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ABSTRACT Motion planning for autonomous vehicles remains a challenge in urban road environments
with occlusions. In this study, we present a motion planning framework that prioritizes safety, comfort,
and efficiency to enable autonomous vehicles to navigate safely through urban roads with occlusions. Our
solution consists of three main components: local path planning, trajectory planning, and speed planning.
First, based on the improved Artificial Potential Field to generate the local path, then the optimal trajectory
is solved in the S-L coordinate with the local path as the reference line. Subsequently, the potential risk
probability of the occluded area is incorporated into the incomplete information static game framework
and implement speed planning based on the game results and the proposed vehicle ‘‘safe driving’’ to
complete the collision avoidance between the autonomous vehicle and visible or obscured dynamic traffic
participants. In high pedestrian traffic scenarios, simulation verification shows that the proposed model
enhances autonomous vehicle comfort levels by about 32%∼48% compared to the baseline method utilizing
automatic emergency brake system (AEB).We also conducted simulation verification of the proposed model
in overtaking and left-turning traffic scenarios, comparing it with other models. The results demonstrate that
our proposed model ensures safe autonomous driving in traffic scenario with occlusions while maintaining
comfort and efficiency.

INDEX TERMS Autonomous vehicles, collision avoidance, motion planning, path planning, speed planning,
visual occlusion.

I. INTRODUCTION
The primary goal of motion planning for autonomous driving
is to determine a secure trajectory for autonomous vehi-
cles (AVs). However, in the context of urban road envi-
ronments, numerous sources of uncertainty pose significant
challenges to achieving this objective. Although AVs are
equipped with various sensors. the urban road environment
is not only populated by a variety of motor vehicles, but is
also usually surrounded by obstacles such as parked vehicles,
buildings, construction fences, green belts and bridges, etc.
Moving vehicles and stationary obstacles cause on-board
sensor visual occlusion, which prevents the AV from fully
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observing the surrounding environment, as shown in Fig. 1.
However, developing amotion planner that covers all possible
situation is a tedious process and even impractical, especially
in autonomous driving scenarios. Most AVs perform motion
planning based on observed environmental information. For
safe, efficient and comfortable driving, it is necessary to
properly incorporate unobservable risks, such as those caused
by occlusions, into motion planning.

Most existing solutions incorporate static occlusions into
motion planning, which has achieved remarkable results.
However, this method cannot adapt well to a situation where
the sensor is dynamically occluded by moving obstacles [1].
In this paper, the results of our previously proposed method
in [2] for potential risk assessment of occluded areas are
applied to the autonomous motion planning task. A novel AV
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FIGURE 1. Common occlusion scenarios that create challenges and safety risks for autonomous vehicles. (a) The blue car is an AV, and pedestrians
crossing the road are occluded by parked vehicles; (b) AV’s line of sight was obstructed by a large vehicle prior to overtaking; (c) The autonomous
vehicle proceeded into an intersection with obstructed right-side visibility.

motion planning method considering driving scenarios with
visual occlusion is proposed, which enables the AV to react
safely if other traffic participant unexpectedly emerges from
an occluded area while ensuring a comfort and efficiency. The
simulation experiment shows that such risk-aware policy can
be more reliable and safer at challenging situations without
being overcautious comparing to some previous works that
only consider the rule-based policy.

The main contributions of this paper are as follows:
• Amotion planner is presented that is capable of actively
adjusting the heading and speed of autonomous vehicles
based on their surroundings, enabling safe driving in
various scenarios including visual occlusion.

• Local path planning based on the improved Artificial
Potential Field and trajectory planning in S-L coordi-
nates are adopted to overcome the uncertainty of various
physical obstacles in motion planning.

• For the first time, risk probabilities have been incorpo-
rated into a virtual game strategy with incomplete infor-
mation to complete AV speed planning in the presence
of occluded traffic obstacles.

The remainder of the paper is structured as follows: In
section II, we discuss existing work on occlusion-aware
motion planning of autonomous driving. In section III, the
proposed AV motion planning method is described in detail
in terms of three modules: local path planning, trajectory
planning and speed planning. In Section IV, the validity of
proposed method is verified by simulations and experiments
in different representative driving scenarios and demonstrates
the advantages of the proposed method. Section V draws
conclusions and points out future research directions.

II. RELATED WORD
As the application area of AVs continues to broaden, sen-
sor occlusion becomes inevitable and the number of studies
on occlusion-aware motion planning has been increasing in
recent years. Some earlier studies considered only occlusions
caused by static obstacles around the AV [3], [4], [5], [6]. It is
convenient to limit the study to static occlusions because the
evolution of the field of view scenario only depends on the
location of the AV, which can be estimated if high-resolution

map is available. Recent works have tackled the dynamic
occlusion, such as [7], [8], [9], and [10], although each of
them considered only a specific traffic scenario.

The occlusion-awaremotion planning solutionmust gener-
ate state trajectories that indicate the potential response of the
AV if an occluded agent emerges from an occluded area [8].
Safety maneuvers that an AV should be able to perform usu-
ally include braking before a certain interaction area. Some
studies proposed utilizing external information provided by
the road infrastructure to ensure safe navigation of AVs [11],
[12], In [11] additional external sensing data transmitted via
low-latency mobile networks used in parallel with the on-
board perception module to plan safe and comfortable motion
of passengers. While the use of additional information from
external sources can improve the perception of surrounding
occluded areas by AVs, high-quality networks that reliably
transmit the necessary information in real time are usually
required, in addition, these infrastructures cannot guarantee
adequate coverage of all regions, so widespread adoption of
approaches that rely on information from external sources can
be slow.

A common strategy for mitigating the risk of collision with
occluded agents is to assume a virtual agent is always present
in the occluded area and move away from the visible region
boundary at a constant velocity [13], [14], [15], [16]. Based
on such an assumption, the collision time TTC of the AV
with the virtual agent can be calculated, and by regulating the
speed of the AV collisions with these virtual agents can be
avoided. The advantage of this approach is that it is relatively
reliable, and the resulting behavior is easy to interpret. How-
ever, it also has limitations, first, the TTC model assumes a
constant speed, which ignores almost all information about
the agent’s intention. Second, in many cases, agents using
TTC are overly cautious, causing unnecessary delays.

Reachability analysis is used to describe the set of states
that any potentially occluded vehicle can reach and to plan
safety trajectories accordingly [3], [4], [15], [17], [18].
In general, a set of states represents all possible configura-
tions that traffic participants may reach. Yu et al. [17], [18]
applied a sampling method to represent potentially occluded
agent states as particles, through bidirectional reachability
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analysis, the distribution of dangerous ‘‘phantom’’ objects
was determined. Although the safety of this method was
demonstrated, reachability analysis can lead to conservative
driving behavior in some exceptional situations with limited
visibility. In such cases, it is necessary for the AV to enter
the conflict zone cautiously to gather more information and
prevent deadlock.

Several researchers have proposed data-driven approaches
to learn the basic features of such safety behaviors [19]. How-
ever, data-driven deep learning methods based on data must
rely on large amounts of data samples for training, and the
learned models do not adapt well to unfamiliar environments.

Apart from the more common techniques mentioned
above, Partially Observable Markov Decision Processes
(POMDP) have been widely used in occlusion-aware motion
planning [20], [21], [22], [23], [24], [25]. For example, the
collision avoidance of self-driving cars performs very well
under state uncertainty thanks to the POMDP algorithm in
[20] and [21]. Although POMDP solutions can generate low-
conservative strategies, it does not guarantee or focus on
safety and this approach usually suffer from high compu-
tational burden, requires a reduced state space to make the
algorithm computationally tractable. In [26], [27], and [28],
driving strategies at occluded urban intersections are obtained
using Reinforcement Learning (RL). Kamran et al. [29] used
a risk-aware deep Q-network (DQN) to deal with occluded
intersections. Instead of considering only collisions, the risk
assessment is incorporated into the reward function. If an
intersection is blocked, the vehicle is assumed to have the
maximum allowed speed. In [19] and [30], effective driving
behaviors are learned directly from expert driving data of
drivers at low-visibility intersections by feature extraction.
Similarly, in [31], expert driving data is used to determine
the parameters of the risk potential function for uncontrolled
intersections, which is ultimately used to determine the safe
speed of the AV.

Some studies have minimized occlusion and improved
visibility by actively adjusting the lateral position of
self-vehicles to increase the chance of detection of occluded
traffic participants earlier [7], [32], [33].While thesemethods
have been shown to produce effective driving behavior when
encountering occlusions, their main limitation is that their
ability to be applied in scenarios other than those for which
they were specifically designed is not guaranteed.

Inspired by works [34] and [35], we incorporate the Proba-
bility distribution of agent emergence from obscured regions
predicted from contextual information which obtained in pre-
vious work [2] into the incomplete information virtual game
to regulate the speed of the autonomous vehicle on motion
planning.

III. MOTION PLANNING
The motion planning model proposed in this paper is decom-
posed into three parts: local path planning, trajectory plan-
ning, and speed planning. Local path planning completes the

static environment’s path solution, while trajectory planning
completes the dynamic trajectory planning and solves the
optimal trajectory. Speed planning addresses collision prob-
lems between AVs and various moving obstacles, including
obscured moving objects.

A. VEHICLE MODEL
Suppose that in the two-dimensional space, we have an
AV e and other interactive agents o = {o1, o2, · · · , on},
in the global inertial coordinate system, the AV states can be
described as:

Se = [x, y, ϕ, v, κ, α] (1)

where (x, y) denotes the position, ϕ is the heading angle,
κ denotes the curvature, i.e., the rate of change of the heading
angle, v and α denote the velocity and acceleration of the AV,
respectively. The vehicle kinematics model of the AV is

ẋ = v cosϕ

ẏ = v sinϕ

ϕ̇ = vκ

v̇ = α

κ, α = input (2)

In this paper, the control inputs consist of acceleration and
curvature. AV state change is driven by the change of speed
and heading angle by the control inputs c = [κ, α]T , where κ

is the output of the trajectory planner and α is the output of
the speed planner.

B. LOCAL PATH PLANNING
Safe and efficient local path planning is crucial for ensuring
the safe and smooth operation of self-driving cars. However,
due to the highly dynamic nature of road environments, it is
imperative to quickly and accurately identify unpredictable
obstacles and make necessary adjustments to the local path.

The Artificial Potential Field (APF) is mainly applied in
the field of robot obstacle avoidance [36], and a modern
car can be regarded as a high-speed robot, so this method
can also be applied in the field of obstacle avoidance path
planning for cars. However, the APF also suffers from the
problem of excessive target gravitational force, the problem
of target unreachability and the tendency to fall into local
minima, which can lead to path planning failure in complex
environments. We propose a path planning method based on
improved APF, aiming to study the influence range of the
gravitational field function and repulsive field function in the
process of obstacle avoidance by using a distance threshold
and repulsion adjustment factor.

For the problem of excessive gravitational force at the tar-
get position, the improved gravitational field functionUatt (p)
is:

Uatt (p) =


1
2
ηattρ

2
eg, 0 < ρeg ≤ dg

dgηattρeg, 0 < ρeg ≤ dg
(3)
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where ηatt is the gravitational gain coefficient, ρeg is a vec-
tor that denotes the Euclidean distance between the current
position of the AV and the target position, and dg is a set
distance threshold for the influence of the target point on
the AV. The corresponding gravitational force, Fatt (p), is the
negative gradient of the gravitational field:

Fatt (p)=−∇Uatt (p)=

 −ηattρeg, 0 < ρeg ≤ dg
−dgηatt

ρeg

∥ ρeg ∥
, 0 < ρeg ≤ dg

(4)

Formula (4) indicates that the gravitational force is pro-
portional to ρeg when ρeg is less than dg; otherwise, the
gravitational force is constant.

To address the problems of target unreachability and local
minima, by improving the repulsive force potential field func-
tion of the obstacles to be solved, a common method is to
add a modulation factor ρneg to the repulsive field model so
that the repulsive and gravitational forces are reduced to zero
simultaneously only when the car reaches the target point.
The improved repulsive field function, Ureq(p), is:

Ureq(p) =


1
2
ηreq

(
1

ρeo
−

1
do

)2

ρneg, 0 ≤ ρeo ≤ do

0, ρeo > do

(5)

where ηreq is the repulsion gain coefficient, ρeo is a vector that
denotes the Euclidean distance between the current position
of the AV and the obstacle, and do represents the maximum
range of influence of the obstacle on the AV, it should be
noted that do takes different values depending on whether the
obstacle is in the same lane as the autonomous vehicle. In this
paper, we set n = 2. The corresponding repulsive force, Freq,
is the negative gradient of the repulsive field:

Freq(p) =


ηreq

(
1

ρeo
−

1
do

)
ρneg

ρ2
eo

+
n
2
ηreq

(
1

ρeo
−

1
do

)2

ρn−1
eg ,

0 ≤ ρeo ≤ do
0, ρeo > do

(6)

The area of AV travel is restricted by establishing a road
boundary repulsive potential field:

Ureq,edge(y) =


1
2
ηedge

(
1
ρy

−
1
dy

)2

, 0 ≤ ρy ≤ dy

0, ρy > dy

(7)

The corresponding repulsive force is:

Freq,edge(y) =

 ηedge

(
1
ρy

−
1
dy

)
1
ρ2
y
, 0 ≤ ρy ≤ dy

0, ρy > dy

(8)

where ηedge is the repulsion gain coefficient. It should be
noted that ηedge should be taken separately for different repul-
sive potential fields at the road boundary and at the solid
and dashed lines of the lane boundary. ρy is the value of the
lateral distance between the AV and the center point of the
repulsive potential field, and dY denotes the maximum range
of influence of the repulsive potential field acting on the AV.

The combined potential field in the entire driving area is the
sum of the gravitational and repulsive potential fields, and the
combined force on the AV is the sum of the gravitational and
repulsive forces.{

Usum(p) = Uatt (p) +

∑
Ureq(p) +

∑
Ureq,edge(y)

Fsum(p) = Fatt (p) +

∑
Freq(p) +

∑
Freq,edge(y)

(9)

The path planning results for the AV in moving to the
target position pg, visualizing the combined potential field
and describing the forces on the AV at position pe as show
in Fig. 2. The results show that under the joint action of road
gravitational potential field, obstacle repulsion potential field
and road repulsion potential field, AV can complete local path
planning.

C. TRAJECTORY PLANNING
Local path planning is carried out without considering mov-
ing obstacles and vehicle dynamics constraints, and the
planned path does not guarantee sufficient safety and com-
fort of the vehicle. Trajectory planning is to take the above
planned path as the reference line and plan the optimal tra-
jectory of the vehicle considering the actual moving obstacles
and vehicle dynamics constraints.

1) ROAD COORDINATE
Due to the diversity of traffic road alignment, it is very trou-
blesome to make the road discretization using only inertial
X-Y coordinate. As in the literature [37], to overcome this
problem, we adopt S−L curvilinear coordinate to accomplish
the dynamic trajectory planning. The trajectory planning
algorithm relies heavily on the definition of reference line,
a sampling function r(s) can be used to define the reference
lines in the road.

r(s) = [xr (s), yr (s), ϕr (s), κr (s)] (10)

where, s represents the arc length along the reference line,
(xr (s), yr (s)) represents the position of the sample point in
S−L curvilinear coordinate, ϕr (s), κr (s) represent the tangent
direction and curvature of the sample point, respectively.
As shown in Fig. 3, we can define a vehicle state point p(s, l)
away from the reference line:
p(s, l) = [xp(s, l), yp(s, l), ϕp(s, l), κp(s, l)], l repre-

sents the lateral offset relative to the reference line, also
called the lateral displacement. The relationship of p(s, l)
with coordinate system and the reference line sampling
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FIGURE 2. Artificial Potential Field-based local path planning.

FIGURE 3. Trajectory planning in S-L coordinate.

function satisfies:

xp(s, l) = xr (s) + l cos(ϕr (s) + π/2)

yp(s, l) = yr (s) + l sin(ϕr (s) + π/2)

ϕp(s, l) = ϕr (s) + arctan(dl
/
ds)

κp(s, l) = (κr (s)−1
− l)−1 (11)

Trajectory produced by our planner express the motion of
the AV as a function of curvature κ with respect to the arc
length s along the reference line, in which case we express
the vehicle model as:

dx/ds = cos(ϕ(s))

dy/ds = sin(ϕ(s))

dϕ/ds = κ(s) (12)

The Formula (12) shows that the AV position state is deter-
mined by the curvature. Thus, for the trajectory planner, local
trajectories can be carried out by determining the curvature.

2) CANDIDATE TRAJECTORY GENERATION
A trajectory can be viewed as a sequence of vehicle states, and
it is generated by connecting sampled endpoints using vari-
ous types of curvature polynomials. The connection method

employed in our planner is identical to that described in [37].
However, quintic curvature polynomials are utilized instead
of cubic ones to ensure the continuity of the rate of change
in curvature at the beginning point of each planning cycle.
The curvature can be defined as a quintic polynomial function
with respect to arc length.

κ(s) = k0 + k1s+ k2s2 + k3s3 + k4s4 + k5s5 (13)

where a set of parameters can determine a trajectory, so the
problem becomes to find the parameters satisfying the end-
point constraints, we use a gradient descent algorithm to solve
this problem.

When the vehicle drives on the road, the initial state pinit =

(xI , yI , ϕI , κI ) and the desired state pgoal = (xG, yG, ϕG, κG)
are given. To reduce the magnitude error among the param-
eters, it is required the parameters to be solved for should
be of a similar scale, we introduce new parameters p =

[p0, p1, p2, p3, p4, p5, sG] to reformulate the function (13) as:

κ(s) = a(p) + b(p)s+ c(p)s2 + d(p)s3 + e(p)s4 + f (p)s5

(14)
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where

κ(0) = p0=κI , dκ(0)=p1=dκI , d2κ(0)=p2=d2κI
κ(sG

/
3) = p3, κ(2sG

/
3)=p4, κ(sG)=p5=κG

There are seven parameters in the function (14), we note
that p0 = κI , p1 = dκI , p2 = d2κI and p5 = κG. This
leaves just three unknowns [p3, p4, sG], using the gradient
descent algorithm, we can quickly find the parameters of a
quintic curvature polynomial that is very close to the initial
state limit.

3) CANDIDATE TRAJECTORY FILTERING
There are safety constraints on the motion and dynamics of
the vehicle, to reduce the burden of the system and speed
up the calculation, the trajectories that cannot satisfy the
limit conditions can be filtered by trajectory filtering before
calculating the optimal trajectory. The main task of filtering
includes curvature filtering and collision filtering.

For curvature filtering, the retained trajectories need to
satisfy

κj[i] ≤ κmax, 0 ≤ j ≤ N (15)

where κj[i] is the curvature of the trajectory i at trajectory
point j after discretization in the S direction, κmax is the max-
imum curvature set for comfort, N is the maximum number
of trajectory points after discretization.

For collision filtering, the retained trajectory needs to sat-
isfy that the distance between any point j on trajectory i and
the obstacle (xob, yob) is greater than the safety distance dsafe.

(xi − xob)2 + (yi − yob)2 ≥ d2safe (16)

The retained trajectories after filtering are the candidate
trajectory of the AV, as shown in the yellow profiles in Fig. 3.

4) TRAJECTORY OPTIMIZATION
The goal of trajectory optimization is to find the smoothest
trajectory curve with the lowest cost function among all the
trajectories retained after trajectory filtering, as shown in the
red profile in Fig. 3. Consider the trajectory curve ι, which is
connected by trajectory points (n0, n1, · · · , nm), and its cost
function can be written as

Cost(ι) = �(ι) + 8(ι) (17)

where �(ι) represents the cost accumulated by traveling
along this trajectory curve, and 8(ι) represents the cost intro-
duced by this trajectory ending at this end point.

We consider the following factors to design the �(ι) func-
tion.

• The optimal trajectory should closely follow the refer-
ence line, and any deviation from it will result in an
increase in the cost of the trajectory.

• The optimal trajectory is capable of real-time obsta-
cle avoidance and maintaining a safe distance from
obstacles.

• The optimal trajectory should minimize large changes in
curvature (including its derivatives) to ensure passenger
comfort.

For the calculation of the 8(ι), since we solve the speed
planning as a separate problem, the cost function of 8(ι)
can consider only the longitudinal displacement part of the
trajectory.

8(ι) = − ωssG(ι) + hd (sG(ι)),

hd (s) =

{
−ωd if s ≥ sthreshold
0 otherwise

(18)

where −ωssG(ι) is a linear cost that represents the overall
trajectory biased towards trajectories with longer longitudinal
displacements s, the negative sign represents a reduction in
cost, while hd (s) is a nonlinear cost that is triggered onlywhen
the overall longitudinal displacement s exceeds a certain
threshold.

D. SPEED PLANNING
After the optimal trajectory is selected, speed planning
designs what speed is used to travel this trajectory. The varia-
tion of speed is controlled by the control input variable α. For
the visual occlusion, the planned speed in various situations
(whether an agent unexpectedly emerge from the occluded
area or not) should ensure both the safety and comfort of
autonomous vehicle driving, also consider the driving effi-
ciency. In this subsection, we first describe in detail the pro-
posed ‘‘virtual game’’ model between the AV and occluded
agents, and then give an acceleration setting scheme.

1) THE GAME OF AV AND OCCLUDED AGENTS
For the potential collision risk in occluded areas, decelera-
tion with worst-case assumptions leads to overly conserva-
tive AV behavior [38], which is unacceptable to consumers.
To address this issue, some systems rely on automatic emer-
gency braking (AEB) to prevent collisions [23], [39]. How-
ever, unnecessarily frequent activation of AEB can reduce
AV comfort in potentially risky and intermittently occluded
scenarios.

To overcome these problems, themain idea of our approach
is, first, to predict the potential risk probability λc generated
by the occluded area to the AV adopting the method in our
previous work [2]; secondly, to compare λc with the risk prob-
ability threshold λth proposed below, the AV selects different
operations according to different situations:

When λc ≥ λth, AV with the safety and comfort of opera-
tion as themain goal, uses a relatively low deceleration reduce
speed when approaching the interaction area to prevent a
collision with a suddenly appearing traffic participant.

When λc < λth, the AV with safety and efficiency as the
main goal, moves forward at the maximum safe speed when
approaching the interaction area and activates emergency
braking only when an object unexpectedly exits the occluded
area, since this phenomenon is, after all, a rare occurrence.
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a: POTENTIAL RISK PROBABILITY
The potential risk probability λc refers to the probability
that a traffic participant who poses a collision risk to an AV
will emerge from the occluded area. We used the Bayesian
network-based model in our previous work [2] to predict the
potential risk probabilities. The value of λc is be predicted
and inferred by AVs by observing the states of environmen-
tal impact factors, such as divider, crosswalk, traffic flow,
number of lanes, obstacle speed, etc. Since the potential risk
probability assessment is more complex and this paper only
uses the assessment results, so it is not described in detail, for
details, please see reference [2].

b: RISK PROBABILITY THRESHOLD
A risk can be ignored if the potential risk probability value is
less than the risk probability threshold. In this paper, a static
game method is used for the analysis and calculation of λth.
Some studies describe the multiagent interaction problem
(car-to-car and car-to-person) without occlusions as a com-
plete information game problem [40] and [41]. This paper
studies the vehicle interaction problem on urban roads with
visual occlusion. If a complete information game is used,
the structural characteristics of the game are uncertain, and
the payoff function in the game process is not common
knowledge. Therefore, complete information cannot be used
for game analysis. Based on the Harsanyi transform [42],
we developed a model of a static ‘‘virtual game’’ with incom-
plete information to analyze the above problem.

It is assumed that the uncertainty agent o_agent in the
occluded area is composed of two classes of determinis-
tic agents, namely, the ‘‘present agent (p_agent)’’ and the
‘‘absent agent (a_agent)’’. The p_agent refers to an agent that
‘‘exists’’ in the occluded area, which will pose a threat to the
AV. Considering the perceptual decision-making capabilities
of such agents, this threat is probabilistic. The a_agent refers
to an agent that ‘‘may not exist’’ in the occluded area, which
does not pose a threat to the AV. In addition, it is assumed
that all agents have two personality characteristics ‘‘p (proac-
tive)’’ and ‘‘y (yield)’’ regarding the right of way. When there
is interaction between agents, ‘‘p’’ indicates that the agent
tends to seize the right of way, while ‘‘y’’ indicates that the
agent tends to give up the right of way. Since p_agent and
a_agent are descriptions of virtual agents in the occluded
area, these two types of agents are regarded as ‘‘players’’ who
play a game with the AV i.e. e_agent , which is called a ‘‘vir-
tual game’’. Agents with different personality characteristics
lead to different situations when they play interactive games.
Fig. 4 shows the payoff matrix of e_agent and o_agent in the
‘‘virtual game’’.

Fig. 4 is analyzed from a safety point of view. First, the
analysis of e_agent is as follows: (i) If o_agent is ‘‘p_agent’’:
when p_agent selects the ‘‘p’’ feature, the payoff (up,eyp , up,oyp )
of both parties is optimal. If the feature of p_agent is ‘‘y’’,
when e_agent selects the‘‘p’’ feature, the payoff (up,epy , up,opy )
of both parties is optimal. At this point, there are two pure

FIGURE 4. Payoff matrix for games with incomplete information.

strategic Nash equilibria in the game, namely (up,eyp , up,oyp ) and
(up,epy , up,opy ). (ii) If o_agent is ‘‘a_agent’’: Since the main
performance characteristic of a_agent is that it will not pose
a threat to the AV.Whether the a_agent feature is ‘‘p’’ or ‘‘y’’,
for e_agent , the self-revenue value is greater when selected
the ‘‘p’’ feature than the self-revenue when selected the ‘‘p’’
feature. In this case, a_agent is safer when the feature of
a_agent is ‘‘y’’, the game has a unique Nash equilibrium,
namely (up,eyp , up,oyp ). By the above analysis, for e_agent , the
type of o_agent is not known when playing with o_agent .
For this incomplete information game problem, the related
methods of the complete information game cannot be used to
solve it.

The Harsanyi transformation provides a solution for the
problem of incomplete information in games. A virtual
‘‘player’’, ‘‘nature’’, is introduced into the original game to
construct a three-player game with players e_agent, o_agent
and nature, as shown in Fig. 5. First, nature selects the
feature of o_agent , then, e_agent and o_agent play a game.
The selection result of nature, e_agent is indeterminate, but
o_agent is certain. In the newly constructed three-player
game, the payoff of nature does not need to be considered,
and the payoffs of e_agent and o_agent are determined by
Fig. 4.
Obviously, the H-transform turns an incomplete informa-

tion game problem into a complete but imperfect information
game problem. However, the complete information game
processing method cannot be directly applied to the solu-
tion. In Fig. 5, the ‘‘virtual’’ participant ‘‘nature’’ has no
payoff or the payoff is not considered. That is, the feature
of o_agent is random. It should be noted that the participant
nature randomly selects the feature of o_agent . Therefore,
e_agent must provide an action inference about nature when
deciding its choice, which can be represented by a probability
distribution. λ represents the probability that e_agent thinks
that nature will select o_agent as p_agent , i.e., there is a
potential risk probability for the occluded area.
ue(p) and ue(y) represent the expected benefits that

e_agent thinks it can obtain when it chooses actions ‘‘p’’ and
‘‘y’’, respectively. χ represents the probability that o_agent
selects feature ‘‘p’’. Since

[
ue(p)
ue(y)

]
= λ

[
up,epp , up,epy
up,eyp , up,eyy

] [
χ

1 − χ

]

+ (1 − λ )

[
ua,epp , ua,epy
ua,eyp , ua,eyy

] [
χ

1 − χ

]
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FIGURE 5. Game tree after introducing virtual player ‘‘nature.’’

0 ≤ λ ≤ 1, 0 ≤ χ ≤ 1 (19)

for e_agent , when ue(p) > ue(y), its optimal choice is ‘‘p’’
that is, take the right of way andmove forward.When ue(p) ≤

ue(y), its optimal choice is ‘‘y’’, that is, to yield the right of
way. Because 0 ≤ χ ≤ 1, given the value of χ , the threshold
λth can be obtained according to Formula (20):

λth = {λ |∃χ ∈ R, 0 ≤ χ ≤ 1,

arg max
0≤λ∈R≤1

(ue(p) − ue(y) > 0) (20)

Based on references [43] and [44], when potential traffic
participants cross the road illegally, χ = 0.15; otherwise,
χ = 1. Using the potential risk assessment values from our
previous work [2], i.e., λ = λc, when λ < λth, the optimal
choice of the AV (e_agent) is ‘‘p’’, and it will accelerate or
maintain a constant speed. When λ ≥ λth, the optimal choice
of the AV is ‘‘y’’, and it will perform a deceleration operation.

2) ACCELERATION SETTING
When there is no risk, the AV accelerates to achieve the
desired speed or run at a constant speed. When the AV
encounters an obstacle or a potential risk of visual occlusion,
deceleration can eliminate or reduce the risk of a collision.
According to Formula (2), the speed behavior (acceleration,
constant speed, or deceleration) of the AV depends on control
input α.

a: DECELERATION
When the AV decelerates, the speed planning function is:

α =
1 − e−(ve−vobs)2/2σ 2

obs,v

1 + e−(ve−vobs)2/2σ 2
obs,v

· µ · αmin

s.t.

{
µ = 1 λc < λth

0 < µ < 1 λc ≥ λth
(21)

where vobs is the speed of the obstacle or potential area of
danger in the moving direction of the AV; amin < 0 is
the absolute maximum deceleration of the AV; σobs,y is the
action range of the obstacle on the AV. The expression
(1−e−(ve−vobs)2/2σ 2

obs,y )/(1+e−(ve−vobs)2/2σ 2
obs,y ) with theGaus-

sian distribution model represents that the greater the differ-
ence between ve and vobs is, the greater the AV speed change,

and the farther away the obstacle or potential field of danger
is, the smaller the impact on the AV. µ is a coefficient that
balances the comfort and efficiency of the AV by adjusting
the acceleration according to the potential risk value when
the AV speed changes.

b: ACCELERATION
Compared with deceleration motion, AV acceleration motion
considers fewer elements. The purpose of acceleration is to
achieve the desired speed when obstacles or potential occlu-
sion risks have no effect on the AV. Similar to deceleration
motion, AV acceleration motion or car-following is estab-
lished as follows:

α =
1 − e−(ve−vdes)2/2σ 2

des,v

1 + e−(ve−vdes)2/2σ 2
des,v

αdes (22)

where vdes is the expected speed of the AV, with a stan-
dard deviation of σdes > 0. (1 − e−(ve−vdes)2/2σ 2

des,v )/(1 +

e−(ve−vdes)2/2σ 2
des,v ) with a Gaussian distribution model rep-

resents the effect of ve − vdes on changes in ve. The larger
ve − vdes is, the larger the AV speed change. αdes > 0 is the
desired acceleration set considering efficiency and comfort
when the AV accelerating.

IV. SIMULATION VALIDATION
Finally, the validity of proposed method is verified by simu-
lations. Three typical driving scenarios involving occlusion
are designed to describe the implementation details of the
method. The proposed method is applied in autonomous
driving motion planning in urban road scenes with visual
occlusion by comparison with previous work [18], [39], and
the benefits are analyzed. The relevant parameters in the
experiment are listed in Table 1.
According to Formulas (19) and (20):

λth =

{
0.04, χ = 1
0.21, χ = 0.15

A. SAFE DRIVING
We first propose a definition for ‘‘safe driving’’ of AV,
we suppose that the ordinary differential of each agent state
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TABLE 1. Part parameters for simulation experiment.

is continuous over time, the vehicle model defined in Equa-
tion (2) can be reformed as:

ṡte = fe(t, ste, c
t
e)

se = [xe, ye, ϕe, ve, ]T

ce = [κe, αe]T (23)

where se is ego vehicle’s state, ce is control inputs, the func-
tion f (·) is piecewise continuous with respect to time t and
satisfies the Lipschitz condition. We suppose that the other
agents also have similar kinematics model of equation (23).

To achieve safe interaction and collision avoidance
between agents, it is necessary to avoid scenarios in which
multiple agents entering a certain region at the same moment,
such as intersections and merging areas of adjacent roads.
These regions can be described by state-value functions of
agents.

1) FIELD OF REACHABILITY (FOR)
Refers to the set of possible states that can be reached by the
dynamic agent i at t ≥ t0, given the state s

t0
i ∈ si of the initial

t0 and the control input c
t0
i ∈ ci. The FOR of the agent i is:

FORi(t, ci) := {sti ∈ si|∃s
t0
i ∈ si, ∃c

t0
i ∈ ci,

∀t ≥ t0, ṡti = fi(t, sti , c
t
i )} (24)

2) FIELD OF DANGER (FOD)
The field of danger refers to the set of possible states that the
autonomous agent e and other agents o can simultaneously
reach a certain spatial position within a limited time period tn

under their respective initial control input ct0i ∈ ci. The FODe
of e is:

FODe(t, ce) := {ste ∈ FORe|∃t ∈ [t0, t0 + tn], ∃ct0e ∈ ce,

∃oi ∈ o, stoi ∈ FORoi , ṡ
t
e = fe(t, ste, ce),

||Pe(ste) − Poi (s
t
oi )|| ≤ d} (25)

where Pk (stk ) is represents the position of the agent k at time
t . Whether e interacts with o can be determined based on the
position subsets in their states, other subsets of states, such as
speed and heading angle can be ignored if the collision occurs
at the same position.

During the AV driving process, on-board sensor percep-
tion data of the surrounding environment are continuously
updated with a certain frequency 1/1t . If it is found that
there are visible obstacles ahead or that ‘‘virtual’’ traffic par-
ticipants may randomly appear in the occluded area, the AV
should adopt the best strategy in combination with the current
state of motion to avoid collision accidents. Therefore, the
safe driving of the ego vehicle can be described as follows:

SAFe(t, ce) := FORe(t, ce) − FODe(t, ce) (26)

B. SCENARIO 1: PEDESTRIAN CROSSING
(VEHICLE-HUMAN INTERACTION)
In the first experiment, as shown in Fig. 6 and Fig. 7, on a 60m
one-way two-lane road with a speed limit of 10 m/s, the AV
entered the road at an initial speed of 10 m/s and approaches
a crosswalk. Two large vehicles (obstacles) parked in front of
the crosswalk and create occluded areas A1 and A2 for the
AV. According to the traffic rules, it is illegal for pedestrians
to cross the road in A1, and we set χA1 = 0.15. In A2,
a pedestrian crossing the road is normal behavior, and we set
χA2 = 1. The method in [2] is used to predict the potential
risk probabilities of A1 and A2, λc,A1 = 0.12 < λth,A1 =

0.21 and λc,A2 = 0.32 > λth,A2 = 0.04, respectively.
According to Formula (21), if a traffic participant emerges
suddenly, the maximum deceleration of the AV when passing
through A1 is αmin = −7 m/s2 (µ = 1), and when passing
throughA2, themaximum speed change isαmin = −3.5m/s2

(µ = 0.5). The sensor data collection cycle step size is
0.1 second. In this case, the trajectory in each step needs to be
replanned to improve the planning efficiency. After finding
the occluded area, the AV initiates the proposed method.
With the current input control signal, the field of reachability
FORe and field of danger FODe of the AV with occluded
traffic participants at the boundary of the occluded area are
predicted. According to Formula (26), the field of safe driving
is obtained for motion planning.

Fig. 6 shows the movement of the AV when no pedestrians
emerge suddenly from A1 or A2. The bottom of Fig. 6
shows the speed profile (blue profile), acceleration profile
(purple profile) and curvature profile (green profile) of the
entire driving process of the AV. Since the acquisition points
are discrete, three profiles are processed by cubic spline
interpolation.

As can be seen in Fig. 6, the proposed method enables
the AV to smoothly avoid obstacles in front of the road. The
AV adopts different strategies when passing through occluded
areas A1 and A2: (1) Due to the relatively low probability
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FIGURE 6. AV adopts different strategies when passing through occluded areas A1 and A2.

FIGURE 7. Comparison between AV using the proposed method and two existing methods after a pedestrian emerges suddenly from the
occluded area A2.

of potential risk at A1, the AV uses a large deceleration to
activate emergency braking if an occluded agent unexpect-
edly emerges from the occluded area, that is, the maximum

speed change is v̇e = αe = −7m/s2 (µ = 0.5). Without the
sudden appearance of pedestrians, the AV can pass through
the occluded area A1 as quickly as possible. The speed and
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TABLE 2. (Taver ,i , DSaver ,i ) value obtained by Monte Carlo simulation
30,000 times.

acceleration profiles of the AV in Fig. 6 show that when no
pedestrians emerge suddenly, the AV passes throughA1 at the
desired speed without deceleration, which reflects the high
efficiency and low conservatism of the AV; (2) A2 is a pedes-
trian crossing area, and its potential risk probability exceeds
the threshold, which indicates a relatively high probability of
pedestrians emerging suddenly. For safety and comfort, the
AV uses low deceleration v̇e = α = −3.5 m/s2 (µ = 0.5) to
pass through the occluded area A2, as shown in Fig. 6. Even
if there is no sudden traffic participant at A2, the vehicle will
still reduce its speed about 14 meters in front of the A2 to
cross the A2 safely and comfortably.

For comparison, two existing methods were tested in this
scenario. One method assumes that the collision risk in the
occluded areas is always the worst-case, which is denoted
by ‘‘conservative’’, for brevity, it is abbreviated as ‘‘con’’.
Another approach relies on the AEB system to prevent colli-
sions [39], which is denoted by ‘‘aeb’’. As shown in Fig. 7,
at about 2.9 s, a pedestrian emerges suddenly from the
occluded area A2 and was crossing the road. The purple and
blue profiles are the acceleration profile and the speed profile
generated by the AV using the proposed method, respectively.
The green and cyan profiles are the speed profiles generated
by the AV using the ‘‘con’’ method and the ‘‘aeb’’ method,
respectively. By comparison, it can be seen, using the ‘‘con’’
method, the AV will always slow down through the occluded
area, regardless of whether pedestrians emerge suddenly.
Simply put, its behavior is relatively conservative. Using the
‘‘aeb’’ method, the AV maintains the original speed when no
pedestrian emerges suddenly from the occluded area. How-
ever, the sudden appearance of traffic participants in areas
with higher risk probability will cause the AV to frequently
initiate emergency braking, which cannot guarantee comfort.
Based on the proposed motion planning method, the AV can
pass through the two occluded areas well. More specifically,
the AV will move forward confidently when approaching an
area with lower risk probability and activate the AEB when
a pedestrian emerges suddenly, while the AV will decelerate
at a comfortable rate in advance when approaching areas
with higher risk probability. In contrast, the motion planning
method is more comfortable than the ‘‘aeb’’ method and less
conservative than the ‘‘conservative’’ method.

Considering a situation where it is difficult to justify the
review results, the Monte Carlo simulation method [45] is
adopted, with results that are close to the real results. The
presence of traffic participants in the occluded areas of
A1 and A2 is stochastic. Specifically, a 10% probability is

assigned to pedestrians randomly emerging from A1, while
pedestrians emerge randomly from A2 with probabilities of
30%, 60%, and 90%. Three sets of combinations of A1 and
A2 are simulated, 30,000 times per set (after 30,000 simu-
lations, the results stabilize). Each simulation calculates the
time Ti and discomfort score DSi (i ∈ {con, aeb, ours}) of
the AV passing through the 57-meter road section in the
above scenario using the three methods. Finally, the average
time Taver,i and the average discomfort score DSaver,i for the
30,000 simulations are obtained. The discomfort score adopts
the calculation method proposed in reference [18]:

DS =
1
T

∫ T

0
max(0, |ate| − ath)dt (27)

where ath is the comfortable acceleration threshold. This
paper takes ath = 3 m/s2. The Taver,i and DSaver,i results for
each group are shown in Table 2.

From the analysis of the data in Table 2, the ‘‘con’’ method
performs poorly, especially in terms of conservatism. In addi-
tion, this method has relatively poor comfort when the prob-
ability of pedestrians emerging suddenly is low because it is
necessary to slow down regardless of whether the pedestrian
appears. The ‘‘aeb’’ method performs relatively well when
the probability of pedestrians appearing is low, since the AV
decelerates less often when passing through an occluded area.
With the increase in the probability of pedestrians appearing
in A2, frequent activation of the AEB leads to a decrease in
comfort. As indicated in Table 2, the ‘‘aeb’’ method expe-
riences a decrease of 32%∼48% in comfort level compared
to our approach when the probability of pedestrian presence
within area A2 falls between 60% and 90%. The implementa-
tion of the proposed approach in AVs can overcome the limi-
tations of the ‘‘aeb’’ method. Although autonomous vehicles
still demonstrate a certain level of caution, we believe it is
reasonable to exercise appropriate prudence when potential
risks are high and complete situational awareness cannot be
achieved.

C. SCENARIO 2: OVERTAKING (VEHICLE-VEHICLE
INTERACTION)
As shown in Fig. 8, the overtaking example is built on a long,
undivided, bidirectional single lane. The AV travels behind
a bulky vehicle with a speed of 30 km/h at an initial speed
of 32 km/h. The speed limit for both directions of traffic on
the road is 40 km/h, the road centerline is assumed to be the
vehicle reference line for each lane. The method in [2] is
used to predict the probability of an oncoming vehicle in the
oncoming traffic, the on-coming vehicle initially occluded by
a vehicle ahead. At the beginning, theAVwill expand the field
of view through lateral movement and observe whether there
is an oncoming vehicle on the oncoming traffic, then increase
speed to prepare for overtaking. After changing lanes, the
vehicle travels constantly at the desired speed, i.e., the road
speed limit, to completes overtaking, and then returns to the
original lane. During the entire overtaking process, the AV
continues to observe the driving lane ahead.
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FIGURE 8. Overtaking simulation experiment. (a) The AV safely overtakes the bulky vehicle, merges back to the driving lane, and avoids collisions with
oncoming vehicle; (b) The AV attempts to overtake the truck and safely aborted the overtaking after detecting the oncoming vehicle.

As shown in Fig. 8(a), if the vehicle’s safe driving condition
SAFe is satisfied, the AV still successfully completes over-
taking even if other oncoming agents enter the field of view,
since it never enters the field of danger FODe. As shown in
Fig. 8(b), if the AV determines that it will enter the field of
danger FODe with the oncoming vehicle, the AV decelerates
in time and returns to the safe state area behind the vehicle
ahead. The bottom of Fig. 8 shows the corresponding speed
profile (blue profile), acceleration profile (purple profile) and
curvature profile (green profile) of the overtaking motion of
the AV using the proposed method. Three profiles are pro-
cessed by cubic spline interpolation on the sampling points.

D. SCENARIO 3: INTERSECTION (VEHICLE-VEHICLE
INTERACTION)
To further verify the effectiveness of the proposedmethod, the
AV is tested on an unprotected left turn task at an intersection
without a signal light. For comparison with similar work, the
scenario is recreated for validation, with the maps in [18] and
set values of initial speed (9 m/s), expected speed (9 m/s),
maximum acceleration (2 m/s2) and minimum acceleration
(−4m/s2). The occlusions in this scene are buildings 2meters
away from the roadside and large vehicles driving on the road,
and the AV starting position is approximately 15 m away
from the intersection, as shown in Fig. 9. The upper layer of
Fig. 9(a) depicts the first case: the AV is driving alone at the

intersection, and no other vehicles appear in the scene. The
bottom layer of Fig. 9(a) depicts the second situation: a car is
approaching from the left.

Fig. 9(b) and Fig. 9(c) show the speed profile and acceler-
ation profile of the AV using the method in [18] and the pro-
posed method, respectively. The AV in both methods can pass
the intersection safely and smoothly without collisions, and
the vehicle speed and heading angle do not change violently,
providing good ride comfort. When no other vehicles enter
the intersection, the roadside buildings block any approach-
ing vehicles from the right. Using our proposed method, the
AV is still able to smoothly pass through the intersection
without deceleration with a speed of 9 m/s. According to
the experiment in Scenario 1, the AV will have appropriate
deceleration when moving straight through the intersection.
As shown in Fig. 9(c), the proposed method enables the AV
to smoothly decelerate according to the selected deceleration
when another vehicle on the left enters and threatens to collide
with it, thereby achieving safe driving.

To verify that the proposed method is suitable for multiple-
visual-occlusion scenarios, two occluded vehicles from dif-
ferent directions are added to the scene in Fig. 10. The road to
the right of the intersection is obscured by buildings, creating
a risk of uncertainty. Through the simulation verification of
the first case (scenario 3), when the initial speed is 9 m/s,
without the sudden appearance of other vehicles, the AV can
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FIGURE 9. (a) The first scenario (top row) is in a map with one static obstacle (building) and no incoming traffic, and the second scenario (bottom row) is
in the same map with one other vehicle (green truck) coming from the left; (b) Speed and acceleration profiles obtained by [18] in two scenarios;
(c) Speed, acceleration and curvature profiles obtained by proposed method in two scenarios.

FIGURE 10. (a) Vehicles coming from the right road are blocked by the building; (b) Vehicles entering the intersection cause dynamic occlusion to AV; (c)
AV completed the safe left turn task; (d) Profiles of the speed, acceleration and curvature of the AV turning left with time.

pass through the intersection at a constant speed and complete
the left turn requirement. In the case of a vehicle emerging
suddenly from the area blocked by the building, the AV will
adjust the speed according to the safe driving model FOSe
with other vehicles to avoid collision. As shown in Fig. 10,
the AV starts to decelerate at 1.1 s.

When a vehicle on the right side of the road passes through
the intersection, it will dynamically occlude the oncoming
traffic on the road in the opposite traffic direction in front
of the AV. Despite the short occlusion time, the AV cau-
tiously continues to decelerate until the occlusion disappears.
The AV gives up the right of way when oncoming traffic
is approaching. When the oncoming vehicle is far away,
the AV does not behave conservatively (by waiting for the
oncoming vehicle to pass) but accelerates to pass through

the intersection in time. As shown in Fig. 10(c), the AV
completed the left turn task at 4.5 s. Fig. 10(d) shows the cor-
responding speed profile (blue profile), acceleration profile
(red profile) and curvature profile (green profile) of the over-
taking motion of the AV using the proposed method. It can be
seen from the figure that the AV can turn left smoothly and
effectively.

It is worth noting that there are slight changes in the
curvature profile between Fig. 9 and Fig. 10, and even in
Fig. 8, there are small fluctuations. This suggests that the AV
encounters diverse dynamic obstacles in various scenarios,
and accordingly generates real-time trajectory planning to
avoid these obstacles while maintaining a comfortable ride.
Therefore, further research is required to integrate safety and
comfort into vehicle motion planning.
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V. CONCLUSION
Autonomous driving motion planning method that consid-
ers visual occlusion environment is proposed in this paper.
The results of our previously proposed method for potential
risk assessment of occluded areas [2] are applied to the
autonomous driving decision task. To ensure the safety, com-
fort, and optimal efficiency of autonomous vehicles (AVs),
motion planning is approached from two perspectives: speed
and heading angle. This is achieved by utilizing acceleration
and curvature as control inputs. The implementation of the
‘‘virtual game’’ approach can mitigate conservatism in AVs
during traffic scenarios with occlusion, thereby enhancing
driving efficiency. By means of local path planning and tra-
jectory planning in S-L coordinates, the vehicle can smoothly
circumvent obstacles and achieve lateral motion. The pro-
posed method can comprehensively consider conservatism
and comfort while ensuring the safety of AVs. Based on
experimental results, the proposed method is suitable for
autonomous driving motion planning in urban environments
with visual occlusion.

Motion planning can mitigate various negative effects that
impede the development of autonomous driving technol-
ogy, such as safety hazards, conservatism, and discomfort.
Building upon the current work, future efforts will focus on
integrating and collaboratively planning other vehicle infor-
mation, as well as processing heterogeneous traffic scenarios
involving various vehicles and pedestrians. This will further
mitigate the impact of limited perception onmotion planning.
Additionally, it is imperative to deploy this method onto a
hardware platform for real-world driving testing.
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