
Received 19 March 2023, accepted 14 April 2023, date of publication 18 April 2023, date of current version 24 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3268212

Applying Graph Neural Networks to the Decision
Version of Graph Combinatorial Optimization
Problems
RAKA JOVANOVIC 1, MICHAEL PALK 2, SERTAC BAYHAN 1, (Senior Member, IEEE),
AND STEFAN VOSS2
1Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha, Qatar
2Institute of Information Systems, University of Hamburg, 20146 Hamburg, Germany

Corresponding author: Raka Jovanovic (rjovanovic@hbku.edu.qa)

Open Access funding provided by the Qatar National Library.

ABSTRACT In recent years, there has been a significant increase in the application of graph neural networks
on a wide range of different problems. A specially promising direction of research is on graph convolutional
neural networks (GCN). This work focuses on the application of GCNs to graph combinatorial optimization
problems (GCOPs), specifically on their decision versions. GCNs are applied on the family of GCOPs in
which the objective function is directly related to the number of vertices in a graph. The selected problems
are the minimum vertex cover, maximum clique, minimum dominating set and graph coloring. In this work,
a framework is proposed for solving problems of this type. The performance of this approach is explored
for standard multi-layer GCNs using different types of convolutional layers. On top of this, we propose
a new structure that is based on graph isomorphism networks. Computational experiments show that this
new structure is significantly more efficient than basic structures. To further improve the performance of
this method, the use of GCN ensembles is also explored. When using GCNs to generate solution values
for GCOPs, they often correspond to non-feasible solutions because they violate the problem boundaries.
This issue is addressed by defining an asymmetric loss function that is used during the GCN training. The
proposed method is evaluated on a large set of training data consisting of graph solution pairs that can also
be accessed online.

INDEX TERMS Combinatorial optimization, NP-hard problem, graph neural networks, loss function, deep
learning.

I. INTRODUCTION
In recent years there has been an extensive research on the
topic of artificial neural networks (ANN). They have man-
aged to outperform many of the standard methods for a wide
range of practical problems [1], [2], [3], [4], [5]. One of the
most significant advances in this field has come from the use
of convolutional neural networks (CNNs) and the availability
of enormous data sets used for their training [6].

One of the issues with the use of ANNs and, consequently,
CNNs is that they, in the general case, are most effectively
applied on grid structured data (single or multidimensional).

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

To bemore precise, a CNN is applied to some data in the form
of vectors, matrices or tensors, over which the convolutional
filter can ‘‘scan’’ through; exploiting the grid or ordered
structure. A typical example would be a convolutional filter
that detects edges in an image, which can be represented
by a matrix or tensor. For many real-world problems, the
corresponding mathematical models have a more complex
structure that cannot be well presented using n-dimensional
arrays or similar structures. In these models, the relation
between data elements has a graph structure without any
specific ordering of the elements. To be more precise, there
can be arbitrary relations (connections) between data ele-
ments. Such complex structures frequently occur in problems
related to logistics, communication systems, social networks

38534 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-8167-1516
https://orcid.org/0000-0001-7463-6827
https://orcid.org/0000-0003-2027-532X
https://orcid.org/0000-0001-8781-7993

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

and many others. For example, in a social network, the
graph consists of nodes representing people and edges repre-
senting relationships between them. The relationships could
be friendships, family connections, or work relationships,
among others. In this graph, the order of the nodes is not
important because the relationships between people are not
dependent on the order in which they are added to the graph.
Thus, even a rearrangement of the nodes would preserve the
graph structure. In contrast, switching pixel elements of an
image would completely change the original structure, as the
matrix or tensor representing the image would be modified.

This problem was addressed by generalizing ANNs into
graph neural networks (GNNs), for which a comprehensive
review can be found in [7] and [8]. The use of GNNs has
proven its effectiveness on a wide range of practical prob-
lems; some examples are social recommendations [9], [10],
text classification [11], physics [12], traffic [13], [14], estima-
tion of arrival time [15], power systems [16], etc. The appli-
cation of GNNs to practical problems frequently corresponds
to some type of graph classification, i.e. molecular property
prediction [17]. Another type of problem is the classification
of the graph’s vertices or edges, i.e. detecting fraudulent enti-
ties (corresponding to vertices of a graph). A very promising
direction of GNN research is the use of graph convolutional
networks (GCNs), for which a recent review can be seen
in [18]. There is a high level of similarities between GCNs
and CNNs, but there is a significant difference in the method
for message passing between elements and the network struc-
tures. Except for the original GCN structure [19], several
other ones have been developed, i.e.: GraphSAGE [20], graph
attention network (GAT) [21] graph isomorphism network
(GIN) [22], topology adaptive graph convolutional networks
(TAGConv) [23], and many others.

ANNs have been applied for finding approximate solutions
for a variety of combinatorial optimization problems; recent
reviews can be found in [24] and [25]. Similar to this, GNNs
have been extensively researched for solving graph com-
binatorial optimization problems (GCOP). References [26],
[27]. For instance, GNNs have been applied to the traveling
salesman problem using supervised learning [28], [29], [30].
Theminimum vertex cover problem (MVCP) has been solved
using GCNs as a part of more complex algorithms [31], [32].
GNNs have also been used for finding high quality heuristics
for the weighted version of the MVCP [33]. The decision
version of the graph coloring problem (GCP) has been solved
using a specialized GCN-based method [34]. A GNN has
been combined with a Q-learning-based method and applied
to the max cut problem and the MVCP [35]. Other GCOPs,
that have been solved using GCNs, are maximum indepen-
dent set [32], the maximum clique problem (MCP) [32], [35],
and others.

Most of these methods focus on using GNNs as a part of
more complex algorithms to find solutions. One approach is
using a trained GNN instead of a heuristic in a constructive
or similar method when solving a problem of interest [33].
Another direction is using the probabilities, provided by the

GNN, that a node or edge is a part of the solution to guide
a tree search [32] or within a Q-learning method [35]. This
type of approach is often part of a metaheuristic method that
itself has a good performance. Although the use of GNNs has
proven effective for designing heuristics for GCOPs, it has
been shown that there are limitations for specific groups of
problems [36]. It is important to point out that the message
passing system in GNNs, specially GCNs, has limits on the
graph properties it can learn [37].

For a wide range of problems, ANNs have been applied
more directly, in the sense that for a set of input parameters
the corresponding solutions are provided. In case of GCOPs,
the direct application of GNNs for finding solutions is often
complex and not very effective. In this paper, we explore
the use of GNNs, more precisely GCNs for GCOPs. To be
more precise, the proposed use of GCNs solves a somewhat
simpler version related to the decision version of the problem.
In it, the exact solution is not found but its value. As an
example, consider the number of nodes in a minimum vertex
cover based on the input graph. It should be noted that for
many real-world problemsmodeled using graphs, the specific
solution is not important but only its value. An example
would be deciding if it is possible to deliver goods to a group
of customers with an electric vehicle with a given range,
modeled using the decision version of the traveling salesman
problem. In the proposed approach, the input to the problem
is the graph and the output is the approximation to the value
of the optimal solutions. The method is applied for several
standard GCOPs, with a focus on a subset of GCOPs, where
the solution is closely related to the total number of nodes
in the graph. In this work, a general framework is provided
on how GNNs, more specifically GCNs, could be applied
to problems of this type. In the conducted computational
experiments, a comparison is done on several commonly used
GCNs with different properties. In addition, a more complex
GCN structure based onGINs is provided. The computational
experiments show that this GCN structure is more effective
than the basic ones. The performance of the GIN-based GCN
structure is further enhanced by the use of GCN ensembles.
One of the issues with using GCN for generating solution val-
ues for GCOPs is that they often correspond to non-feasible
solutions in the sense that they violate the bounds of the prob-
lem. This problem is addressed by defining an asymmetric
loss function that is used during the GCN training. A large
training/test data set is used, generated for the computational
experiments consisting of graph solution pairs which are also
made available online [38].

The main contribution of this work is proposing a gen-
eral framework for using GCNs to approximate the solution
values of decision versions of GCOPs which is highly inde-
pendent of the specific problem being solved. One of the
main issues in developing this framework is addressing dif-
ferent constraints of GCOPs without losing the generality of
the framework. To address this problem, which corresponds
to non-feasible solutions, a parameterized asymmetric loss
function for GCN training is introduced. The use of this loss

VOLUME 11, 2023 38535

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

function can be used to control the probability of generating
solution values that correspond to non-feasible solutions.

A. PAPER STRUCTURE
The paper is organized as follows. Section II provides the
definitions of the set of GCOPs that are solved using GCNs.
The next section gives the details on the use of GCNs for
solving the decision version of these GCOPs. This section is
divided into several parts providing information on the data
use, GCN structure, loss function and ensembles. Section IV
provides details of the conducted computational experiments
and the analysis of the results. In Section V, the paper is
finalized with some concluding remarks.

II. GRAPH COMBINATORIAL OPTIMIZATION PROBLEMS
In this section, the set of GCOPs used for evaluating the
proposedGCNapproach are presented. In this work, the focus
is on problems defined on a graph G(V ,E) with a set of
vertices V and a set of edges E . The selected problems have
an objective function whose value is directly related to the
cardinality |V | of the vertex set V . To be more precise, the
objective O(G), for graph G, has an integer value between
1 and |V |. The goal of the proposed work is to develop a
GCN-based method that is highly independent of the specific
GCOP being solved. The trained GCN should receive as
input a problem instance (graph G) and provide as output,
an approximation to the solution value of the underlying
GCOP.

We focus on problems which are defined on undirected
simple graphs without vertex or edge weights. Although
GCN have been applied to problems of edge classification
or objectives related to edge properties, in their basic form
the message passing is focused on vertices of the graph.
To avoid additional complexity, problems whose objective
value is related to the edge set are avoided.

The proposed approach is tested on several graph prob-
lems, namely the MVCP, the MCP, the minimum dominating
set problem (MDSP) and the GCP, which were chosen to
represent a diverse range of graph problems. In the case of the
MVCP and MDSP, the emphasis is on the constraints related
to the adjacency or incidence between a group of nodes and
the remaining nodes or edges in the graph. For the MCP, the
constraints are centered on the adjacency between nodes in a
subset of the vertex set and the relationship between all such
subsets in the graph. Finally, concerning the GCP, although
the constraints are local, the objective is a highly global
property that cannot be easily solved by evaluating subgraphs
of the original graph. Although the selected problems are
well known, for the sake of completeness, their definitions
and corresponding integer programming models (IP)s are
provided.

A. MINIMUM VERTEX COVER PROBLEM
The first GCOP that is used is the MVCP. A vertex cover
C is a subset of the set of vertices V that has the property
that each edge uv ∈ E is incident to at least one vertex in

v ∈ C . The goal is to find the vertex cover C having minimal
cardinality |C|. The MVCP can be represented as an IP with
a set of binary decision variables xv for v ∈ V . The value of
xv = 1 indicates that v ∈ C . The corresponding IP is given as
follows.

Minimize
∑
v∈V

xv (1)

xu + xv ≥ 1 uv ∈ E (2)

xv ∈ {0, 1} v ∈ V (3)

The goal (see (1)) is to minimize the number of vertices in the
vertex cover. The constraints (2) guarantee that for each edge
uv ∈ E at least one of its vertices is in the vertex cover.

B. MAXIMUM CLIQUE PROBLEM
The second chosen GCOP is the MCP. A subset C of the set
of vertices V is a clique if all vertices in C are adjacent to
each other. The goal is to find the clique C having maximal
cardinality. The IP for the MCP uses a set of binary decision
variables xv for v ∈ V . The value of xv = 1 indicates that
v ∈ C . The corresponding IP is given as follows.

Maximize
∑
v∈V

xv (4)

xu + xv ≤ 1 uv /∈ E (5)

xv ∈ {0, 1} v ∈ V (6)

Eq. (4) states that the goal is to maximize the number of
vertices in the clique. The constraints (5) guarantee that there
are no two vertices u, v ∈ C which do not have a connecting
edge.

C. MINIMUM DOMINATING SET PROBLEM
The third GCOP of interest is the MDSP. A subset C of the
set of vertices V is a dominating set if all the vertices in V are
either an element of C or are adjacent to at least one vertex in
C . The goal is to find the dominating set C having minimal
cardinality. The IP for the MDSP uses a set of binary decision
variables xv for v ∈ V . The value of xv = 1 indicates that
v ∈ C . The corresponding IP is given as follows.

Minimize
∑
v∈V

xv (7)∑
v∈N [u]

xv ≥ 1 u ∈ V (8)

xv ∈ {0, 1} v ∈ V (9)

According to (7) the goal is to minimize the number of
vertices in the dominating set. Constraint (8) uses the notation
N [u] for the closed neighborhood (contains u) of node u.
The constraints in this equation guarantee that for each vertex
u ∈ V at least one of the vertices in its closed neighborhood
are in the dominating set.

D. GRAPH COLORING PROBLEM
The last problem that is addressed is the GCP, more precisely
a vertex coloring. In this problem, the objective is to label all

38536 VOLUME 11, 2023

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

the vertices with a specific ’’color’’. The labeling must satisfy
the constraint that no two adjacent vertices are of the same
color. The goal is to find the minimal number of colors to
achieve this. There is a wide range of IPs for the GCP, which
could be found in [39]. In this work, the representative model,
proposed in [40] and [41], is used. This model introduces
binary variables xuv for each non-adjacent pair of vertices
u, v ∈ V which is equal to 1 if and only if the color of v is
represented by u. Additional binary variables xuu are defined
to indicate if u is the representative of its color class. In the
IP, D = {(u, v) | (u, v) /∈ E ∨ u = v} is used for the set of all
decision variable indices. Next, the notation N̄ (u) is used for
the set of vertices that are not adjacent to node u. Using these
definitions, the IP has the following form.

Minimize
∑
u∈V

xuu (10)∑
u∈N̄ (v)∪v

xuv ≥ 1 v ∈ V (11)

xuv + xuw ≤ xuu u ∈ V , vw ∈ G[N̄ (u)] (12)

xuv ∈ {0, 1} (u, v) ∈ D (13)

The goal is to minimize the number of vertices that are color
representatives; see (10). Inequalities Eq. (11) state that for
any vertex v ∈ V , there must exist a color representative
which can be v itself or is a non-adjacent node u ∈ N̄ (v). The
constraints given in (12) guarantee that neighboring vertices
cannot have the same representative. Note that the notation
G[A] is used for the subgraph of G containing all the vertices
in vertex set A and corresponding edges.

III. METHOD OVERVIEW
In this section, the basic components of a method that uses
GCNs for solving the decision version of GCOPs are pre-
sented. Firstly, the standard message passing systems of
GCNs are presented. Next, the structure of the proposed
GCNs for this type of problem are provided using the standard
GCN layers. After that, the method for assigning the values
of node features based on the input graph and the problem of
interest are provided. In addition, the method for normalizing
the objective values for a specific problem for different graphs
is given. The last steps are introducing the used loss functions
and ensembles.

A. GRAPH CONVOLUTIONAL NETWORKS
In this subsection, we provide an overview of the application
of GNN on GCOPs. More precisely on the application of
GCNs. The basic idea of a GCN is to have smart message
passing between neighboring vertices. To bemore precise, the
method for aggregating information (vertex features) from a
vertex and its neighbors. The message passing is performed
using convolutional layers and, in the general case, several
such layers are stacked one after another, see Fig. 1. It is
assumed that each node u has an associated feature vector
h(l)u ∈ Rm, wherem is the number of features, the same for all
u ∈ V , at layer l, for l = 0..L, where L is the number of layers

of the GCN. The standard graph convolutional layer-wise
propagation rule is given in the following equation.

h(l+1)
u = σ

b(l) +

∑
v∈N [u]

1
cuv

h(l)v W
(l)

 (14)

Eq. (14) provides the information on how the feature vector
h(l)u of a node u in layer l, is transformed to its feature vector
h(l+1)
u in layer l + 1. In Eq. (14), σ represents an activation
function, such as the ReLU(·) [42]. W (l) is the layer-specific
trainable weight matrix and b(l) is a layer-specific trainable
bias vector. As before, the notationN [u] is used for the closed
neighborhood of node u. cuv is a normalization factor (i.e.
cuv =

√
|N (u)|

√
|N (v)|).

There have been several ways to improve the propagation
rule given in Eq. (14) using more advanced approaches like
aggregation and dropout rates. The idea of aggregation is
that in addition to using the features of a neighboring node
v ∈ N (u) is to also use aggregated data about its neighbors.
One of the most successful approaches of this type is the use
of the SAGE convolutional layer, for more details see [20].
Its layer-wise propagation rule is given in the following equa-
tions

h(l+1)
N (u) = aggregate

(
{hlv, ∀v ∈ N (u)}

)
(15)

h(l+1)
u = σ

(
b(l) +W (l)

· concat(h(l)u , h(l+1)
N (u))

)
(16)

h(l+1)
u = normalize

(
h(l+1)
u

)
(17)

The first part of the propagation rule is the aggregation
given in Eq. (15). In it, the aggregated information for the
neighboring nodes is stored in a vector h(l+1)

N (u) . The typical
aggregator functions are pooling, mean, and lstm. Eq. (16) is
similar to the one in the case of the basic GCN , given in Eq.
(14), except that it uses the concatenation of vector h(l)u and
the aggregated values of the features of neighboring nodes
of u instead of the features of these nodes. Finally, Eq. (17)
includes normalization of the output vector h(l+1)

u . Note also
that the SAGE convolution can include dropout rates in the
same way as standard CNNs.

By applying a series of trained convolutional layers
L-times like in Eq. (14) or in Eq. (15)-(17), the initial feature
vectors h0u of all nodes u are transformed to hLu in the last
layer. These transformed feature vectors are aggregated via a
readout function like max, min, sum and mean, to provide
a single resulting value for the corresponding input graph.
In some applications, it is possible to enhance the learning
capability of the GCN by applying additional transformations
(i.e. by using a CNN) to the readout. A graphical illustration
of a general GCN that can be used for GCOPs can be seen in
Fig. 1.

B. METHOD STRUCTURE
The goal of this work is to evaluate the use of different struc-
tured GCNs on GCOPs. Therefore, two types of multi-layer
structures are considered. The first one is the standard simple

VOLUME 11, 2023 38537

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

FIGURE 1. Illustration of a standard GCN for calculating global graph properties.

FIGURE 2. Illustration of the basic GCN structure. It consists of L layers of type GCNType with the output having m values.

multi-layer structure. The second one, proposed in this paper,
is based on the GIN approach. In the further text, details of
both structures are given.

In the simple approach, layers are stacked one after another.
The input for the GCN are input feature vectors h(0)u of nodes
u. The next part are L layers having one of the layer-wise
propagation rules given in Eq. (14) or Eqs. (15)-(17). In the
further text, the notationGCNType is used for a convolutional
layer that is one of these types. All these layers use ReLU
as the activation function and the dimension of the output
feature vector h(l+1)

u is m. After L such layers, an additional
one, GCNType1, is added that has an output feature vector
with dimension equal to one. Finally, the used node readout
function is mean, which returns the average value of all the
nodes’ feature vectors in the last layer, resulting in a single
solution value for the whole graph. A graphical illustration of
this multi-layer GCN structure can be seen in Fig. 2. It should
be noted that the use of the mean node readout function
has been selected empirically, based on our computational
experiments, since it produced the best results.

The second structure uses the concepts proposed in the
GIN paper byXu et al. [22]. This structure is amodification of
the simple GCN architecture, where the outputs of the layers
in the multi-layer GCN are reused. The proposed structure is
similar to the simple one in that it uses L stacked layers with
an output vector of dimensionm. However, the key difference
is that it concatenates the output features h(1) to h(L) of the
stacked layers into a single vector. This concatenated vector
is then used as an input for a multi-layer perceptron (MLP)

network. The MLP network consists of two fully connected
layers. The first layer is a fully connected layer with an output
size ofm and a ReLU activation function. The second layer is
a fully connected layer with an output size of 1. Finally, the
mean node readout function is performed to collect global
information from all nodes. This function takes the output of
the MLP network and computes the mean of the output over
all nodes in the graph. The resulting output is a scalar that
summarizes the graph-level information.

In summary, the proposed structure uses a modified GCN
architecture that concatenates the outputs of the stacked lay-
ers and feeds them into anMLP network. The resulting output
is then summarized using the mean node readout function
to capture global information from the graph. A graphical
illustration of this multi-layer GIN-based structure can be
seen in Fig. 3.

C. TRAINING SETUP
The training set up is presented in this subsection. It is divided
into two parts. Part one discusses how training data is used,
and part two discusses loss functions.

A training procedure must be designed so that knowledge
can be effectively generalized to graphs of different sizes.
In the case of applying GCNs to standard graph classification
problems, this is not an issue since the classification is done
to a fixed number of types [7], [8]. In the case of the problems
of interest, although the value of the objective function is dis-
crete, there is a very large number of potential classes. On the
other hand, it is evident that such fixed classes would not be

38538 VOLUME 11, 2023

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

FIGURE 3. Illustration of the basic GIN-based GCN structure. It consists of L layers of type GCNType with the output having m
values. The output of each layer is concatenated to an nm-sized vector. The abbreviation FC is used for fully connected layer.

suitable for the generalization of knowledge. For instance,
a dominating set of n nodes for a graph with |V | = 2n nodes
has completely different properties than for a graph having
|V | = n2 nodes. In the case of the former, each node in the
dominating set covers a small number of nodes, while in the
latter it covers a large number of them.

To avoid these types of issues, the model uses normaliza-
tion. As a matter of fact, the normalization is performed on
both the initial features of nodes and the objective function
In both cases, the normalization is performed based on the
size |V | of the vertex set V . This is done using the following
equations.

h(0)u =
1

|V |
(18)

On(G) =
O(G)
|V |

(19)

Eq. (18) states that the value of the initial feature h(0)u is equal
to one over |V | for all nodes u of the graph that is being

evaluated. The idea is that the initial feature provides some
information about the size of the graph. Eq. (19) states that the
normalization of the objective is also done using the number
of nodes in the graph. Note that the selected GCOPs have
an objective function O(G) whose value is between 1 and
|V |, both values included. A potential natural alternative to
the use of normalized values is the use of the original ones
in combination with the sum node readout function. This
type of approach is mathematically highly similar and should
preserve the same level of information. In our initial test this
combination had a very poor convergence and consequently
has not been used.

In the training, two loss functions are considered. Firstly,
this is the standard mean square error (MSE).

MSE(o, ô) =
1
n

n∑
i=1

(oi − ôi)2 (20)

VOLUME 11, 2023 38539

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

In Eq. (20), o are the normalized training values (optimal
solution values) corresponding to input graphs G and ô is the
estimate acquired by applying the GNN, GCN (G). The issue
with the MSE loss function is that it does not consider the
feasibility of having a solution with the corresponding value.
To avoid this, the following asymmetric loss function, for the
case of minimization problems, is proposed.

Erc(o, ô) =

{
(o− ô)2 o ≤ ô
c(o− ô)2 o > ô

(21)

asMSEc(o, ô) =
1
n

n∑
i=1

Erc(oi, ôi) (22)

The loss function uses the error function given in Eq. (21).
In the case the predicted value ô is larger than the objective
value the error is equal to the squared difference. In case
the predicted value is lower, or in other words there is no
corresponding feasible solution, the error is scaled using a
coefficient c > 1. Let us use the term out-of-bounds solution
values (OBSV) for solution values of this type. In this way,
such non-feasible solutions are additionally ’’penalized’’.
Finally, the loss function is equal to the average of all errors
of this type. Note that in the case of a maximization problem
the coefficient c is used for predictions that are greater than
the value of the optimal solution, corresponding to OBSVs,
so the conditions in Eq. (21) should be changed to o ≥ ô and
o < ô.

D. ENSEMBLES
A common approach to improve the performance of ANNs
is the use of ensembles; see, e.g. [43]. Ensembles use mul-
tiple ANNs jointly to solve a problem, this concept has also
been successfully extended to GCNs [44], [45]. It has been
shown that the generalization capabilities of such systems can
outperform those of single networks. The use of ensembles
is most effective if the component networks are as accurate
and diverse as possible [43], [46]. The diversity of the used
ANNs is generally achieved in two ways: by using different
training sets and by having ANNs with different structures.
Although there is a wide range of methods of combining the
results of several ANNs when creating ensembles, even the
use of simple averaging produces a high level of improve-
ment [47]. In our implementation, this simple approach is
used to enhance the performance of the method, based on the
following equation

GCNe(G) =
1
n

n∑
i=1

GCNi(G) (23)

In Eq. (23), the notation GCNi is used for a GCN acquired
having a specific structure and training data. The estimate
acquired using the ensemble GCNe for graph G is equal to
the average value of GCNi(G).

IV. NUMERICAL EXPERIMENTS
In this section, the results of the conducted computational
experiments are presented. They have several objectives. The

first is to evaluate the effectiveness of different structures of
the GCN. The next is to assess the effect of the use of ensem-
bles. The last objective is to compare the use of different loss
functions for avoiding the generation of objective values that
do not satisfy the bounds, or, in other words, for which there
are no feasible solutions.

The proposed optimization methods have been imple-
mented in Python in PyCharm 2022.2.3 (Community Edi-
tion). The GCNs have been implemented using Deep Graph
Library (DGL) version 0.9.x and PyTorch version 1.9. The
training data has been generated based on the IPs from
Section II using CPLEX. The computational experiments
have been performed on a PC running Windows 10 having
an Intel(R)Xeon(R) Gold 6244 CPU @3.60 GHz processor
with 128 GB memory.

A. TRAINING/TEST DATA
In this subsection, the method for generating the training/test
data is presented. The training/test data consists of a large
number of pairs, graphG and the value of an optimal solution.
For each GCOP, a total of 105 000 such pairs have been
generated. The procedure for generating the training/test pairs
is the following. Firstly, graphs of varying sizes and densities
have been generated. To be specific, the number of vertices
in the graph is randomly selected from a range (Nmin,Nmax)
and the density from a range (δmin, δmax), using a uniform
distribution. For all the problems the following values are
used: δmin = 0.05, δmax = 0.5 and Nmin = 15. In the case of
GCP, the maximal number of vertices has the value Nmax =

60 and for the other problems Nmax = 150. Note that the
graphs in the generated training/test data have the following
statistical properties. The mean value of the number of nodes
is 37.5 and 82.5, with a standard deviation of 12.99 and 38.97,
for the GCP instances and the other problems, respectively.
The mean value for the graph density is 0.275 with a standard
deviation of 0.13 for all the problems.

For each generated graph, the optimal solution is acquired
using the presented IPs utilizing CPLEX. The size of the
graphs that are used for training is constrained by the size
of problem instances that could be solved by CPLEX within
a reasonable time. The generated training data can be found
at [38]. Note that this data is used in all the computational
experiments that are presented in this section for training and
testing.

B. TRAINING SETUP
The training setup is the following. The training of GCNs is
stochastic in nature due to the use of the stochastic gradient
descent. Because of this, for each of the tests, multiple GCNs
are trained, which makes it possible to evaluate the method in
more depth. To be more precise, 20 GCNs have been trained
for each pair of selected structure and problem. Each of them
has been trained using 5000 training pairs, distinct for each of
the GCNs. The used test set is a separated set of 5000 graph
and optimal solution pairs. Each of the layers has been imple-
mented using the built-in methods of the DGL library. To be

38540 VOLUME 11, 2023

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

specific, the DGL methods GraphConv and SAGEConv have
been used for the basic and SAGE layers. The methods have
been used with the default set of parameters, except for the
ones related to the structure (number of layers and their size)
of the proposed GCNs. In the case of SAGEConv, the drop
rate is set to 0.5. In all the tests, the training is limited to
150 epochs. The size of a training batch is 50 and the value
of the learning rate is 0.005. The value for the learning rate
and batch size are selected based on the discussion provided
in [48].

C. EVALUATING GCN STRUCTURES
The goal of the first set of experiments is to evaluate the
performance of different GCN structures. The evaluation is
done for the two structures using stacked layers, as in Fig. 2
with different layer-wise propagation rules. The notations
bGCN and SAGE are used if the layer-wise propagation rule
is specified using Eq. (14) and (15) - (17), respectively. The
notation sageGIN is used for the GCNs corresponding to the
structure given in Fig. 3. As it will be seen in the further
text, the use of the SAGE layers had a better performance
than the use of the basic GCN layer. Due to this fact, the
proposed, more advanced structure sageGIN , uses SAGE-
based convolutional layers.

The parameters specifying bGCN , SAGE and sageGIN are
the size of each layer (m) and the number of such layers (L).
As it is discussed in [49] for GCNs, in the general case, having
a large number of layers is not beneficial due to message
smoothing, although recently some research has been con-
ducted on deep GCNs [50]. Note that this is in high contrast
to CNNs, where a high number of convolutional layers is,
generally, highly beneficial [51]. Because of this, the tested
number of layers ranged from 2 to 4. The initially conducted
computational experiments have empirically shown that a
higher number of layers did not produce improvement in
performance using the available hardware. The tested layer
sizes are 16, 32 and 64.

A comparison of the three different GCN structures can be
observed in Fig. 4. These figures provide aggregated infor-
mation over the 20 GCNs generated for each GCN structure
with a specified number of layers and layer sizes. Fig. 4 shows
the average root mean squared relative error (RMSRE). The
RMSRE corresponds to the following equation, which uses
the same notation as Eq. (20) except that the original optimal
solution values are used for o (not the normalized values) and
the prediction ô is equal to the GCN prediction scaled by |V |

and rounded to the closest integer.

RMSRE(o, ô) =

√√√√1
n

n∑
i=1

(
oi − ôi
oi

)2

(24)

Note that the discussion in this subsection focuses on the gen-
eral trendswhile the next subsection is dedicated to evaluating
the quantitative performance. The first observation that can
be made from these results is that bGCN has a significantly
worse performance than SAGE and sageGIN . The advantage

of SAGE compared to bGCN is most significant in case of
using only two layers. The expected reason for this is that the
information from more distant nodes is important for finding
the objective values. In essence, SAGE considers nodes one
level more distant than bGCN due to the use of aggregation.
Another possible reason is that the SAGE layer uses a drop
rate and bGCN does not. The advantage of SAGE becomes
less significant in case of a higher number of layers. Themore
advanced sageGIN consistently outperforms the other two
methods for all the tested combinations of number of layers
and layer sizes. An increase in the layer size improved the
performance for the same number of layers for bGCN , SAGE
and sageGIN for all the tests.

Another observation that can be made for the best per-
forming sageGIN is that an increase in layer size has a
more significant effect on the performance of the method
than the number of layers. The use of 3 layers instead of
2 provides a significant improvement. On the other hand, the
further increase of layers to 4 does not result in a consistent
improvement, which coincides with the conclusions in [49].
It is important to point out that, although the values of the
RMSRE differ for the different GCOPs used for evaluation,
the trends are consistent.

With the goal of providing additional insight for selecting
the suitable structure of a GCN for application on a GCOP,
the training time is also evaluated. The related information
is depicted in Fig. 5. The first thing that the conducted
computational experiments have shown, is that the training
time is not dependent on the specific problem but only on
the size of the graphs in the training set. Because of this,
Fig. 5 only provides the average training time for GCP and
MDSP, since MDSP used the same graph sizes as MVCP
and MCP. It can be seen that bGCN has generally a lower
training time than the other two methods, with the difference
increasingwith the number of layers and layer sizes. It needed
approximately 50%-70% of the time of SAGE and bGCN .
It can be observed that SAGE and sageGIN have similar train-
ing times, with sageGIN being slightly lower, even though
sageGIN has a more complex structure. As expected, the
increase in training time is directly related to the number and
size of the used layers. In the case of a training set containing
larger graphs (MDSP), there is a drastic increase in training
time with the increase in layer size, which is nonlinear. For
example, the training times for the layer sizes of 16, 32 and
64, for the MDSP in the case of sageGIN with 4 layers, were
5.2, 7.1 and 21.9 minutes, respectively. An increase in the
number of layers has a less drastic effect but it is still highly
significant. For the same GCOP and GCN structure, with 2,
3 and 4 layers with layer size of 64, the training times were
9.1, 15.1 and 21.9 minutes, respectively.

D. QUANTITATIVE EVALUATION
In this subsection, a quantitative evaluation of the use of
GCNs for approximating the value of the optimal solution for
GCOP is presented. The focus is on the sageGIN structure,
since it significantly outperforms the two basic ones. In the

VOLUME 11, 2023 38541

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

FIGURE 4. Average RMSRE over 20 runs of different GCN structures. Each subfigure provides information for a different problem (MVCP, MCP,
MDSP, and GCP) and number of layers. In each of the subfigures, the average RMSRE can be seen for different layer sizes and GCN structures.

conducted experiments, the sageGIN has a layer size m =

64 and the number of used layers L = 3. The reason for
selecting these values is that the computational experiments
related to GCN structure, presented in the previous subsec-
tion, have shown that these values provide the best balance
between training time and approximation quality.

The performance of the sageGIN structure is done for
trained GCNs using different loss functions. The first used

loss function is the MSE given in Eq. (20). In addition, the
asymmetric loss function given in Eqs. (21), (22) is evaluated
for parameter c having values 10 or 100.

The assessment is based on the average values over the
20 different trained GCNs for each problem type (MVCP,
MCP, MDSP, and GCP) and selected loss function of the
following values. Firstly, the root mean square error (RMSE)
and RMSRE are used to provide information on the quality of

38542 VOLUME 11, 2023

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

FIGURE 5. Average training times of different GCN structures. Each subfigure provides information for a different problem (GCP or MDSP) and
number of layers. In each of the subfigures, the execution time can be seen for different layer sizes and GCN structures.

TABLE 1. Comparison of the average results over 20 trained sageGIN GCN structures with different loss functions (MSE , asMSE10 and asMSE100). In each
run, the test set had 5000 graph solution pairs. The table also provides information on the use of ensembles. The presented aggregated values are RMSE
and RMSRE, percentage of found optimal solution values and the percentage of solution values for which there are no feasible solutions (OBSV).

approximation of the solution values. The RMSE corresponds
to the following equation, which uses the same notation as
Eq. (24).

RMSE(o, ô) =

√√√√1
n

n∑
i=1

(oi − ôi)2 (25)

The next value is the average percentage of generated solution
values that are equal to the value of the optimal solution. The
final measure is the percentage of OBSV.

The following method is used for accessing the perfor-
mance of ensembles. For each problem instance and selected
loss function, 20 ensembles are generated and the previously
listed aggregated values are used for evaluation. Each such
ensemble uses 5 randomly selected GCNs from the 20 trained
ones.

The results of the conducted computational experiments
are illustrated in Table 1. First we discuss the results without
the use of ensembles depicted in Table 1 as the ‘‘Single’’
columns. In the case of the GCP, the sageGin using the

VOLUME 11, 2023 38543

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

FIGURE 6. Graphical illustration of the percentage of test instances for which ensembles based on sageGIN had a specific difference
between the GCN acquired value and the optimal value. For the MCP negative values correspond to OBSV and for the GCP positive ones,
indicating a maximization and minimization problem, respectively.

MSE loss function managed to find solutions equal to the
optimal solution in 78.96% of the instances in the test set.
It should be noted that these results are comparable to the
use of a specialized GCN for the GCP from [34] where
for similar sized graphs 82% optimal solutions have been
acquired. It is important to point out that this method uses
a higher level of information than the proposed GCN. To be
specific, the training data consists of graph instances and
coloring information for all the nodes in the corresponding
optimal solution. In addition, in the work in [34], the GCN
does not directly provide a solution value but is a part of
an iterative procedure. The RMSE error is 0.46 which cor-
responds to an average RMSRE of 9.04%. The number of
OBSV is approximately half of the ones that are not equal
to the optimal value. The use of the asymmetric function
manages to significantly decrease the number of OBSV. In the
case of asMSE10, the percentage of OBSVhas been decreased
close to 10 times to 1.49%. It should be noted that this positive
effect comes with an increase in RMSE and RMSRE of close
to 50% and a decrease in the number of found optimal values.
In the case of asMSE100, the number of generated OBSV is
less than 0.2%. The downside of using asMSE100 is that it
drastically decreases the quality of found solutions which is
reflected in the values of RMSE, RMSRE and the number of
found optimal solution values.

A similar behavior can be observed in the case of MVCP,
MCP and MDSP. The percentage of solution values equal
to the optimal solutions for the MVCP, MCP and MDSP is
39.10%, 67.18% and 59.53%, respectively. The percentage of
found optimal solutions for a specificGCOP is closely related
to the difference between the maximum and minimum values
of the optimal solution in the training set. To be exact, in the
case of MCP and MDSP, where the span of these values is
lower, the percentage of found solution values equal to the
optimal value is higher. On the other hand, the opposite is
true for the RMSE and RMSRE.

The use of ensembles proves to be highly effective. In the
case of using theMSE loss function, the relative improvement
achieved using ensembles is between 10%-20% for RMSE,
RMSRE and number of found optimal values. The decrease in
the number of OBSV provides a relative improvement of 5%-
10%. It is interesting that the use of ensembles in combination
with asymmetric loss functions manage to produce a relative
decrease in the number of infeasible solution values by more
than 70% in most cases. In the case of asMSE10, the use of
ensembles in almost all cases provides additional improve-
ment to the values of RMSE, RMSRE and number of found
optimal values. On the other hand, when asMSE100 is used
with the intention of removing almost all the OBSV, it has a
negative effect on the percentage of found optimal solutions
but has a positive effect on the RMSE and the RMSRE.

To have a better understanding of the effect of using differ-
ent loss functions in the training of the GCN, a graphical rep-
resentation of the distribution of the differences between the
optimal solutions values and the ones acquired by sageGIN
for ensembles is provided in Fig. 6 for the MCP and GCP.
To be specific, the figure shows the percentage of instances
in the test set where the acquired solution differs from the
optimal solution by a certain integer value. It is important
to point out that the error can be positive and negative,
consequently it provides information on OBSV. The first
issue that can be observed for the MSE loss function is that
the percentage of solutions having the same absolute error
value is similar. This indicates the significant drawback that
GCNs trained in this way are not able to differentiate between
feasible solution values and OBSV, which give impossible
better solution values than the optimal solution. On the other
hand for asMSE10 and asMSE100, this distribution is highly
asymmetric, such that almost no OBSV are obtained. The
issue is that this comes at the cost of the number of instances
for which the optimal solution value is found. In case of
asMSE100, the number of feasible solutions having a small

38544 VOLUME 11, 2023

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

error becomes even higher than the number of found optimal
solution values, indicating that a too strict penalization leads
to a decrease of the solution quality.

V. CONCLUSION
In this paper, a GCN approach has been proposed for solving
the decision version of some classic GCOPs. Two common
GCN structures have been evaluated based on the standard
GCN layer and the SAGE layer. In addition, a more advanced
structure was proposed based on the GIN. An effective
method has been used to make training possible for differ-
ently sized graphs based on the normalization of the objective
function and adapting the input graphs’ node properties. One
of the issues of usingGCNs for approximating solution values
of GCOPs is that there are maybe no corresponding feasible
solutions for the generated value. In other words, the approx-
imate solution values are lower or greater than the optimal
solution for the corresponding minimization or maximization
problems, respectively. To address this issue, an asymmetric
loss function is proposed and used in the training of the GCN.

The proposed GCN approach has been evaluated based
on computational experiments. To be able to conduct such
experiments, a large set of training data has been generated for
the MVCP, MCP, MDSP and GCP. Training pairs consisting
of graphs of varying sizes and densities with corresponding
optimal solutions have been generated and made available
online. The performed experiments have shown that the pro-
posed GIN-based structure of a GCN significantly outper-
forms the basic ones. In addition, it has been shown that the
use of ensembles is highly effective when the proposed GCN
structure is used, especially in the case of an asymmetric
loss function. Another important observation that has been
made is that the use of an asymmetric loss function can
drastically decrease the number of OBSV for which there is
no feasible solution. On the other hand, lowering the proba-
bility of generating such solution values below a certain level
greatly decreased their quality. The proposed framework can
be applied to a wide range of GCOPs without exploiting their
specific properties, while managing to produce good quality
approximations to optimal solution values.

The primary limitation of the method is that, in some
cases, it may produce objective values that do not correspond
to feasible solutions. The proposed approach addresses this
issue by employing an asymmetric loss function that helps
control the probability of generating non-feasible solutions.
Another drawback is associated with the use of randomly
generated graph instances. Many real-world applications of
the GCOPs involve systems with underlying structures, such
as planarity or other similar properties. The GCNs trained
using randomly generated training data may not be suitable
for such cases, and it may be necessary to generate training
data with graphs that exhibit the appropriate structure.

There are several directions for potential extension of
this research. Firstly, it is possible to use metaheuristics
to optimize the hyperparameters of the proposed GCNs
to enhance the performance, which is commonly done for

ANNs, i.e. [52]. Another direction is to examine the use of
GCNs for approximating solution values for variations of the
used GCOPs having weights and more complex constraints
like connectivity. It would be interesting to evaluate the
potential improvement in performance of GCNs when larger
training sets are used in combinationwith higher performance
hardware. Exploring the use of the proposed approach in
combination with feature-enriched core percolation in mul-
tiplex networks [53] for exploring more complex physics
systems could also be of interest.

REFERENCES
[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,

and H. Arshad, ‘‘State-of-the-art in artificial neural network applications:
A survey,’’ Heliyon, vol. 4, no. 11, Nov. 2018, Art. no. e00938.

[2] O. I. Abiodun, M. U. Kiru, A. Jantan, A. E. Omolara, K. V. Dada,
A. M. Umar, O. U. Linus, H. Arshad, A. A. Kazaure, and U. Gana,
‘‘Comprehensive review of artificial neural network applications to pattern
recognition,’’ IEEE Access, vol. 7, pp. 158820–158846, 2019.

[3] A. H. Elsheikh, S. W. Sharshir, M. A. Elaziz, A. E. Kabeel, W. Guilan,
and Z. Haiou, ‘‘Modeling of solar energy systems using artificial neural
network: A comprehensive review,’’ Sol. Energy, vol. 180, pp. 622–639,
Mar. 2019.

[4] J. Runge and R. Zmeureanu, ‘‘Forecasting energy use in buildings using
artificial neural networks: A review,’’ Energies, vol. 12, no. 17, p. 3254,
Aug. 2019.

[5] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S.Wang, ‘‘Image and video
compression with neural networks: A review,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 30, no. 6, pp. 1683–1698, Jun. 2020.

[6] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, ‘‘A survey of convolutional
neural networks: Analysis, applications, and prospects,’’ IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2021.

[7] Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, ‘‘A comprehensive
survey on graph neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 1, pp. 4–24, Jan. 2021.

[8] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, ‘‘Graph neural networks: A review of methods and applications,’’
AI Open, vol. 1, pp. 57–81, Jan. 2020.

[9] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, ‘‘Graph neural
networks for social recommendation,’’ in Proc. World Wide Web Conf.,
2019, pp. 417–426.

[10] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, ‘‘Graph neural networks
in recommender systems: A survey,’’ ACM Comput. Surv., vol. 55, no. 5,
pp. 1–37, May 2023.

[11] L. Yao, C.Mao, and Y. Luo, ‘‘Graph convolutional networks for text classi-
fication,’’ in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 7370–7377.

[12] J. Shlomi, P. Battaglia, and J.-R. Vlimant, ‘‘Graph neural networks in
particle physics,’’ Mach. Learn., Sci. Technol., vol. 2, no. 2, Jan. 2021,
Art. no. 021001.

[13] C. Chen, K. Li, S. G. Teo, X. Zou, and Z. Zeng, ‘‘Gated residual recurrent
graph neural networks for traffic prediction,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 33, 2019, pp. 485–492.

[14] W. Jiang and J. Luo, ‘‘Graph neural network for traffic forecasting: A sur-
vey,’’ Exp. Syst. Appl., vol. 207, Nov. 2022, Art. no. 117921.

[15] A. Derrow-Pinion et al., ‘‘Eta prediction with graph neural networks
in Google maps,’’ in Proc. 30th ACM Int. Conf. Inf. Knowl. Manag.,
Oct. 2021, pp. 3767–3776.

[16] W. Liao, B. Bak-Jensen, J. R. Pillai, Y. Wang, and Y. Wang, ‘‘A review of
graph neural networks and their applications in power systems,’’ J. Modern
Power Syst. Clean Energy, vol. 10, no. 2, pp. 345–360, 2022.

[17] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel,
and T. Langer, ‘‘A compact review of molecular property prediction
with graph neural networks,’’ Drug Discovery Today, Technol., vol. 37,
pp. 1–12, Dec. 2020.

[18] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, ‘‘Graph convolutional
networks: A comprehensive review,’’ Comput. Social Netw., vol. 6, no. 1,
pp. 1–23, Dec. 2019.

[19] M. Welling and T. N. Kipf, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in Proc. Int. Conf. Learn. Represent., 2016,
pp. 1–14.

VOLUME 11, 2023 38545

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

[20] W. Hamilton, Z. Ying, and J. Leskovec, ‘‘Inductive representation learning
on large graphs,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1–11.

[21] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, ‘‘Graph attention networks,’’ in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1–12. [Online]. Available: https://openreview.net/
forum?id=rJXMpikCZ

[22] K. Xu,W.Hu, J. Leskovec, and S. Jegelka, ‘‘How powerful are graph neural
networks?’’ 2018, arXiv:1810.00826.

[23] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, ‘‘Topology adaptive
graph convolutional networks,’’ 2017, arXiv:1710.10370.

[24] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, ‘‘Reinforcement
learning for combinatorial optimization: A survey,’’ Comput. Oper. Res.,
vol. 134, Oct. 2021, Art. no. 105400.

[25] Y. Bengio, A. Lodi, and A. Prouvost, ‘‘Machine learning for combinato-
rial optimization: A methodological tour d’horizon,’’ Eur. J. Oper. Res.,
vol. 290, no. 2, pp. 405–421, 2020.

[26] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Velickovic,
‘‘Combinatorial optimization and reasoning with graph neural networks,’’
2021, arXiv:2102.09544.

[27] N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman, ‘‘Learn-
ing combinatorial optimization on graphs: A survey with applications to
networking,’’ IEEE Access, vol. 8, pp. 120388–120416, 2020.

[28] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, ‘‘Revised note on
learning quadratic assignment with graph neural networks,’’ in Proc. IEEE
Data Sci. Workshop (DSW), Jun. 2018, pp. 1–5.

[29] C. K. Joshi, T. Laurent, and X. Bresson, ‘‘An efficient graph convo-
lutional network technique for the travelling salesman problem,’’ 2019,
arXiv:1906.01227.

[30] M. Prates, P. H. Avelar, H. Lemos, L. C. Lamb, and M. Y. Vardi,
‘‘Learning to solve NP-complete problems: A graph neural network
for decision TSP,’’ in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 4731–4738.

[31] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh,
‘‘Learning heuristics over large graphs via deep reinforcement learning,’’
2019, arXiv:1903.03332.

[32] Z. Li, Q. Chen, and V. Koltun, ‘‘Combinatorial optimization with graph
convolutional networks and guided tree search,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 31, 2018, pp. 1–10.

[33] K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder, ‘‘Efficient
minimum weight vertex cover heuristics using graph neural networks,’’ in
Proc. 20th Int. Symp. Experim. Algorithms, 2022, pp. 1–17.

[34] H. Lemos, M. Prates, P. Avelar, and L. Lamb, ‘‘Graph colouring meets
deep learning: Effective graph neural network models for combinatorial
problems,’’ in Proc. IEEE 31st Int. Conf. Tools Artif. Intell. (ICTAI),
Nov. 2019, pp. 879–885.

[35] K. Abe, Z. Xu, I. Sato, and M. Sugiyama, ‘‘Solving NP-hard problems on
graphs with extended AlphaGo zero,’’ 2019, arXiv:1905.11623.

[36] S. Boettcher, ‘‘Inability of a graph neural network heuristic to outper-
form greedy algorithms in solving combinatorial optimization problems,’’
Nature Mach. Intell., vol. 5, pp. 24–25, Jan. 2022.

[37] A. Loukas, ‘‘What graph neural networks cannot learn: Depth vs width,’’
in Proc. Int. Conf. Learn. Represent., 2020, pp. 1–17.

[38] R. Jovanovic. (2023). Training Data for Decision Versions of Graph
Combinatorial Optimization Problems (TrainGCOP). [Online]. Avail-
able: https://data.mendeley.com/datasets/3wkvfyb362/draft?a=6d79d4ec-
a77b-43c1-8112-67d2ff429af3

[39] A. Jabrayilov and P. Mutzel, ‘‘New integer linear programming models for
the vertex coloring problem,’’ in Proc. Latin Amer. Symp. Theor. Informat.
Cham, Switzerland: Springer, 2018, pp. 640–652.

[40] M. Campelo, R. Correa, and Y. Frota, ‘‘Cliques, holes and the ver-
tex coloring polytope,’’ Inf. Process. Lett., vol. 89, no. 4, pp. 159–164,
Feb. 2004.

[41] M. Campelo, V. A. Campos, and R. C. Correa, ‘‘On the asymmetric
representatives formulation for the vertex coloring problem,’’ Discrete
Appl. Math., vol. 156, no. 7, pp. 1097–1111, Apr. 2008.

[42] T. Szandała, ‘‘Review and comparison of commonly used activation func-
tions for deep neural networks,’’ in Bio-inspired Neurocomputing. Berlin,
Germany: Springer, 2021, pp. 203–224.

[43] P. M. Granitto, P. F. Verdes, and H. A. Ceccatto, ‘‘Neural network ensem-
bles: Evaluation of aggregation algorithms,’’ Artif. Intell., vol. 163, no. 2,
pp. 139–162, Apr. 2005.

[44] E. Elson Kosasih, J. Cabezas, X. Sumba, P. Bielak, K. Tagowski,
K. Idanwekhai, B. A. Tjandra, and A. R. Jamasb, ‘‘On graph neural
network ensembles for large-scale molecular property prediction,’’ 2021,
arXiv:2106.15529.

[45] Q. Lin, S. Yu, K. Sun, W. Zhao, O. Alfarraj, A. Tolba, and F. Xia, ‘‘Robust
graph neural networks via ensemble learning,’’Mathematics, vol. 10, no. 8,
p. 1300, Apr. 2022.

[46] A. Krogh and J. Vedelsby, ‘‘Neural network ensembles, cross validation,
and active learning,’’ in Proc. Adv. Neural Inform. Process., vol. 7, 1995,
pp. 231–238.

[47] A. J. C. Sharkey, ‘‘On combining artificial neural nets,’’ Connection Sci.,
vol. 8, nos. 3–4, pp. 299–314, Dec. 1996.

[48] I. Kandel and M. Castelli, ‘‘The effect of batch size on the generalizability
of the convolutional neural networks on a histopathology dataset,’’ ICT
Exp., vol. 6, no. 4, pp. 312–315, Jan. 2020.

[49] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, ‘‘Measuring and
relieving the over-smoothing problem for graph neural networks from the
topological view,’’ in Proc. AAAI Conf. Artif. Intell., 2020, vol. 34, no. 4,
pp. 3438–3445.

[50] G. Li, M. Muller, B. Ghanem, and V. Koltun, ‘‘Training graph neural
networks with 1000 layers,’’ in Proc. Int. Conf. Mach. Learn., 2021,
pp. 6437–6449.

[51] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan,
O. Al-Shamma, J. Santamaría,M.A. Fadhel,M.Al-Amidie, and L. Farhan,
‘‘Review of deep learning: Concepts, CNN architectures, challenges, appli-
cations, future directions,’’ J. Big Data, vol. 8, no. 1, pp. 1–74, Mar. 2021.

[52] I. Strumberger, E. Tuba, N. Bacanin, R. Jovanovic, and M. Tuba, ‘‘Con-
volutional neural network architecture design by the tree growth algorithm
framework,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019,
pp. 1–8.

[53] Y. Shang, ‘‘Feature-enriched core percolation in multiplex networks,’’
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 106,
no. 5, Nov. 2022, Art. no. 054314.

RAKA JOVANOVIC received the B.S. and M.S.
degrees in computer science from the Faculty of
Mathematics, University of Belgrade, Serbia, and
the Ph.D. degree from the University of Belgrade,
Serbia. He is currently an Associate Research
Professor with the University of Belgrade. He is
also a Scientist with the Qatar Environment and
Energy Research Institute (QEERI), Hamad Bin
Khalifa University, with a background in the field
of applied mathematics and operations research.

Before joining QEERI, he was with the Institute of Physics, University of
Belgrade, and Texas A&M University at Qatar. He has published more than
100 papers in journals, conference proceedings, and books. His research
interests include developing mathematical models and applying optimization
methods for real-world applications.

MICHAEL PALK received the M.Sc. degree
(Hons.) in business mathematics from the
University of Hamburg, where he is currently pur-
suing the Ph.D. degree with the Institute of Infor-
mation Systems. His industry experiences include
positions at Kühne+Nagel, Ginkgo Analytics, and
Nordmetall. His current research interests include
social media, machine learning, and graph the-
ory. He serves as a reviewer for various journals
and conferences, while his teaching experiences

consist of several math and business classes, as well as the supervision of
bachelor’s and master’s thesis.

38546 VOLUME 11, 2023

R. Jovanovic et al.: Applying GNNs to the Decision Version of Graph Combinatorial Optimization Problems

SERTAC BAYHAN (Senior Member, IEEE)
received the B.S. degree (Hons.) and the M.S.
and Ph.D. degrees in electrical engineering from
Gazi University, Ankara, Turkey, in 2008 and
2012, respectively.He joined Gazi University as
a Lecturer, in 2008, where he was promoted as
an Associate Professor and a Full Professor, in
2017 and 2022, respectively. He was an Associate
Research Scientist with Texas A&M University
at Qatar, from 2014 to 2018. Currently, he is a

Senior Scientist with the Qatar Environment and Energy Research Institute
(QEERI) and an Associate Professor with the Sustainable Division, Hamad
Bin Khalifa University. He has acquired $13M in research funding and
published more than 170 papers in mostly prestigious IEEE journals and
conferences. He is also the coauthor of three books and six book chapters.
His research interests include power electronics and their applications in
next-generation power and energy systems, including renewable energy
integration, electrified transportation, and demand-sidemanagement. Hewas
a recipient of many prestigious international awards, such as the Teaching
Excellence Award in recognition of outstanding teaching in Texas A&M
University at Qatar, in 2022, the best paper awards in the 3rd International
Conference on Smart Grid and Renewable Energy, Doha, Qatar, in March
2022, the 10th International Conference on Renewable Energy Research and
Applications, Istanbul, Turkey, in September 2021, and the Research Fellow
Excellence Award in recognition of his research achievements and excep-
tional contributions to the Texas A&MUniversity at Qatar, in 2018. Because
of the visibility of his research, he has been recently elected as the Chair of
the IES Power Electronics Technical Committee. He currently serves as an
Associate Editor for IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE
JOURNAL OF EMERGING AND SELECTED TOPICS IN INDUSTRIAL ELECTRONICS, IEEE
OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY, and IEEE Industrial
Electronics Technology News, and a Guest Editor for the IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS.

STEFAN VOSS received the Diploma degree in
mathematics and economics from theUniversity of
Hamburg and the Ph.D. and Habilitation degrees
from the University of Technology Darmstadt.
He is currently a Professor and the Director of
the Institute of Information Systems, University
of Hamburg. Moreover, he served as the Dean
of the Hamburg Business School (School of
Business Administration), until 2022. Previously,
he was a Full Professor and the Head of the

Department of Business Administration, Information Systems and Infor-
mation Management, University of Technology Braunschweig, Germany,
from 1995 to 2002. Furthermore, he is consulting with several companies.
He is the author and coauthor of several books and several hundred papers
in various journals. His research interests include quantitative/information
systems approaches to supply chain management and logistics, including
public mass transit and telecommunications. In the German Handelsblatt and
Wirtschaftswoche rankings, he is continuously within the top ten professors
in business administration within the German speaking countries. He serves
on the editorial board of some journals, including Public Transport. He is
frequently organizing workshops and conferences.

VOLUME 11, 2023 38547

