOUND
The stage-based lower bound procedure was developed
by Santos et al. [14] and has been adopted by many
researchers to evaluate their proposed algorithms in the liter-
ature [4], [25], [31], [37], and [40]. The procedure employed
for the stage-based lower bound is similar to that for the
second lower bound mentioned above. However, the stage-
based lower bound is based on the concept of averaging; that
is, for each stage k , the average bound of the jobs processed

VOLUME 11, 2023 41371

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

TABLE 4. Comparing different models using a size complexity evaluation (Naderi [13]).

on Mk parallel machines must be less than or equal to the
maximum bound. Thus, the third lower bound is:
LB2 = max

1≤k≤m
{LB2(k)}, where

LB2 (k) =

⌈
1
Mk

(H2 (k) + B2 (k) + T2(k))
⌉

;

H2 (k) =

 0 k = 1∑Mk

y=1
LSAy(k) k > 1

where LSAy(k) is sequenced in increasing order of LSj(k):

LS j(k) =

∑k−1

i=1
pji.

B2 (k) =

∑n

j=1
pjk ;

T2 (k) =


∑Mk

y=1
RSAy(k) k < m

0 k = m,

where RSAy(k) is sequenced in increasing order of RS j(k):

RS j(k) =

∑m

i=k+1
pji.

Since 1
Mk
H2 (k) and 1

Mk
T
2
(k) are obviously greater than

or equal to H1 (k) and T1 (k), LB2 dominates LB1. For more
details concerning the theorem and proof, please refer to
Santos et al. [14].

C. A BIN-PACKING-BASED LOWER BOUND
Considering the lower bound of Carlier [15] and the stage-
based lower bound procedure of Santos et al. [14], we could
relax the considered problem to k parallel machine subprob-
lems with heads and tails and derive a lower bound procedure
based on these subproblems. That is,

LB3 = max
1≤k≤m

{LB2(k)},

where

LB3 (k) = H3 (k) + B3 (k) + T3(k).

The middle part of B3 (k) for each stage is regarded as
an identical parallel machine problem with a makespan, i.e.,
P//Cmax . The P//Cmax problem is closely related to the
bin-packing problem, and Dell’Amico andMartello [48] pro-
posed a better lower bound based on the bin-packing con-
cept. Thus, we modify the lower bound of Dell’Amico and
Martello [48] for B3 (k), and the procedure for B3 (k) is:
Step 1. Let BLB0(k) =

1
Mk

∑n
j=1 pjk and BLB1(k) =

max
1≤j≤n

pjk for j = 1,. . . ,n

Step 2. Sort the jobs in descending order of pjk , and use py
to denote the processing time of the job in position y of the
order.
Step 3. Set the value of BLB2(k) based on the following:

BLB2(k) =

{
p1 Mk > (n− 1)
pMk + pMk+1 otherwise

Step 4. Let L = max(BLB0(k),BLB1(k),BLB2(k)).
Step 5. Set the value of p based on the following:

p =

{
pn Mk > (n− 2)
pMk+2 otherwise

Step 6. Set the three sets of jobs based on the following:

JA =
{
y |L − p < py

}
JB =

{
y |
L
2

< py ≤ L − p
}

JC =

{
y | p ≤ py ≤

L
2

}
Step 7. Calculate the values of Bα(L, p) and Bβ (L, p):

Bα (L, p) = |JA| + |JB|

+ max(0,


∑

y∈Jc py −

(
L × |JB| −

∑
y∈JB

py

)
L


)

Bβ (L, p) = |JA| + |JB|

41372 VOLUME 11, 2023

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

+ max(0,


|Jc| −

∑
y∈JB

⌊
L−py
p̄

⌋
⌊
L
p̄

⌋
)

Step 8. If Bα (L, p) > Mk or Bβ (L, p) > Mk , set L =

L + 1 and go to Step 6.
Step 9. Set B3(k) = L and stop the procedure.
The first and last parts, i.e., H3 (k) and T3(k), are the same

as H1 (k) and T1(k) mentioned above. That is,

H3 (k) = H1 (k) =

 0 k = 1

min
1≤j≤n

(∑k−1

i=1
pji

)
k > 1.

T3 (k) = T1 (k) =

 min
1≤j≤n

(∑m

i=k+1
pji
)

k < m

0 k = m.

D. THE MODIFIED BIN-PACKING-BASED LOWER BOUND
The fifth lower bound ismodified from the bin-packing-based
lower bound mentioned above.

LB4 = max
1≤k≤m

{LB4(k)}

The first part, H4_E (k), implies that each job should be
processed through stage k-1, and there is no easy way to
determine the ready time of each machine for processing jobs
at the current stage k; however, we know that the ready time
of each machine at the current stage k should be greater than
or equal to min

1≤j≤n
{
∑k−1

i=1 pji}. That is,

H4_E (k) =

{
0 k = 1

min
1≤j≤n

{
∑k−1

i=1 pji} k > 1

Similarly, the earliest completion time at the current stage

k results in B4_E (k) = min
1≤j≤n

{

k∑
i=1

pji}.

Now, consider the estimated latest finish time at the current
stage k . Each stage k without a head and tail can be regarded
as a P//Cmax problem, and the lower bound can be obtained
by B3 (k)mentioned above. CombiningH4_E (k)with B3 (k),
we can obtain the first estimated latest finish time at the
current stage k . The second estimated latest finish time is
adopted from LB0, which is intuitive; that is, at the current
stage k, the entire set of jobs cannot finish earlier than the total
processing time for the longest-duration job, i.e., {

∑k
i=1 pji}.

Consequently, we have the following as an estimated latest
finish time at the current stage k:

B4_L(k) = max
(
H4_E (k) + B3 (k) , max

1≤j≤n

{∑k

i=1
pji

})
Regarding the last part, T4(k), we use T4_max (k) and

T4_min (k) to indicate the maximum and minimum total pro-
cessing times needed from stage k to the last stage m as
follows:

T4_max (k) =

 max
1≤j≤n

{∑m

i=k+1
pji
}

k < m

0 k = m.

TABLE 5. Lower bound values.

TABLE 6. The parameter set of each benchmark problem.

T4_min (k) =

 max
1≤j≤n

{∑m

i=k+1
pji
}

k < m

0 k = m.

Next, combining the earliest completion time and esti-
mated latest finish time, i.e., B4_E (k) and B4_L(k), we have
the following as a makespan lower bound.

LB4(k) = max
(
B4_E (k) + T4_max (k) ,B4_L (k)

+ T4_min (k)
)

Example: Consider the example in Table 1. The optimal
makespan of the problem is 269, as obtained by a mathemat-
ical programming model. Table 5 shows the obtained lower
bound values.

As shown in Table 5, LB3 and LB4 seem to be better
indicators of the optimal makespan. For brevity, the methods
of computing the lower bound in this section are given in the
appendix.

E. THE LOWER BOUND EFFICIENCY
Among the five lower bounds, it was proven by Santos et al.
[14] that LB1 is dominated by LB2. In this section, we provide
two propositions to show that LB0 and LB3 are dominated
by LB4. Thus, we only compare LB2 and LB4 in the later
computational experiments.
Proposition 1: LB4 dominates LB0.
Proof: As mentioned above, LB0 = max

1≤j≤n

{∑m
i=1 pji

}
and

LB4 = max
1≤j≤n

{LB4(k)}, where

LB4 (k)= max(B4_E (k)+T4_max (k) ,B4_L (k)+ T4_min (k))

B4_E (k) = min
1≤j≤n

{∑k

i=1
pji

}
,

B4_L (k) = max
1≤j≤n

(
H4_E (k) + B3 (k) , max

1≤j≤n

{∑k

i=1
pji

})
.

VOLUME 11, 2023 41373

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

TABLE 7. Comparing the eight models with respect to the average makespan for small problems.

TABLE 8. Comparing the eight models with respect to the average CPU time for small problems.

When

k = m,B4_E (m) = min
1≤j≤n

{∑m

i=1
pji
}

,

T4_max (m) = T4_min (m) = 0, and

B4_L (m) = max
1≤j≤n

(
H4_E (m) + B3 (m) ,

max
1≤j≤n

{∑m

i=1
pji
})

.

We can obtain the following:

LB4 (m) = max
(
B4_E (m) + 0,B4_L (k) + 0

)
= max(max

1≤j≤n

{∑m

i=1
pji
}

,max(H4_E (m)+ B3 (m) ,

max
1≤j≤n

{∑m

i=1
pji
}
) ≥ max

1≤j≤n

{∑m

i=1
pji
}

= LB0.

41374 VOLUME 11, 2023

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

TABLE 9. Comparing the eight models with respect to the average makespan for small-to-medium problems.

VOLUME 11, 2023 41375

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

FIGURE 2. The average computation times required by different models.

Proposition 2: LB4 dominates LB3.
Proof: LB3 = max

1≤k≤m
{LB3(k)}, where

LB3 (k) = H3 (k) + B3 (k) + T3 (k) ,

H3 (k) =

 0 k = 1

min
1≤j≤n

(∑k−1

i=1
pji

)
k > 1,

T3 (k) =

 min
1≤j≤n

(∑m

i=k+1
pji
)

k < m

0 k = m.

For LB4, LB4 = max
1≤k≤m

{LB4(k)}, where

LB4 (k)= max(B4_E (k)+ T4_max (k) ,B4_L (k)+ T4_min (k))

B4_L (k) = max
1≤j≤n

(
H4_E (k) + B3 (k) , max

1≤j≤n

{∑k

i=1
pji

})
Comparing the two pairs

(H4_E (k) ,H3 (k))and(T4_min (k) ,T3 (k)),

we find that H4_E (k) = H3 (k) and T4_min (k) = T3 (k)

LB4 (k) = max
(
B4_E (k) + T4_max (k) ,B4_L (k)

+T4_min (k)
)

= max
(
B4_E (k) + T4_max (k) ,B4_L (k) + T3 (k)

)
= max

(
B4_E (k) + T4_max (k) , (H3 (k) + B3 (k) ,

max
1≤j≤n

{∑k

i=1
pji

})
+ T3 (k)

)
= max(B4_E (k) + T4_max (k) , max

1≤j≤n

(H3 (k) + B3 (k) + T3 (k) ,

max
1≤j≤n

{∑k

i=1
pji

}
+ T3 (k)

)
= max(B4_E (k) + T4_max (k) ,max{LB3 (k) ,

max
1≤j≤n

{∑k

i=1
pji

}
+ T3 (k)} ≥ LB3

V. COMPUTATIONAL EXPERIMENTS
This section shows the computational results of our experi-
mentation in this study. All the experiments were run on a
personal computer with an Intel Xeon E-2124 3.4 GHz CPU
with 32 GB of DRAM. IBM ILOG CPLEX optimization
studio version 12.7.1 was used to formulate all mathematical
programming models in this study to obtain the optimal solu-
tions, and the computation time of a model for solving each
instance in CPLEX was limited to 7200 s. The programming
language C++ in Visual Studio 2020 was used to code all
procedures for the lower bounds mentioned above.

A. BENCHMARK INSTANCES
For a fair comparison, we adopted the testbed proposed by
Fernandez-Viagas et al. [16]. These test problems include two

41376 VOLUME 11, 2023

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

TABLE 10. Comparing the eight models with respect to the average computation time for small-to-medium problems.

VOLUME 11, 2023 41377

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

TABLE 11. The results of LB2 and LB4 compared with the optimal solutions for small-sized problems.

TABLE 12. Nonparametric mann whitney test on LB2 with LB4 for small problems.

data sets: small jobs (α1) and small-to-medium jobs (α2). For
the number of machines in each stage selected, we used the
parameter βfor different machine settings as follows:

• β = 0 indicates that there are three machines in each
stage, except in the single-stage case, where only two
machines are available.

• β = 1 indicates three machines in each stage.
• β = 2 indicates that a random number of machines for
each stage is generated from the range (1, 3).

The parameter set of each problem is given in Table 6, and for
each combination of these parameters, ten and five instances
are generated for the α1 and α2 problem sets, respectively;
thus, there are a total of 270 and 360 instances for the α1 and
α2 problem sets, respectively.
For all instances, the processing times of the jobs in each

stage are generated uniformly in the interval [1, 99].

B. COMPARISON RESULTS OF THE MIP MODELS
This subsection compares the proposed MIP model with
the other models mentioned above. As mentioned above, all

mathematical models are coded in ILOG CPLEX optimiza-
tion studio version 12.7.1, and the maximum elapsed running
time is set as 7200 s. Tables 7 and 8 list the average makespan
and computation time of each model over the 10 instances of
each small-size problem. From Tables 7 and 8, it is obvious
that all models can obtain optimal makespan solutions within
a short time. For small-to-medium problems, the average
makespan and computation time obtained by each model
over the five instances are listed in Tables 9 and 10. For
small-to-medium problems, some instances cannot be solved
optimally by the models in the limited time. These values are
represented in bold in Table 9. The corresponding makespans
and elapsed running times obtained by the eight models for
each instance in this experiment can be found at the website
https://drive.google.com/drive/folders/1nnPVS8FG37q1rX2
YjNQtuOa9pIiVWXv_?usp=share_link. In addition, as
expected, the average computation times ofMIP(C), MIP(K),
and MIP∗(N4) are shorter, and it is worth noting that the
average computation time of MIP(C) does not increase dra-
matically as the number of jobs increases, as shown in Fig. 2.

41378 VOLUME 11, 2023

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

TABLE 13. The results of LB2 and LB4 compared with the optimal solutions for small-to-medium problems.

VOLUME 11, 2023 41379

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

TABLE 14. Nonparametric Mann Whitney test on LB2 with LB4 for small-to-medium problems.

TABLE 15. Performance of the lower bounds for small problems.

TABLE 16. Performance of the lower bounds for small-to-medium
problems.

C. COMPARISON OF LOWER BOUNDS AND OPTIMAL
SOLUTIONS
1) SMALL PROBLEMS
The problem set (α1) consists of a group of 270 instances that
were mentioned in Section IV-A. Since they are small prob-
lems, the corresponding optimal solutions could be obtained
using the aforementioned MIP model and thus provide an
excellent base for comparison. We use the relative errors of
the lower bound values with respect to the optimal solutions,
which are calculated as follows:

Relative error (RE) =
Optimal − Lowerbound

Optimal
× 100%

Table 11 provides the results for LB2 and LB4. The columns
under ‘‘Ave. RE (%)’’ give the average RE values over
10 instances. The other columns, under ‘‘#OP’’, denote the
number of times each lower bound is equal to the optimal
solution. In addition, the columns under ‘‘Improvement (%)’’
give the improvement percentage of LB4 over LB2, which is
calculated as follows:

Improvement (%) =
LB4 − LB2

LB2
×100%

As shown in Table 11, 196 of the 270 (72.6%) lower bounds
generated by LB4 accurately predicted the optimal solutions,
which was a greater percentage than the 39 of 270 (14.4%)
lower bounds generated by LB2. The mean relative error of
LB4 was 2.05%, much smaller than the 14.80% error of LB2,
indicating that LB4 can provide an accurate prediction of the
optimal solutions. From the column ‘‘Improvement (%)’’,
it is seen that LB4 can improve the accuracy of the lower
bounds obtained by LB2. However, LB2 is not dominated by
LB4 since in some cases, LB2 is better than LB4. We also

conduct a nonparametric Mann-Whitney test, in which the
null hypothesis H0 is that µLB2 = µLB4 and the alternative
hypothesis H1 is that µLB2 ̸= µLB4 with a 0.05 significance
level. Table 12 shows that the hypothesis µLB2 = µLB4 is
rejected in each case of β = 0, β = 1, and β = 2.

2) SMALL-TO-MEDIUM PROBLEMS
Problem set α2 consists of a group of 360 instances that were
mentioned in Section IV-A. All optimal solutions of these
instances can be obtained by MIP(C) within 7200 s. The
Ave. RE, #OP, and improvement (%) results for all problem
configurations are found in Table 13. The total average RE
(%) values obtained by LB2 and LB4 are 7.39% and 5.17%,
respectively. On the other hand, LB4 accurately predicts
the optimal solutions in 99 instances among the 360 total
instances, which is 27.5% higher than the 19.2% obtained by
LB2. We also applied a nonparametric Mann-Whitney test for
the small-to-medium problems, and the results are shown in
Table 14. In all cases (β =0, 1, 2), the hypothesis LB2 = LB4
was rejected with a 0.05 significance level.

We also report, for each of the two lower bounds, the
percentage of times the maximum value was obtained among
all instances of each experiment (Max (%)) and the average
RE, as shown in Tables 15 and 16. From Tables 15 and 16,
we draw the following conclusions:

• The lower bound LB4 is very competitive for small
problems since the bound value is more accurate in
predicting the optimal value.

• As the size of the problem increases, the performance
difference between LB4 and LB2 becomes less remark-
able.

• A very effective lower bound that is obtained is LB∗
=

max(LB2,LB4). The average REs of LB∗ are 0.02% and
3.87%, respectively, in Tables 15 and 16. These two
values imply that LB∗, on average, reaches 98% and
96.13% optimality in the two experiments.

• The computation times of LB2 and LB4 can be
neglected since the lower bound value of each instance
is obtained by LB2 or LB4 within 0.001 s.

VI. CONCLUSION
This paper concerns a problem that is encountered in modern
manufacturing and production systems, that of minimizing
the makespan in a hybrid flow shop configuration. Due to
its practical relevance and its NP-hard nature, many exact

41380 VOLUME 11, 2023

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

methods and heuristic algorithms have been proposed to
solve the considered problem, and some of these methods,
including B&B, heuristic, and metaheuristic algorithms, have
been compared with each other to evaluate their performance,
while MIP models have been excluded. This study fills this
gap by proposing a new MIP model and comparing it against
the existing models in the literature. The results show that the
proposed MIP model is competitive in terms of the number
of binary variables, the number of continuous variables, and
the number of constraints, which is beneficial for decreasing
the computational burden of the MIP model, as shown in the
experimental results. Consequently, the proposed MIP model
can optimally solve each of the 360 instances of small-to-
medium problems efficiently.

Another contribution of this paper is that it surveys the
existing lower bound procedures and proposes two new lower
bounds based on problems of parallel machines with heads
and tails and bin-packing problems. Based on the dominance
analysis, the proposed lower bound (LB4) cannot dominate
the LB2 of Santos et al. [37], although LB4 was significantly
better than LB2 in the experimental comparisons. Therefore,
a composite lower bound of max(LB2, LB4) is suggested
in this paper as a strong indicator to evaluate the distances
between the solutions obtained by heuristic algorithms and
the optimal solution. The rest of the lower bound methods
were dominated by LB2 or LB4.
The literature review showed that some mathematical pro-

gramming formulations have been proposed to solve more
complicated HFSPs [44, 10, 41]; thus, this research can be
extended to complicated HFSPs considering real production
environments and can be used to develop different mathemat-
ical programming formulations for comparison or to propose
metaheuristic algorithms to obtain good solutions efficiently
for variants of FSPs.

APPENDIX A
• The first lower bound method
LB0 = max

1≤j≤n
{
∑m

k=1 pjk}.

For j = 1,
∑4

k=1 p1k = (66 + 53 + 20 + 87) = 226.
For j = 2,

∑4
k=1 p2k = (37 + 81 + 40 + 92) = 250.

For j= 3,
∑4

k=1 p3k = (54 + 48 + 37 + 97) = 236.
For j= 4,

∑4
k=1 p4k = (52 + 81 + 23 + 43) = 119.

Thus, LB0 = max (226, 250, 236, 110) = 250.
• The second lower bound method
LB1 = max

1≤j≤n
{LB1(k)}, where LB1 (k) = H1 (k)+B1 (k)+

T1(k);

H1 (k) =

 0 k = 1

min
1≤j≤n

{∑k−1

i=1
pji

}
k> 1;

B1 (k) =

⌈
1
Mk

(
∑n

j=1
pjk)

⌉
;

T1 (k) =

 min
1≤j≤n

{∑m

i=k+1
pjk
}

k < m

0 k = m

When k = 1,

H1 (1) = 0;B1 (1) =

⌈
1
M1

(∑4

j=1
pj1

)⌉
=

⌈
1
3
(66 + 37 + 54 + 52)

⌉
= 70;

T1 (1) = min
1≤j≤n

{∑m

i=2
pji
}

For j = 1,
∑4

i=2 p1i = (53 + 20 + 87) = 160.
For j = 2,

∑4
i=2 p2i = (81 + 40 + 92) = 213.

For j = 3,
∑4

i=2 p3i = (48 + 37 + 97) = 182.
For j = 4,

∑4
i=2 p4i = (81 + 23 + 43) = 147.

Thus, T1 (1) = min (160, 213, 182, 147) = 147, and
LB1 (1) = H1 (1)+B1 (1)+T1 (1) = (0 + 70 + 147) = 217.
When k = 2,

H1 (2) = min
1≤j≤n

{∑1

i=1
pji

}
For j = 1,

∑1
i=1 p1i= 66; for j = 2,

∑1
i=1 p2i= 37; for

j = 3,
∑1

i=1 p3i= 54; and for j = 4,
∑1

i=1 p4i= 52.
Thus, H1 (2) = min (66, 37, 54, 52) = 37.

B1 (2)=
⌈

1
M2

(
∑4

j=1
pj2)

⌉
=

⌈
1
3
(53 + 81 + 48 + 81)

⌉
=88;

T1 (2) = min
1≤j≤n

{∑4

i=3
pji

}
= min (107, 132, 134, 66) = 66.

Thus,

LB1 (2) = H1 (2) + B1 (2) + T1 (2) = (37 + 88 + 66) = 191

When k = 3,

H1 (3)= min
1≤j≤n

{∑2

i=1
pji

}
=min (119, 118, 102, 133) = 102

B1 (3)=
⌈

1
M3

(
∑4

j=1
pj3)

⌉
=

⌈
1
3
(20 + 40 + 37 + 23)

⌉
= 40;

T1 (3) = min
1≤j≤n

{∑4

i=4
pji

}
= min (87, 92, 97, 43) = 43.

Thus,

LB1 (3)= H1 (3) + B1 (3) + T1 (3)= (102 + 40 + 43) = 185

When k = 4,

H1 (4)= min
1≤j≤n

{∑3

i=1
pji

}
=min (139, 158, 139, 156) = 139

B1 (4)=
⌈

1
M4

(
∑4

j=1
pj4)

⌉
=

⌈
1
3
(87 + 92 + 97 + 43)

⌉
=107;

T1 (4) = 0.

Thus,

LB1 (4)=H1 (4) + B1 (4) + T1 (4)=(139 + 107 + 0) = 246

LB1=max
1≤j≤n

{LB1(k)} = max (217, 191, 185, 246) = 246

• The third lower bound method
LB2 = {LB2(k)}, where

VOLUME 11, 2023 41381

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

LB2 (k) =

⌈
1
Mk

(H2 (k) + B2 (k) + T2(k))
⌉
.

H2 (k) =

{
0 k = 1∑

y=1
M
k LSAy(k) k> 1 , where LSAy(k) is

sequenced in increasing order of LS j(k). LS j(k) =
∑k−1

i=1 pji.

B2 (k) =

∑n

j=1
pjk ;

T2 (k) =


∑Mk

y=1
RSAy(k) k < m

0 k = m,

where RSAy(k) is sequenced in increasing order of RS j(k).
RS j(k) =

∑m
i=k+1 pji.

When k = 1,

H2 (1) = 0;B2 (1)=
∑4

j=1
pjk = (66 + 37 + 54 + 52) = 209

T2 (1) =

{∑3
y=1 RSAy(1) k < m

0 k = m

When j = 1,RS1 (1) =

∑4

i=2
p1i = (53 + 20 + 87)

= 160 =RSA2 (1) .

When j = 2,RS2 (1) =

∑4

i=2
p2i = (81 + 40 + 92) = 213 =RSA4 (1) .

When j = 3,RS3 (1) =

∑4

i=2
p3i = (48 + 37 + 97) = 182 =RSA3 (1) .

When j = 4,RS4 (1) =

∑4

i=2
p4i = (81 + 23 + 43) = 147 = RSA1 (1) .

T2 (1) =

∑3

y=1
RSAy(1) = (147 + 160 + 182) = 489

Thus,

LB2 (1) =

⌈
1
3
(H2 (1) + B2 (1) + T2(1))

⌉
=

⌈
1
3
(0 + 209 + 489)

⌉
= 233

When k = 2,
H2 (2) =

∑3
y=1 LSAy(2);LS j(2) =

∑1
i=1 pji.

When j = 1, LS1 (2) =
∑1

i=1 p1i= 66 =LSA4 (2).
When j = 2, LS2 (2) =

∑1
i=1 p2i= 37 =LSA1 (2).

When j = 3, LS3 (2) =
∑1

i=1 p3i= 54 =LSA3 (2).
When j = 4, LS4 (2) =

∑1
i=1 p4i= 52 = RSA2 (2).

H2 (2) =

∑3

y=1
LSAy(2) = (37 + 52 + 54) = 143

B2 (2) =

4∑
j=1

pj2 = (53 + 81 + 48 + 81) = 263

T2 (2) =

∑3

y=1
RSAy(2)

When j = 1,RS1 (2) =

∑4

i=3

p1i = (20 + 87) = 107 =RSA2 (2) .

When j = 2,RS2 (2) =

∑4

i=3

p2i = (40 + 92) = 132 =RSA3 (2) .

When j = 3,RS3 (2) =

∑4

i=3

p3i = (37 + 97) = 134 =RSA4 (2) .

When j = 4,RS4 (2) =

∑4

i=3

p4i = (23 + 43) = 66 = RSA1 (2) .

T2 (2) =

∑3

y=1
RSAy(2) = (66 + 107 + 132) = 305

Thus,

LB2 (2) =

⌈
1
3
(H2 (2) + B2 (2) + T2(2))

⌉
=

⌈
1
3
(143 + 263 + 305)

⌉
= 237

When k = 3,

H2 (3) =

∑3

y=1
LSAy(3);LS j(3) =

∑2

i=1
pji

LSA1 (3) = 102;LSA2 (3) = 118;LSA3 (3)
= 119;LSA4 (3) = 133

H2 (3) =

∑3

y=1
LSAy(3) = (102 + 118 + 119) = 339

B2 (2) =

∑4

j=1
pj3 = (20 + 40 + 37 + 23) = 120

T2 (3) =

∑3

y=1
RSAy(3);RS j(3) =

∑4

i=4
pji

RSA1 (3) = 43;RSA2 (3) = 87;RSA3 (3)

= 92;RSA4 (3) = 97

T2 (3) =

∑3

y=1
RSAy(3) = (43 + 87 + 92) = 222

LB2 (3) =

⌈
1
3
(H2 (3) + B2 (3) + T2(3))

⌉
=

⌈
1
3
(339 + 120 + 222)

⌉
= 227

When k = 4,

H2 (4) =

∑3

y=1
LSAy(4);LS j(4) =

∑3

i=1
pji

LSA1 (4) = 139;LSA2 (4) = 139;LSA3 (4)

= 156;LSA4 (4) = 158

H2 (4) =

∑3

y=1
LSAy(4) = (139 + 139 + 156) = 434

B2 (4) =

∑4

j=1
pj4 = (87 + 92 + 97 + 43) = 319

T2 (4) = 0;

LB2 (4) =

⌈
1
3
(H2 (4) + B2 (4) + T2(4))

⌉
=

⌈
1
3
(434 + 319 + 0)

⌉
= 251

Thus,

LB2 = max
1≤j≤n

{LB2(k)}

= max (233, 234, 227, 251) = 251

41382 VOLUME 11, 2023

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

• The fourth lower bound method

LB3 = {LB3(k)},

where

LB3 (k) = H3 (k) + B3 (k) + T3(k).

When k = 1, we have the following.
For B3 (1), we use the following steps:
Step 1. Let

BLB0(2) =

⌈
1
M1

∑4

j=1
pj1

⌉
=

⌈
1
3
(66 + 37 + 54 + 52)

⌉
= 70;BLB1(1) =

{
pj1
}

= max (66, 37, 54, 52) = 66.

Step 2. Sort the jobs in descending order of pjk , where p̄1 =

p11= 66, p̄4 = p21= 37, p̄2 = p31= 54, and p̄3 = p41= 54.
Step 3. M1 = (n− 1) = 3, BLB2 (1) = ¯pM1 + ¯pM1+1 =

p̄3 + p̄4 = (52 + 37) = 89.
Step 4. Let L = max (BLB0 (1) ,BLB1 (1) ,BLB2 (1)) =

max (70, 66, 89) = 89.
Step 5. M1= 3, (n− 2) = 2, M1> (n−2), p̄ = p̄n =

p̄4= 37.
Step 6. JA =

{
y |L − p̄ < p̄y

}
=
{
y | (89 − 37) < p̄y

}
= {J1, J3.

JB =

{
y |
L
2

< p̄y≤L − p̄
}

=

{
y |

89
2

< p̄y ≤ (89 − 37)
}

= {J4}

JC =

{
y | p̄≤p̄y ≤

L
2

}
=

{
y | 37 ≤ p̄y≤

89
2

}
= {J2}

Step 7. Calculate the values of Bα(L, p̄) and Bβ (L, p̄).

Bα (89, 37) = |JA| + |JB|

+ max

0,


∑
y∈Jc

p̄y −

(
L × |JB| −

∑
y∈JB

p̄y

)
L




= 2 + 1 + max

(
0,
⌈
37 − (89 × 2 − 52)

89

⌉)
= 3 + max(0, 0) = 3

Bβ (89, 37) = |JA| + |JB|

+ max

0,


|Jc| −

∑
y∈JB

⌊
L−p̄y
p̄

⌋
⌊
L
p̄

⌋



= 2 + 1 + max(


1 −

⌊
89−52
37

⌋
⌊
89
37

⌋


= 3 + max (0, 0) = 3

Step 8. Bα (89, 37) = 3, Bβ (89, 37) = 3, M1= 3.

Step 9. B3 (1) = 89.
ForH3 (1) and T3 (1), the calculations are the same as those

of H1 (1) and T1 (1); thus,

H3 (1) = H1 (1) = 0

T3 (1) = T1 (1) = 147

LB3 (1) = H3 (1) + B3 (1) + T3 (1)

= (0 + 89 + 147) = 236

When k = 2, we have the following.
Step 1. Let BLB0(2) =

⌈
1
M2

∑4
j=1 pj1

⌉
=

⌈
1
3 (53 + 81 + 48 + 81)

⌉
= 88; BLB1 (2)

= max (53, 81, 48, 81) = 81.
Step 2. Sort the jobs in descending order of pj2, where p̄1 =

p22= 81, p̄2 = p42= 81, p̄3 = p12= 53, p̄4 = p32= 48.
Step 3. M2 = (n− 1) = 3, BLB2 (2) = ¯pM2 + ¯pM2+1 =

p̄3 + p̄4 = (53 + 48) = 101.
Step 4. Let L = max (BLB0 (2) ,BLB1 (2) ,BLB2 (2)) =

max (88, 81, 101) = 101.
Step 5.M2= 3, (n− 2) = 2, M2> (n−2), p̄ = p̄n =

p̄4= 48.
Step 6. JA =

{
y |L − p̄ < p̄y

}
=
{
y | (101 − 48) < p̄y

}
= {J2, J4.

JB =

{
y |
L
2

< p̄y≤L − p̄
}

=

{
y |

101
2

< p̄y ≤ (101 − 48)
}

= {J1}

JC =

{
y | p̄≤p̄y ≤

L
2

}
=

{
y | 48 ≤ p̄y≤

101
2

}
= {J3}

Step 7. Calculate the values of Bα(L, p̄) and Bβ (L, p̄).

Bα (101, 48) = |JA| + |JB| + max0,


∑
y∈Jc

p̄y −

(
L × |JB| −

∑
y∈JB

p̄y

)
L




= 2 + 1 + max

(
0,
⌈
48 − (101 × 1 − 53)

101

⌉)
= 3 + max(0, 0) = 3Bβ (101, 48) = |JA| + |JB|

+ max

0,


|Jc| −

∑
y∈JB

⌊
L−p̄y
p̄

⌋
⌊
L
p̄

⌋



= 2 + 1 + max(


1 −

⌊
101−53

48

⌋
⌊
101
48

⌋


= 3 + max (0, 0) = 3

Step 8. Bα (101, 48) = 3, Bβ (101, 48) = 3,M2= 3.

VOLUME 11, 2023 41383

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

Step 9. B3 (2) = 101.
For H3 (2) and T3 (2), we can obtain the following:

H3 (2) = H1 (2) = 37

T3 (2) = T1 (2) = 66

Thus, LB3 (2) = H3 (2) + B3 (2) + T3 (2) =

(37 + 101 + 66) = 204.
Using the above procedure for the remaining stages, we can

obtain the following:

LB3 (3) = H3 (3) + B3 (3) + T3 (3)

= (102 + 43 + 43) = 188

LB3 (4) = H3 (4) + B3 (4) + T3 (4)

= (139 + 130 + 0) = 269

The result will be

LB3 = max
1≤k≤m

{LB3(k)} = max (236, 204, 188, 269) = 269

• The fifth lower bound method

LB4 = max
1≤k≤m

{LB4(k)},

where

LB4 (k) = max(B4_E (k) + T4_max (k) ,B4_L (k)

+T4_min (k)).

For the first two parts,

B4_E (k) = min
1≤j≤n

{

k∑
i=1

pji}, and T4_max (k)

=

 min
1≤j≤n

{

∑m

i=k+1
pji} k < m

0 k = m

For the last two parts, i.e., B4_L (k) and T4_min (k),
B4_L (k) = max(H4_E (k) + B3 (k) ,B4_max (k)), where

H4_E (k) =

{
0 k = 1

min
1≤j≤n

∑k−1
i=1 pji k> 1 ; the calculation of

B3 (k) uses the same procedure in steps 1 to 7 of the fourth
lower bound procedure.

B4_max (k) = min
1≤j≤n

{

k∑
i=1

pji} and T4_min (k)

=

 min
1≤j≤n

{

∑m

i=k+1
pji} k < m

0 k = m

When k = 1,

H4_E (1) = 0,B4_E (1) = min
1≤j≤n

{
1∑
i=1

pji

}
= min (66, 37, 54, 52) = 37,T4_min (1)

= {

∑4

i=2
pji} = min (160, 213, 182, 147) = 147

B3 (1) = 89, which is obtained by steps 1 to 9 of the fourth
lower bound method.

B4_max (1) = max
1≤j≤n

{

∑1

i=1
pji}

= max (66, 37, 54, 52) = 66

B4_L (1) = max
(
H4_E (1) + B3 (1) ,B4_max (1)

)
= max(0 + 89, 66) = 89

T4_max (1) = max
1≤j≤n

{

∑4

i=2
pji}

= max(160, 213, 182, 147) = 213

LB4 (1) = max
(
B4_E (1)

+T4_max (1) ,B4_L (1) + T4_min (1)
)

= max ((37 + 213) , (89 + 147)) = 250

When k = 2,

H4_E (2) = min
1≤j≤n

∑1

i=1
pji = min (66, 37, 54, 52) = 37,

B4_E (2)= min
1≤j≤n

{
2∑
i=1

pji

}
=min (119, 118, 102, 133) = 102,

T4_min (2) = min
1≤j≤n

{

∑4

i=3
pji}

= min ((20 + 87) , (40 + 92,)

(37 + 97) , (23 + 43)) = 66

B3 (2) = 101, which is obtained by steps 1 to 9 of the fourth
lower bound method.

B4_max (2) = max
1≤j≤n

{

∑2

i=1
pji}

= max (119, 118, 102, 133) = 133

B4_L (2) = max
(
H4_E (2) + B3 (2) ,B4_max (2)

)
= max((37 + 101) , 133) = 138

T4_max (2) = max
1≤j≤n

{

∑4

i=3
pji}

= max(107, 132, 134, 66) = 134

LB4 (2) = max
(
B4_E (2) + T4_max (2) ,B4_L (2)

+T4_min (2)
)

= max ((102 + 134) , (138 + 66)) = 236

Using the above procedure for the remaining stages, we can
obtain the following:

LB4 (3)= max(B4_E (3) + T4_max (3) ,B4_L (3) + T4_min (3))

= max((139 + 97) , (158 + 43)) = 236

LB4 (4)= max(B4_E (4)+ T4_max (4) ,B4_L (4) + T4_min (4))

= max((199 + 0) , (269 + 0)) = 269

Thus,

LB4 = max
1≤k≤m

{LB4(k)} = max (250, 236, 236, 269) = 269

41384 VOLUME 11, 2023

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

ACKNOWLEDGMENT
The authors would like to thankVictor Fernandez-Viagas, Paz
Perez-Gonzalez, and Jose M. Framinan for the benchmark
problems.

REFERENCES
[1] H.-X. Qin, Y.-Y. Han, Y.-P. Liu, J.-Q. Li, Q.-K. Pan, and Xue-Han, ‘‘A col-

laborative iterative greedy algorithm for the scheduling of distributed
heterogeneous hybrid flow shop with blocking constraints,’’ Exp. Syst.
Appl., vol. 201, Sep. 2022, Art. no. 117256.

[2] B. Naderi, R. Ruiz, and M. Zandieh, ‘‘Algorithms for a realistic variant of
flowhop scheduling,’’ Comput. Oper. Res., vol. 37, pp. 236–246, 2010.

[3] F. S. Şerifoğlu and G. Ulusoy, ‘‘Multiprocessor task scheduling in mul-
tistage hybrid flow-shops: A genetic algorithm approach,’’ J. Oper. Res.
Soc., vol. 55, no. 5, pp. 504–512, May 2004.

[4] C.-J. Liao, E. Tjandradjaja, and T.-P. Chung, ‘‘An approach using particle
swarm optimization and bottleneck heuristic to solve hybrid flow shop
scheduling problem,’’ Appl. Soft. Comput., vol. 12, no. 6, pp. 1755–1764,
2012.

[5] M. K. Marichelvam, T. Prabaharan, and X. S. Yang, ‘‘Improved cuckoo
search algorithm for hybrid flow shop scheduling problems to minimize
makespan,’’ Appl. Soft Comput., vol. 19, no. 1, pp. 93–101, Jun. 2014.

[6] M. Dios, V. Fernandez-Viagas, and J. M. Framinan, ‘‘Efficient heuristics
for the hybrid flow shop scheduling problem with missing operations,’’
Comput. Ind. Eng., vol. 115, pp. 88–99, Jan. 2018.

[7] J. Y. Long, Z. Zheng, X. Q. Gao, and P.M. Pardalos, ‘‘Scheduling a realistic
hybrid flow shop with stage skipping and adjustable processing time in
steel plants,’’ Appl. Soft Comput., vol. 64, pp. 536–549, Mar. 2018.

[8] K. Peng, Q.-K. Pan, L. Gao, B. Zhang, and X. Pang, ‘‘An improved
artificial bee colony algorithm for real-world hybrid flowshop rescheduling
in steelmaking-refining-continuous casting process,’’ Comput. Ind. Eng.,
vol. 122, pp. 235–250, Aug. 2018.

[9] D. Lei and B. Su, ‘‘A multi-class teaching–learning-based optimization for
multi-objective distributed hybrid flow shop scheduling,’’ Knowl.-Based
Syst., vol. 263, Mar. 2023, Art. no. 110252.

[10] W. Shao, Z. Shao, and D. Pi, ‘‘Modelling and optimization of distributed
heterogeneous hybrid flow shop lot-streaming scheduling problem,’’ Exp.
Syst. Appl., vol. 214, Mar. 2023, Art. no. 119151.

[11] V. Fernandez-Viagas, ‘‘A speed-up procedure for the hybrid flow
shop scheduling problem,’’ Exp. Syst. Appl., vol. 187, Jan. 2022,
Art. no. 115903.

[12] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan, ‘‘Opti-
mization and approximation in deterministic sequencing and scheduling:
A survey,’’ Ann. Math., vol. 5, pp. 287–326, Jan. 1979.

[13] B. Naderi, S. Gohari, and M. Yazdani, ‘‘Hybrid flexible flowshop prob-
lems: Models and solution methods,’’ Appl. Math. Model., vol. 38,
pp. 5767–5780, Dec. 2014.

[14] D. L. Santos, J. L. Hunsucker, and D. E. Deal, ‘‘Global lower bounds for
flow shops with multiple processors,’’ Eur. J. Oper. Res., vol. 80, no. 1,
pp. 112–120, Jan. 1995.

[15] J. Carlier, ‘‘Scheduling jobs with release dates and tails on identical
machines to minimize the makespan,’’ Eur. J. Oper. Res., vol. 29, no. 3,
pp. 298–306, Jun. 1987.

[16] V. Fernandez-Viagas, P. Perez-Gonzalez, and J. M. Framinan, ‘‘Efficiency
of the solution representations for the hybrid flow shop scheduling problem
with makespan objective,’’ Comput. Operations Res., vol. 109, pp. 77–88,
Sep. 2019.

[17] T. S. Arthanari and K. G. Ramamurthy, ‘‘An extension of two machines
sequencing problem,’’ Opsearch, vol. 8, no. 1, pp. 10–22, 1971.

[18] J. N. D. Gupta, ‘‘Two-stage, hybrid flowshop scheduling problem,’’
J. Oper. Res. Soc., vol. 39, no. 4, pp. 359–364, Apr. 1988.

[19] C. Sriskandarajah and S. P. Sethi, ‘‘Scheduling algorithms for flexible
flowshops: Worst and average case performance,’’ Eur. J. Oper. Res.,
vol. 43, no. 2, pp. 143–160, Nov. 1989.

[20] J. N. D. Gupta and E. A. Tunc, ‘‘Schedules for a two-stage hybrid flowshop
with parallel machines at the second stage,’’ Int. J. Prod. Res., vol. 29, no. 7,
pp. 1489–1502, Jul. 1991.

[21] C.-Y. Lee and G. L. Vairaktarakis, ‘‘Minimizing makespan in hybrid
flowshops,’’ Oper. Res. Lett., vol. 16, no. 3, pp. 149–158, Oct. 1994.

[22] F. Riane, A. Artiba, and S. E. Elmaghraby, ‘‘A hybrid three-stage flowshop
problem: Efficient heuristics to minimize makespan,’’ Eur. J. Oper. Res.,
vol. 109, no. 2, pp. 321–329, Sep. 1998.

[23] H. Soewandi and S. E. Elmaghraby, ‘‘Sequencing three-stage flexible
flowshops with identical machines to minimize makespan,’’ IIE Trans.,
vol. 33, no. 11, pp. 985–993, Nov. 2001.

[24] R. Ruiz and J. A. Vázquez-Rodríguez, ‘‘The hybrid flow shop scheduling
problem,’’ Eur. J. Oper. Res., vol. 205, no. 1, pp. 1–18, 2010.

[25] S. A. Brah and L. L. Loo, ‘‘Heuristics for scheduling in a flow shop with
multiple processors,’’ Eur. J. Oper. Res., vol. 113, no. 1, pp. 113–122,
Feb. 1999.

[26] M.-C. Portmann, A. Vignier, D. Dardilhac, and D. Dezalay, ‘‘Branch and
bound crossed with GA to solve hybrid flowshops,’’ Eur. J. Oper. Res.,
vol. 107, no. 2, pp. 389–400, Jun. 1998.

[27] J. Carlier and E. Neron, ‘‘An exact method for solving the multiprocessor
flowshop,’’ RAIRO Oper. Res., vol. 34, no. 1, pp. 1–25, 2000.

[28] E. Néron, P. Baptiste, and J. N. D. Gupta, ‘‘Solving hybrid flow shop
problem using energetic reasoning and global operations,’’Omega, vol. 29,
no. 6, pp. 501–511, Dec. 2001.

[29] T. Kis and E. Pesch, ‘‘A review of exact solution methods for the non-
preemptivemultiprocessor flowshop problem,’’Eur. J. Oper. Res., vol. 164,
no. 3, pp. 592–608, 2005.

[30] S.-W. Lin, C.-Y. Cheng, P. Pourhejazy, K.-C. Ying, and C.-H. Lee,
‘‘New benchmark algorithm for hybrid flowshop scheduling with identical
machines,’’ Exp. Syst. Appl., vol. 183, Nov. 2021, Art. no. 115422.

[31] C. D. Paternina-Arboleda, J. R. Montoya-Torres, M. J. Acero-Dominguez,
andM. C. Herrera-Hernandez, ‘‘Scheduling jobs on a k-stage flexible flow-
shop,’’ Ann. Operations Res., vol. 164, no. 1, pp. 29–40, Nov. 2008.

[32] D. Santos, J. Hunsucker, and D. Deal, ‘‘An evaluation of sequencing
heuristics in flow shops with multiple processors,’’ Comput. Ind. Eng.,
vol. 30, pp. 681–692, Sep. 1996.

[33] V. Fernandez-Viagas, J. M. Molina-Pariente, and J. M. Framinan, ‘‘New
efficient constructive heuristics for the hybrid flowshop to minimise
makespan: A computational evaluation of heuristics,’’ Exp. Syst. Appl.,
vol. 114, pp. 345–356, Dec. 2018.

[34] E. Nowicki and C. Smutnicki, ‘‘The flow shop with parallel machines: A
Tabu search approach,’’ Eur. J. Oper. Res., vol. 106, nos. 2–3, pp. 226–253,
Apr. 1998.

[35] K. Alaykýran, O. Engin, and A. Döyen, ‘‘Using ant colony optimization to
solve hybrid flow shop scheduling problems,’’ Int. J. Adv. Manuf. Technol.,
vol. 35, nos. 5–6, pp. 541–550, Nov. 2007.

[36] O. Engin and A. Döyen, ‘‘A new approach to solve hybrid flow shop
scheduling problems by artificial immune system,’’ Future Gener. Comput.
Syst., vol. 20, no. 6, pp. 1083–1095, 2004.

[37] Q.-K. Pan, L. Wang, J.-Q. Li, and J.-H. Duan, ‘‘A novel discrete artificial
bee colony algorithm for the hybrid flowshop scheduling problem with
makespan minimisation,’’ Omega, vol. 45, pp. 42–56, Jun. 2014.

[38] C. Kahraman, O. Engin, İ. Kaya, and M. K. Yilmaz, ‘‘An application
of effective genetic algorithms for solving hybrid flow shop scheduling
problem,’’ Int. J. Comput. Intell. Syst., vol. 1, pp. 134–147, May 2008.

[39] D. Kizilay, M. F. Tasgetiren, Q.-K. Pan, and L. Wang, ‘‘An iterated
greedy algorithm for the hybrid flowshop problem with makespan crite-
rion,’’ in Proc. IEEE Symp. Comput. Intell. Prod. Logistics Syst. (CIPLS),
Dec. 2014, pp. 16–23.

[40] R. Buddala and S. S. Mahapatra, ‘‘Improved teaching–learning-based and
Jaya optimization algorithms for solving flexible flow shop scheduling
problems,’’ J. Ind. Eng. Int., vol. 14, no. 3, pp. 555–570, Sep. 2018.

[41] S.-L. Jiang, C. Xu, L. Zhang, and Y. Ma, ‘‘A decomposition-based two
stage online scheduling approach and its integrated system in the hybrid
flow shop of steel industry,’’ Exp. Syst. Appl., vol. 213, Mar. 2023,
Art. no. 119220.

[42] H. Qin, Y. Han, Y. Wang, Y. Liu, J. Li, and Q. Pan, ‘‘Intelligent opti-
mization under blocking constraints: A novel iterated greedy algorithm
for the hybrid flow shop group scheduling problem,’’ Knowl.-Based Syst.,
vol. 258, Dec. 2022, Art. no. 109962.

[43] Y. Liu, W. Shen, C. Zhang, and X. Sun, ‘‘Agent-based simulation and
optimization of hybrid flow shop considering multi-skilled workers and
fatigue factors,’’ Robot. Comput.-Integr. Manuf., vol. 80, Apr. 2023,
Art. no. 102478.

[44] Q. N. H. Tran, N. Q. Nguyen, F. Yalaoui, L. Amodeo, and H. Chehade,
‘‘Improved formulations and new valid inequalities for a hybrid flow shop
problem with time-varying resources and chaining time-lag,’’ Comput.
Oper. Res., vol. 149, Jan. 2023, Art. no. 106018.

[45] J. Dong and C. Ye, ‘‘Green scheduling of distributed two-stage reentrant
hybrid flow shop considering distributed energy resources and energy
storage system,’’ Comput. Ind. Eng., vol. 169, Jul. 2022, Art. no. 108146.

VOLUME 11, 2023 41385

Y. Chen et al.: Evaluation of Mathematical Programming and Lower-Bound Methods

[46] H. Gholami and H. Sun, ‘‘Toward automated algorithm configuration
for distributed hybrid flow shop scheduling with multiprocessor tasks,’’
Knowl.-Based Syst., vol. 264, Mar. 2023, Art. no. 110309.

[47] Q.-K. Pan and Y. Dong, ‘‘An improved migrating birds optimisation for a
hybrid flowshop scheduling with total flowtime minimisation,’’ Inf. Sci.,
vol. 277, pp. 643–655, Sep. 2014.

[48] M. Dell’Amico and S. Martello, ‘‘Optimal scheduling of tasks on iden-
tical parallel processors,’’ ORSA J. Comput., vol. 7, no. 2, pp. 191–200,
May 1995.

YARONG CHEN received the B.S. and M.S.
degrees in management science and engineer-
ing from Jiangsu University, Zhenjiang, Jiangsu,
China, in 2003. Since 2003, she has been an Assis-
tant Professor and an Associate Professor with the
College of Mechanical and Electrical Engineer-
ing, Wenzhou University, Wenzhou, China. Her
research interests include the simulation and opti-
mization of complicated manufacturing systems,
the integration optimization of production plan-

ning and scheduling, scheduling algorithms, and lean production.

YA-CHIH TSAI received the M.S. and Ph.D.
degrees from the Department of Industrial Engi-
neering and Management, Yuan Ze University.
She is currently an Associate Professor with
the Department of Hotel Management, Vanung
University. Her current research interests include
production scheduling and semiconductor manu-
facturing management.

FUH-DER CHOU received the M.S. degree in
industrial engineering from Chung Yuan Christian
University, in 1988, and the Ph.D. degree in indus-
trial engineering and management from National
Chiao Tung University, in 1997. He is cur-
rently a Professor with the College of Mechanical
and Electronic Engineering, Wenzhou University,
China. His research interests include production
scheduling, semiconductor manufacturing man-
agement, and group technology.

41386 VOLUME 11, 2023

