
Received 24 March 2023, accepted 7 April 2023, date of publication 18 April 2023, date of current version 21 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3268086

Deep Learning for Compressed Sensing-Based
Blade Vibration Reconstruction From
Sub-Sampled Tip-Timing Signals
ZHONGSHENG CHEN 1, (Member, IEEE), HAO SHENG 2, LIANYING LIAO 1,
CHENGWU LIU1, AND YEPING XIONG 3
1College of Automotive Engineering, Changzhou Institute of Technology, Changzhou 213032, China
2College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China
3Faculty of Engineering and Physical Sciences, University of Southampton, SO16 7QF Southampton, U.K.

Corresponding author: Zhongsheng Chen (chenzs@czu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51975206, in part by the Major Natural
Science Foundations of the Higher Education Institutions of Jiangsu Province under Grant 22KJA460002 and Grant 22KJA120001, and in
part by the Changzhou Science and Technology Support Plan under Grant CE20225062.

ABSTRACT Blade tip-timing (BTT) signals are always seriously under sampled, so reconstruction is
much needed for vibration analysis. Blade vibration responses are sparse in order domain and classical
compressed sensing (CS) algorithms are difficult to reconstruct vibration orders due to lack of prior sparse
information under variable speeds. In order to address this issue, this paper introduces deep learning (DL)
into BTT vibration reconstruction and proposes an end-to-end deep compressed sensing (DCS) method.
Firstly, a multi-coset BTT measurement model is built under variable speeds and the DCS model is derived
in order domain, where a specific convolutional neural network (CNN) is designed. Next, a Simulink model
is built to generate training and testing samples. The simulation results show that the convolution layer
with the rectified linear unit (ReLU) layer placed after the batch normalization (BN) layer can improve the
reconstruction performance and the proposed method has better reconstruction accuracy and efficiency than
classical CS algorithms. Finally, experiments are done and the results demonstrate that blade vibration orders
can be recovered accurately by the proposed method, which will provide a novel way of BTT signal analysis.

INDEX TERMS Blade tip-timing, deep compressed sensing, multi-coset angular sampling, unknown multi-
band vibrations, vibration reconstruction.

I. INTRODUCTION
High-speed rotating blades are widely used in modern indus-
try, such as compressor blades, turbine blades, fan blades,
and so on. In practice, different faults or damages of rotating
blades are prone to happen due to severe operation condi-
tions including strong vibrations, large centrifugal forces and
thermal stresses. It has been reported that more than 70% of
blade faults are induced by vibrations [1], [2]. Thus on-line
blade vibration monitoring is very important to ensure safety
and operational reliability. Traditionally, contact methods
were widely studied to monitor blade vibrations. Krause and
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Ostermann [3] proposed a damage detection algorithm for
wind turbine blades based on airborne sounds. Abouhnik and
Albarbar [4] proposed a novel health index called empiri-
cally decomposed feature intensity level for blade condition
assessment. Spitas et al. [5] studied a three-point electrical
potential difference method for in-situ monitoring of crack
propagating. In addition, strain gauges were also used to mea-
sure blade vibrations [6], [7]. However, contact methods have
disadvantages of contaminated signals, unexpected intrusion
and high cost. As an advanced non-contact method, nowadays
blade tip-timing (BTT) has been investigated widely [8],
whose advantages include all-blade measurement, no intru-
sion and long-term service ability. Chen et al. [9] gave
a comprehensive review on BTT-based health monitoring.
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However, the intrinsic defect of the BTT method is that
vibration signals are seriously sub-sampled [9]. In this case,
it is very necessary to reconstruct blade vibrations.

Current challenges of BTT vibration reconstruction can
be summarized as three aspects. The first one arises from
variable operation conditions due to different mission pro-
files, which can complicate BTT vibration measurement. The
second one is from multi-band vibrations due to system non-
linearity, complex excitations or incipient damages. Accurate
multi-band vibration reconstruction is still a difficult task.
The third one is lack of prior information of multi-band vibra-
tions. In early studies, blade vibration response is assumed
to be a band-pass signal. Under this assumption, Salhi et al.
[10] first proposed a method to reconstruct a continuous BTT
signal. Chen et al. [11], [12] proposed to reconstruct sub-
sampled blade vibrations by using the Shannon sampling
theorem and wavelet packet transform. Later, Chen et al.
further presented two reconstruction methods under speed
fluctuations [13] and variable speeds [14], respectively.
Lin et al. [15] presented a novel reconstruction method for
non-uniformly sub-sampled BTT data based on the period-
ically non-uniform sampling theorem. But the assumption
of band-pass signals is impractical. Therefore, new recon-
struction methods are desirable to overcome the above three
challenges.

Blade vibration responses tend to be multi-band [16],
which are generally sparse in frequency or order domain.
The sparsity opens up new directions of signal reconstruction.
Compressed sensing (CS) was first proposed byDonoho et al.
[17], which took fully advantages of signal sparsity to recover
certain features from sub-sampled signals. Therefore, it is
very promising to introduce the CS theorem to reconstruct
BTT signals. Chen et al. [18], [19] first built a CS model
of BTT measurements. Pan et al. [20] proposed a dictionary
learningmethod for representing BTT signals and then recon-
structed blade vibrations by using the basis pursuit algorithm.
Spada et al. [21] evaluated several conditions of CS for BTT
signals. For the CS model, several classical algorithms have
been studied to obtain its unique and stable sparse solution,
such as OrthogonalMatching Pursuit (OMP),Multiple Signal
Classification (MUSIC), Modified Focal Underdetermined
System Solver (MFOCUSS) and Basis Pursuit Denoising
(BPDN). Chen et al. [19] compared the performances of the
above four reconstruction algorithms in BTT vibration recon-
struction. However, most of these algorithms still depend
on prior sparse information of original signals [22]. To sum
up, unknown multi-band vibration reconstruction is still an
obstacle of BTT-based vibration monitoring.

In recent years, deep learning (DL) has achieved great
success in many fields due to excellent learning ability, such
as image processing [23], speech recognition [24], and so on.
Its most advantage is to learn the structure of a signal and
obtain effective inherent information, instead of using prior
knowledge. In recent years, DL has being combined with CS
for image reconstruction. Zisselman et al. [25] presented a

FIGURE 1. Schematic diagram of the BTT method.

mathematical framework of compressed learning and then
introduced a deep neural network (DNN) for image classi-
fication. Ye and Han [26] proposed a general deep learning
framework called deep convolutional framelets for image
reconstruction.

Inspired by these studies, this paper will introduce DL
into BTT vibration reconstruction and propose an end-to-
end deep compressed sensing (DCS) method. To the best
knowledge of the authors, it is the first to introduce the DL
method for multi-band blade vibration reconstruction using
sub-sampled BTT signals. The remainder of this paper is
organized as follows: In Section II, basic principles of BTT
measurement is introduced briefly and then the character
of under-sampling is emphasized. In Section III, the CS
model of BTTmeasurements is built in angular domain. Then
the DCS-based BTT vibration reconstruction algorithm is
described in Section IV. Numerical simulations and experi-
ments are done to validate the proposed method in Section V
and Section VI, respectively. In the end, some conclusions are
marked in Section VII.

II. PROBLEM STATEMENT
Basic principle of BTTmethod can be schematically shown in
Figure 1. A blisk is composed of K blades and I BTT probes
are mounted in a stationary case around the blisk. A once-per-
revolution (OPR) sensor are placed close to the rotating shaft
on which one speed mark is made, so timing reference signals
can be generated. It is assumed that the OPR sensor is on the
same radius as the first BTT probe and the OPR marker is on
the same radius as the first blade. Then the angular positions
of the ith(1 ≤ i ≤ I ) BTT probe and the k th(1 ≤ k ≤ K )
blade relative to the OPR mark are denoted as αi and θk ,
respectively.

The basis of BTT method is to measure times of arrival
(TOAs) when each blade passes each BTT probe [9].
When there are vibrations, the blades will pass BTT probes
earlier or later than theoretical TOAs. Therefore, actual
TOAs will deviate from theoretical ones, which will lead
to time differences. Furthermore, these time differences are
strongly related to vibration frequency and amplitude of the
blade, so that they can be used to calculate vibration dis-
placements. TOAs of each blade can be collected during
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rotation, so the BTTmethod can measure all-blade vibrations
simultaneously.

For the sake of easy understanding, let the blisk rotate
clockwise at a constant rotating frequency (fr ). When no
vibrations, theoretical TOAs of the kth blade passing the ith
BTT probe can be calculated as,

t thei,k,n =

{
[2π (n− 1) + αi − θk ]

/
2π fr , θk ⩽ αi

[2πn+ αi − θk ]
/
2π fr , θk > αi

(1)

where n denotes the nth revolution.
The actual TOAs are denoted as tacti,k,n and then vibration

displacement of the kth blade measured by the ith BTT probe
can be calculated as,

di,k [n] = 2π frR(tacti,k,n − t thei,k,n) (2)

where R is the rotating radius of the blade tip.
The main concern in Equations (1) and (2) is about the

rotating speed. Under variable rotating speeds, theoretical
TOAs are difficult to be calculated accurately. In addition,
the sampling time interval is not a constant even though
BTT probes are mounted uniformly. It is coincident that BTT
probes are mounted circumferentially, so that BTT sampling
is a natural angular-domain sampling process. As we all know
that angular-domain sampling has always been applied to deal
with variable speeds [27]. Thus this paper will perform BTT
measurements in angular domain.

In angular domain, theoretical angles of arrival (AOAs) of
the kth blade passing the ith BTT probe under no vibrations
can be represented as,

θ thei,k,n

=

{
2π (n− 1) + αi − θk , (n = 1, 2, · · · ), θk ⩽ αi

2π (n− 1) + 2π + αi − θk , (n = 1, 2, · · · ), θk > αi

(3)

In order to illustrate the principle clearly, the rotating speed
during each revolution is assumed to be constant. Then actual
AOAs of the kth blade passing the ith BTT probe can be
calculated as,

θacti,k,n = 2π (n− 1) + 2π fn

tacti,k,n −

n−1∑
p=1

Tp


= 2π (n− 1) + ωn1t ikn (4)

where Tp, fn are the period of the pth revolution and the
frequency of the nth revolution, respectively, ωn = 2π fn and
1t ikn is the measured passing time of the kth blade passing the
ith BTT probe in the nth revolution.
Combining Equation (3) with Equation (4), angular-

domain sampled vibration displacements of the kth blade
measured by the ith BTT probe can be calculated as,

yi,k [n] =

(
θacti,k,n − θ thei,k,n

)
R (5)

Based on Equations (3)∼(5), one can see that angular-
domain vibration displacements are strongly related to the

rotating angular speed in the nth revolution. In engineering
applications, ωn in Equation (4) is often defined as ωn =

2π
/
(tn − tn−1) in order to reduce the angular bias. Here

tn, tn−1 are the ending times of the nth and (n-1)th rev-
olutions, respectively. However, ωn cannot be looked as a
constant if the rotating angular speed changes rapidly. In this
case, calibration methods need to be explored, which are out
of the scope of this paper. In particular, Equations (3)∼(5)
still hold under constant rotating speeds.

As stated in previous works [14], [15], BTT signals are
seriously sub-sampled and it is difficult to directly obtain
‘true’ blade vibration characteristics due to alias. Thus how
to reconstruct BTT vibrations under variable rotating speeds
is an urgent problem to be solved.

III. COMPRESSED SENSING MODEL OF BTT VIBRATIONS
IN ANGULAR DOMAIN
True vibration displacement of the kth blade in angular
domain is assumed to be y(θ). According to Figure 1, y(θ )
is sampled for I times during each revolution. Furthermore,
such a sampling scheme can be equivalent to a multi-coset
angular sampling (MCAS) process [19]. According to its
principle, the multi-coset sampling is a selection of certain
samples from the uniform sampling at the Nyquist rate. Here
the multi-coset period is denoted as L and L virtual BTT
probes are uniformly mounted. The number of each probe is
denoted from 1 to L clockwise. Then practical BTT probes
are considered to be selected from these L virtual BTT probes,
which can be uniformly or non-uniformly mounted. Here L
satisfies L ≥ 2Emax

o due to the Nyquist sampling rate, where
Emax
o is the maximum vibration Engine Order (EO) of the

blade.
The Nyquist-sampled vibration signals can be written as,

y [n] = y (n1θ) , 1θ = 2π
/
L (6)

Then I actual BTT probes are chosen from the above
L virtual BTT probes and a MCAS pattern of (L, I ,C) is
formed. Here C = {ci : 1 ≤ i ≤ I } and ci is the number
of the ith probe (0 ≤ c1 < c2 · · · < cI ≤ L − 1). In this way,
sampled vibrations of the ith BTT probe can be represented
as,

ȳi [n] = y [nL + ci] , i = 1, . . . , I (7)

where the sampling interval is denoted as 1θI = L1θ .
In practice, I is always much less than L due to the limita-

tions of space and cost, so that ȳi [n] is always sub-sampled.
It should be pointed out that y [n] can be used to perfectly
recover true EOs of the blade. Thus the remaining problem is
how to correctly reconstruct y [n] based on ȳi [n].

For multi-band blade vibrations, they are also sparse in
order domain. Thus it is probable to reconstruct y [n] from
sub-sampled signals (ȳi [n]) by using the CS theorem. Firstly,
the relation between y [n] and ȳi [n] in order domain can be
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FIGURE 2. The sub-band division of Y (O).

built as follows [15].

Ȳi (O) =
ej2πOci

L

L∑
k=1

e
−j 2πL

(
k− L+1

2

)
ci

× Y
(
O−

(
k −

L + 1
2

))
(8)

where O denotes the order (O ∈ [−1
/
2, 1

/
2]) and

Ȳi (O) , Y (O) are the discrete Fourier transforms of
ȳi [n] , y [n], respectively.

Furthermore, physical meaning of Equation (8) can be
described based on Figure 2, where the entire order band
(Y (O)) is equally divided into L sub-bands and the lth sub-
band is represented as follows.

Yl(O) = Y
(
O−

(
l − (L + 1)

/
2
))

, l = 1, 2, · · · L (9)

According to Equations (8) and (9), Ȳi (O) can be looked
as the weighed sum of sub-bands of Y (O). In this case, for I
BTT probes, Equation (8) can be expressed as the following
matrix form.

Ȳ (O) = 8Y (O) (10)

where, Ȳ (O) = [Ȳ1(O) exp (−j2πOc1) , · · · ȲI (O)
exp (−j2πOcI )]T ,Y (O) = [Y1(O), · · · YL(O)]T , as shown in
the equation at the bottom of the next page.

In Equation (10), Ȳ (O) ∈ RI×nfft is the measurement
matrix which can be calculated by I actual BTT signals.
8 ∈ RI×L is the sensing matrix. Y (O) ∈ RL×nfft is the
sub-band matrix which is formed based on Y (O). Here nfft
denotes the point number of Fourier transform of ȳi [n]. Based
on Figure 2, Y (O) only has few non-zero rows, so it is sparse
in order domain. Moreover, I < L. Thus Equation (10) can
be looked as a CS model of unknown Y (O). Furthermore, the
sparsity basis is the Fourier basis function.

Next, the reconstruction task is transformed to find the
unknownY (O) based on the known Ȳ (O) and 8. According
the CS theorem, the solution of Equation (10) can be repre-
sented as the following P0 problem.

P0 : min ||Y (O)||0
s.t.Ȳ (O) = 8Y (O) (11)

where ∥·∥0 is the ℓ0-norm operator.

IV. DEEP COMPRESSED SENSING-BASED BTT
VIBRATION RECONSTRUCTION
A. BASIC FRAMEWORK
Classical OMP, MUSIC, BPDN and MFOCUSS algorithms
have been used to solve the P0 problem, as shown in
Equation (11). However, these classical CS algorithms are
seriously limited by the restriction of Restricted Isometry
Property (RIP) [28] and slow optimization process. In order
to overcome this limitation, an end-to-end DCS framework
is proposed in Figure 3, which is composed of five parts:
measurement of TOAs, calculation of AOAs, multi-coset
measurement model, CSmodel and DNN. Furthermore, there
are four key operations: angular sampling, multi-coset sam-
pling, compressed sensing and learning sensing. Key advan-
tages of this framework include: i) Variable conditions can
be handled by transferring time domain to angular domain.
ii) CS of unknown multi-band vibrations can be obtained by
introducing multi-coset sampling. iii) High-fidelity and fast
reconstruction can be achieved by using DL algorithms.

Next, the flowchart of DNN-based reconstruction is shown
in Figure 4. The model inputs are Ȳ (O) and 8, both of
which are obtained from the I BTT probes. Firstly, signal
preprocessing of Ȳ (O) is done. The pseudo-reconstruction
signal of Y (O) is calculated as follows.

Ỹ (O) =

(
8H8

)−1
8H Ȳ (O) (12)

where 8H is the transpose of 8.
However, Ỹ (O) is a complex signal, so it cannot be directly

input to the DNN model. In order to deal with it, the real
and imaginary parts of Ỹ (O) are concatenated to form a
higher-dimension matrix Ỹcon(O).

Ỹcon(O) =
[
Re

(
Ỹ (O)

)
, Im

(
Ỹ (O)

)]
(13)

Furthermore, Ỹcon(O) is normalized to accelerate the train-
ing convergence. By this way, each element of Ỹcon(O) is
normalized between [1, 0].

ỸNorm(O) = Norm(ỸCon(O)) (14)

The output of the DNN model is an L-dimension vector Ŝ
denoting band occupancy status, whose element (Ŝi) is equal
to 0 or 1. That is to say,

Ŝi =

{
0, if vacant band
1, if non− vacant band

(15)

After training, the DNN model is well built. At the testing
stage, Ŝ will be calculated by each testing sample and new
sensing matrix 8new is formed by retaining the columns of
8 with indices corresponding to Ŝi=1. Then Y (O) can be
reconstructed as follows.

Ŷ (O) = 8†
newȲ (O) (16)

where 8
†
new is the pseudo inverse of 8new.

In the end, the target Y (O) can be obtained by re-arranging
Ŷ (O), so true blade vibration characteristics can be recovered.
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FIGURE 3. The proposed DCS framework for BTT signal reconstruction.

FIGURE 4. Flowchart of DNN-based reconstruction.

B. DESIGN OF A SPECIFIC CNN MODEL
1) MODEL ARCHITECTURE
The key of Figure 4 is how to design a proper DNN model.
Aswe all know that CNNhasmany advantages such as simple
structure, less training parameters and adaptability. But by
now, there have been no standard rules of selecting the CNN
architecture. In this paper, a CNNwith 4 convolutional layers
is selected by hand. Next this paper proposes to design a
specific CNNmodel as shown in Figure 5, which is composed
of one input layer, four convolution layers, one pooling layer,
two fully connected layers and one output layer.

For the above CNNmodel, the rectified linear unit (ReLU)
activation function and the Max pooling are used. Tradi-
tionally, a Batch Normalization (BN) layer is always placed
before the activation function to reduce internal covariate
shift and accelerate training [29]. Recently, some studies
shown that the BN layer could be placed before the ReLU
layer to update the weights in a suboptimal way [30]. In addi-
tion, Hinton et al [31] first proposed to use ‘Dropout’ to
reduce overfitting on a small training set. Later, Park and
Kwak [32] analyzed the effect of Dropout in convolution
layers. In this case, both a BN layer and a Dropout layer are
also introduced to build the convolution layer. Differently,
the BN and Dropout layers are combined together and then
placed after the ReLU layer. A small dropout probability is
applied for the Dropout layer.

2) MODEL PARAMETERS
There has been no theoretical heuristics of determining opti-
mal hyperparameters of a DNN. Here, the hyperparameters of
the above CNN model are obtained by many trials. In order
to evaluate the reconstruction performance of a CNN model,
a metric of reconstruction accuracy is defined as follows.

Ra =
number of correct reconstructions

number of test samples
(17)

Furthermore, if the reconstructed vector (Ŝ) of a testing
sample is the same as the label vector, it is called as ‘a correct
reconstruction’. Based on Equation (17), some architecture
parameters of the extended CNN model are obtained and
listed in Table 1, including the filter size and the filter number
of each layer. The input layer is a I × L × 2 matrix corre-
sponding to Ỹcon(O). The kernel sizes of the four convolution
layers are 1 × 150, 1 × 50, 1 × 20 and 1 × 10, which
is denoted as {150-50-20-10}. The kernel size of the Max
pooling layer is 2 × 2. The neuron numbers of the first and
second fully connected layers are 1024 and 128, respectively.
The output is a L × 1 vector corresponding to the vector
(Ŝ) of band occupancy status. These parameters can be itera-
tively updated during training. After being trained, the CNN
model is used to infer the band occupancy status of unknown
multi-band BTT vibration signals. Once Ŝ is obtained, Y (O)

can be reconstructed based on Equation (16).

V. NUMERICAL SIMULATIONS
A. SIMULINK-BASED BTT SIGNAL SIMULATION
In order to validate the proposed DCS method, numerical
simulations are done to generate BTT training and testing
datasets. For a real complex-profile blade, its mode shapes
are often complicated. In order to generate easily multi-
band tip-timing signals, a straight blade is considered and
its main mode is the first-order bending mode. Under the
simplified assumption, dynamic behavior of the blade can be
represented by a single-degree-of-freedom (SDOF) lumped-
parameter model and its vibration equation is written as
follows [33].

meqÿ(t) + ceqẏ(t) + keqy(t) = F(t) (18)

where meq, ceq, keq are the equivalent mass, damping and
stiffness, respectively. y(t) denotes blade vibration displace-
ment. F(t) denotes the vibration excitation.

8 =
1
L

×



exp
(
−j2πc1

(
1 − (L + 1)

/
2
)
/L

)
· · · exp

(
−j2πc1

(
l − (L + 1)

/
2
)
/L

)
· · · exp

(
−j2πc1

(
L − (L + 1)

/
2
)
/L

)
...

...
...

...
...

exp
(
−j2πci

(
1 − (L + 1)

/
2
)
/L

)
· · · exp

(
−j2πci

(
l − (L + 1)

/
2
)
/L

)
· · · exp

(
−j2πci

(
L − (L + 1)

/
2
)
/L

)
...

exp
(
−j2πcI

(
1 − (L + 1)

/
2
)
/L

) ...

· · ·

...

exp
(
−j2πcI

(
l − (L + 1)

/
2
)
/L

) ...

· · ·

...

exp
(
−j2πcI

(
L − (L + 1)

/
2
)
/L

)


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FIGURE 5. Basic architecture of the specific CNN model.

TABLE 1. Architecture parameters of the specific CNN model.

As for variable conditions, it is easy to realize linearly
variable speeds, so the rotating frequency (fr (t)) is assumed
to increase linearly in this paper. That is to say,

fr (t) = f0 + (fe − f0) t
/
Ts (19)

where f0, fe are the rotating frequencies at the starting time
and the ending time, respectively. Ts is the total simulation
time. Furthermore, three synchronous excitations are chosen
to simulate multi-band blade vibrations. That is to say, the
vibration excitation can be written as,

F(t) =

3∑
i=1

Ai sin (2πEOifr (t) t + ϕi (t)) (20)

where EOi (i = 1, . . . , 3) denoted the ith EO and Ai, ϕi (t)
are the corresponding amplitudes and phases.

Next the BTT sampling process in angular domain is sim-
ulated in Matlab/Simulink environment [34] and the whole
model is shown in Figure 6(a), which is composed of the
system model and angular-domain sampling process. Firstly,
the SDOF model in Equation (18) is built as Figure 6(b).
Then the angular-domain sampling process of thirteen BTT
probes is built by using the ‘Hit Crossing’ Block and the
‘Switch’ Block. The details of the ‘Sensor set 1’ is shown
in Figure 6(c), which is the same as those of ‘Sensor set 2’

TABLE 2. Parameter values in the simulink model.

and ‘Sensor set 3’. The key is to determine angular-sampling
times. For each rotating blade, its angular position is calcu-
lated as θ (t) = θ0 + 2π fr (t) t . When the blade tip passes the
ith BTT probe, the angular sampling time in the nth revolution
should satisfy the following condition,

2π fr (t) t = αi − θ0 + 2πn (21)

According to the BTT principle, each angular-sampling
time can be calculated by sin (2π fr (t) t)=sin (αi − θ0),
where the left part is carried out by using the ‘Chirp Signal’
Block and the right part is set as the threshold of the ‘Hit
Crossing’ Block.

Parameter values in the Simulink model are selected arti-
ficially and listed in Table 2. Then angularly-sampled blade
vibration displacements by each BTT probe can be obtained.
Firstly, angular-domain vibration signal sampled by the thir-
teen BTT probes is shown in Figure 7(a) and its order power
spectrum is plotted in Figure 7(b). The Nyquist sampling
theorem is satisfied when L = 13, so the three EOs can be
captured accurately.

Next it needs to generate training and testing samples to
evaluate the DCS model. Here L = 13, I = 4 and C is gen-
erated randomly for each sample. For each MCAS pattern of
(L, I ,C), angular-domain samples (ȳ = (ȳ1[n], . . . , ȳI [n]))
are obtained by adding stochastic Gaussian noises with dif-
ferent signal-to-noise ratios (SNRs) and the corresponding
band occupancy status vector (Ŝ) is labeled. Then each pair of(
ȳ, Ŝ

)
constitutes a sample and 14000 simulated samples are

generated by this way. One half is used for training and the
other half is used for testing (e.g. both equal to 7000). After
many trials, the Adam algorithm is used as the optimizer and
the learning rate is equal to 0.001.

B. EFFECTS OF THE SPECIFIC CNN ARCHITECTURE
The effects of the CNN architecture on the reconstruc-
tion accuracy need to be investigated. Firstly, Four CNNs
with different kernel sizes (i.e. {10-5-5-5}, {50-25-25-25},
{100-50-20-10} and {150-50-20-10}) are studied under
different SNRs, and the corresponding reconstruction
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FIGURE 6. Simulink model of BTT sampling process in angular domain.

accuracies are compared in Figure 8(a). It can be seen
that: i) The reconstruction accuracy increases with the SNR,
ii) Filters with a larger width perform better than those
with a smaller width, iii) Among the four kernel sizes,
{100-50-20-10} leads to the best reconstruction accuracy.

Next, two kinds of convolutional layers (i.e. the ReLU
layer placed before and after the BN layer) are compared in

FIGURE 7. Sampled vibration displacements by thirteen BTT probes.

Figure 8(b). One can see that the former has better reconstruc-
tion performance. In addition, other architecture parameters
may also affect the reconstruction accuracy, which belongs
to another and open research scheme. Thus it will not be
discussed in this paper.

C. COMPARISONS WITH CLASSICAL RECONSTRUCTION
ALGORITHMS
In the previous work [15], OMP, MUSIC, BPDN and
MFOCUSS algorithms have been studied to reconstruct BTT
vibrations under variable speeds. Here the proposed method
will be compared with both these four CS algorithms and
the SPGL1 algorithm [36]. The simulation results are shown
in Figure 9. One can see that the reconstruction accuracy
value of the proposed method is much larger than those of the
five algorithms under different SNRs. Also the reconstruction
accuracy can be further improved if more training samples are
used. The SPGL1 algorithm performs more accurately than
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FIGURE 8. Reconstruction accuracies under different CNN architectures.

the four CS algorithms. In addition, the calculation time of the
DCS model on the entire testing set is only about 50 seconds
yet the corresponding time of standard CS algorithms is about
215 seconds. Hence the proposed method also has much
higher reconstruction speed.

VI. EXPERIMENTAL VALIDATIONS
A. EXPERIMENTAL SET-UP AND DATASETS
To further validate the proposed DCS method, an experimen-
tal set-up of BTT-based vibration measurement of rotating
blades is built as shown in Figure 10. The whole experimen-
tal system is composed of a supporting base, an electrical
motor, a testing bladed disk, a magnetic exciter, four BTT
probes, a once-per-revolution reference sensor, a protection
cover, a data acquisition device and vibration analysis soft-
ware. The electrical motor was mounted under the supporting
base. BTT probes were fixed around the bladed disk through

FIGURE 9. Comparison of the proposed method with classical CS
algorithms.

TABLE 3. Key experimental parameters.

the holes in the protection cover and the angle between two
adjacent BTT probes is equal to 6 degrees. The OPR sensor
is mounted near the center of the bladed disk. Finally, key
experimental parameters are listed in Table 3.

At the beginning of the experiment, the rotating speed
increases to 5000rpm. Then the range of variable rotating
speed is set as 5000rpm∼11400rpm and the total acceleration
time is equal to 200 seconds. Thus the rotating speed is close
to increase linearly. During the whole acceleration process,
OPR signals and TOAs are collected, which are used to
calculate angular-domain vibration displacements. The four
BTT probes are numbered 1#, 2#, 3# and 4#. The first blade
passing the 1# BTT probe is numbered ‘Blade 1’and then
other blades are numbered from ‘Blade 2’ to ‘Blade 32’ along
the direction of rotation. According to installation angles of
the four BTT probe, the MCAS pattern is represented as
(60, 4, {0, 1, 2, 3}). Here Blade 4 is randomly selected as
the target blade.

BTT vibration displacements of Blade 4 measured by 1#,
2#, 3# and 4# probe are shown in Figure 11, where all
peaks mean that some synchronous resonances happen at
those times. For example, there is a peak during 8000∼9000
revolutions and the corresponding speed range is equal to
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FIGURE 10. Experimental set-up.

8000∼8500rpm. Furthermore, vibration EO during 8000∼
8500rpm is equal to 15 according to the Campbell diagram
of the blade [37]. Therefore, it is obvious that the peak is
caused by the 15th EO synchronous vibration. Next measured
vibration signal during 8000∼9000 revolutions is used to
generate training and testing samples, which is shown in
Figure 12. The sampled data is divided into a block with
size of 4 × 1000 and the block number is equal to 7000.
Then 7000 data blocks are used as the training samples and
3500 data blocks selected randomly are used as the testing
samples. It must be pointed out that the reconstructed order
band is equal to [−30, 30]. In this case, although there seems
only to be an EO (e.g. 15), the sparsity in order domain is
equal to 2 (−15 and 15). Therefore, experimental datasets are
made from double-band vibration signals.

B. VALIDATION OF THE PROPOSED DCS METHOD
To validate the DCS method, Ȳ (O) is calculated based on
measured vibration signals of four actual BTT probes and 8

is obtained based on the arrangement of four BTT probes,
as defined in Equation(10). Next the preprocessing process
including Equations (12)∼(14) is carried out to obtain the
input of the specific CNN model. According to the MCAS
scheme, the whole order band (e.g. [−30, 30]) of blade vibra-
tion is equally divided into 60 sub-bands and the dimension of
the band occupancy status vector (Ŝ) is equal to 60. Based on
these, training and testing datasets can be constructed. Then
training samples are used to train the specific CNN model
and the number of iterations is equal to 5. Here model archi-
tecture parameters listed in Table 1 are utilized according to FIGURE 11. BTT vibration displacements of Blade 4 by four probes.
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FIGURE 12. Vibration signals during 8000∼9000 revolutions.

FIGURE 13. Effects of the learning rate.

aforementioned simulation results. Finally, testing samples
are used to calculate the reconstruction accuracy Ra.
The relation between the reconstruction accuracy (Ra) and

the learning rate (η) is shown in Figure 13. It can be seen
that Ra will reach the maximum value when η ≈ 0.005.
Then the trained DCS model with η = 0.005 is used to
recover the order spectra of Blade 4 in testing samples and
typical reconstruction result is shown in Figure 14. It should
be emphasized that the reconstruction process does not use
any prior information of order bands.

It can be seen from Figure 13 and Figure 14 that: 1) The
reconstruction accuracy is close to 98% when the learning
rate is close 0.005; 2) True vibration EOs can be recon-
structed effectively by the proposed DCS-based reconstruc-
tion method. Meanwhile, there are small biases which may
be caused bymanufacturing andmeasurement errors. In addi-
tion, the pre-trained network by simulation signals is used to
run inference on experimental data and the results show that
the reconstruction accuracy is less than 50%. It means that
the generalization ability of the proposed method is not good,
which can be explained by the fact that the generalization
ability of CNN models is poor.

FIGURE 14. Reconstruction results of vibration EOs.

VII. CONCLUSION
In order to accurately and fast reconstruct BTT vibrations
under variable rotating speeds, this paper proposes an end-
to-end DCS method. The main novelties of the paper include
the following three aspects:

(1) An end-to-endDCS-based framework of BTT vibration
reconstruction under variable speeds is proposed, including
angular sampling, multi-coset sampling, compressed sensing
and learning sensing.

(2) A DCS model of BTT measurements under variable
speeds is derived in angular domain, where a CNN model is
built by using specific convolution layers with the ReLU layer
placed after the BN layer.

(3) A DL-driven CS-recovery procedure is introduced to
the field of BTT vibration analysis. The proposed DCS
method is better than classical reconstruction algorithms from
the perspective of reconstruction accuracy and speed.

As for the proposed method, there is still a challenge due
to multimode shapes of the bladed disk, which will cause tip-
timing signal derivations and reduce the reconstruction per-
formance. It is desirable to build a multi-degree-of-freedom
mechanical model and study how to reduce the effects of
other mode shapes. Also, poor generalization ability of the
proposed method is observed. In future, transfer learning
should be a promising direction to address this issue [22],
[38]. In addition, other types of DNNs deserve to be further
studied for comparison with CNN, such as multilayer percep-
tron (MLP), ResNet, and so on.

APPENDIX
NOMENCLATURE
AOAs Angles of arrival
BN Batch Normalization
BPDN Basis pursuit denoising
BTT Blade tip-timing
CNN Convolutional neural network
CS Compressed sensing
DCS Deep compressed sensing
DL Deep learning
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DNN Deep neural network
EO Engine Order
MCAS Multi-coset angular sampling
MFOCUSS Modified Focal Underdetermined
System Solver
MUSIC Multiple signal classification
OMP Orthogonal matching pursuit
OPR Once-per-revolution
ReLU Rectified linear unit
RIP Restricted Isometry Property
SDOF Single-degree-of-freedom
SNRs Signal-to-noise ratios
TOAs Times of arrival
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