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ABSTRACT This new paper applies the novel direct data driven control into UAVs formation dynamic net-
work and designs the distributed controller for each UAV, while guaranteeing the desired flight performance.
Firstly, a new control architecture is constructed as an unified framework for UAV task implementation,
including the management layer, functional layer and physical layer together. Secondly, we explain one
special dynamic network, i.e. network modules, exist in above control architecture, and the process about
how to operate these network modules in described in detail. Thirdly, after introducing the idea of distributed
control and the dynamic network system, our main contribution concern on how to apply direct data driven
control to design these distributed controllers for all UAVs respectively. Furthermore, the detailed derivations
and one improvement are combined to complete our own proposed theoretical results. Finally, one simulation
example confirms above theories.

INDEX TERMS UAVs formation, dynamic network, direct data driven control, model reference
performance.

I. INTRODUCTION
Without control systems there could be no manufacturing,
no vehicles, no computers, no regulated environment-in short,
no technology. Control systems are what make machines,
in the broadest sense of the term, function as intended.
Control systems are most often based on the principle of
feedback, whereby the signal to be controlled is compared
to a desired reference signal and the discrepancy used to
compute corrective control action. The process of designing
a control system generally involves many steps. A typical
scenario is as follows. (1) Study the system to be controlled
and decide what types of sensors and actuators will be used
and where they will be placed; (2) Model the resulting system
to be controlled;(3) Simplify the model if necessary so that
it is tractable;(4) Analyze the resulting model and determine
its properties; (5) Decide on performance specifications;
(6) Decide on the type of controller to be used; (7)Design
a controller to meet the performance, if possible, if not,
modify the performance or generalized the type of controller
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sought; (8) Simulate the resulting control system, either on a
computer or in a pilot plant; (9) Repeat from step 1 if neces-
sary; (10) Choose hardware and software and implement the
controller; (11) Tune the controller on line if necessary.

Observing the controller design problem in open loop or
closed loop situation, i.e. above described feedback situation,
methods for the design of controllers on the basis of data
are divided into two categories, (1) model-based control and
(2) direct data driven control. For model based control, firstly
a plant model is identified on virtue of data and conse-
quently a control design is performed on this plant model.
The problem of identifying a mathematical model for the
latter controller design is considered in the field of identifi-
cation for control, it means the identified plant model will
influence the best control performance. In direct data driven
control, the plant modeling step is avoided, so a controller is
synthesized directly from data. Typical advantages of direct
data driven control are that no loss of data can occur due
to under modeling of the plant and the order of the con-
troller can be fixed. Generally, model based control includes
two main steps,i.e. system modeling and controller design.
But direct data driven control strategy designs the unknown
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controller without any information about that unknown plant,
i.e. avoiding the system modeling process for that unknown
plant. Formally speaking, direct data driven control extracts
the useful information of the controller from the collected
data directly through some statistical methods,which need
lots of data. This requirement of data tolerable in today’s
information era.

Although the design of controllers from data directly has
been extensively studied in the literature. However most of
the theoretical results apply only to isolated systems or small
scale systems, but the dynamic network structure is not still
taken into account. Dynamic network exists all over our lives,
for example, think about any device around you that is elec-
trical or mechanical. Likely, this device consists of several
interconnected components or is interconnected with one or
multiple other devices. In the current era of technology, it is
hard to imagine a world with complex technological systems
that enhance our society. Be it the power generators feeding
the electricity grid, irrigation systems that serve the demand
for water in growing crops, or our mobile phone that allows us
to connect to any other device connected to the internet.UAV
formation is a whole system, composing of multi UAV units.
From the point of command and control, it concerns on the
combat effectiveness of UAV formation, that is the emergence
by the cooperation of multi UAVs. Within UAVs formation,
each UAV is regarded as a non-separable description object,
and the information interaction among the units are analyzed
to describe each UAV unit through the entity behavior. When
to analyze the motion mechanism of each UAV unit and the
latter task planning or allocation, it is obviously not enough to
regard UAV unit as an indivisible, but a whole system. Then
we must analyze the function modules of all UAVs in detail
from the point of function realization and the information
interaction among them, so it is better to understand the
working principle of each UAV and construct the explicit
module of UAV unit. If we abandon the research on each
separable UAV unit, but turn to consider UAV formation as a
whole system, it corresponds to our named UAVs formation
dynamic network, due to the dynamic network exists among
the information interaction.

Although few research exists about UAVs formation
dynamic network, but research about direct data driven con-
trol from the theoretical point are very mature. AN exhaus-
tive survey on data driven control methods,both direct and
indirect, is provided in [1]. One kind of special direct data
driven control- virtual reference feedback tuning [2] is a one
shot method for designing a controller directly on the basis of
data. In reference [3], a model-reference control problem is
essentially reformulate into a system identification problem,
through the generation of a virtual closed loop experiment.
Iterative feedback tuning, proposed in [4], shares the nice
property of being direct, i.e.e no model is needed in the pro-
cedure. A distinguishing feature of direct data driven control
is that it is iterative by design, where a gradient estimation of
the control criterion is performed at each iterative to tune the

controller parameter [5]. Optimal controller identification [6]
also solves amodel-reference control problem, by embedding
the control design problem within the prediction error iden-
tification of an optimal controller [7]. Reference [8] extends
this method for the identification of multi input multi output
systems. Other state of art methods for direct data driven
control are correlation based tuning [9]. A recent trend in
direct data based system analysis and control originates from
Willerns’ fundamental lemma [10]. Applications include data
based predictive control [11], the data based parametriza-
tion of stabilizing controllers and robust data state feedback
design with noisy data [12].

There are lots of research on UAV, for example, UAV
control, UAV target detection, UAV system identification,
UAV formation, etc. More specifically, in UAV system iden-
tification, the total number of observations, use to extract the
intrinsic principle of the considered system, is the sample
size [13]. In case of the number of observations be more
exceed this sample size, then the input is persistent excitation,
while the identification model satisfies the expected accu-
racy. From the knowledge of system identification theory,
the situation with observed disturbance or noise in the output
corresponds to the robust system identification [14], which
being also extended to robust optimal control.When using the
probabilistic or statistical inference in system identification
theory in [15] to measure the asymptotic accuracy about the
final identification model. Furthermore in recent years, risk
sensitive theory and reinforce learning are all introduced in
system theory and advanced control theory [16] and [17], i.e.
the risk decision and limitations of policies were considered
during the whole process of identification and controller
design. Then the final identification system or plant is more
realistic then classical theoretical result. From these ongoing
subjects about applying risk theory, dynamic programming
and probabilistic limitation for system identification and con-
trol theory, we are thinking to extend graph theory and topol-
ogy to system identification. More specifically, the second
step-model structure choice is related with graph theory, i.e.
the chosenmodel is constructed as one network system, being
formulated as graph theory. System identification theory is
not only for our considered aircraft system identification, but
also for robot system identification in [18].

As lots of identification processed are transformed
into their corresponding constrain optimization problems,
so some existed optimization results can be applied directly,
for example, convex optimization [19], scenario optimiza-
tion [20], and scenario robust control [21], etc. Consider
the last step for system identification-model validation, some
nice properties are satisfied for the final identification model
or designed controller, such as controllability, stochastic
chance constraints, robustness and nonlinearity [22]. The
goal of experiment design is to maximize the informa-
tion content in the data, subject to practical constraints,
for example [23], limits on input or output amplitude to
ensure that a linear model structure can be used to estimate
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FIGURE 1. UAVs formation dynamic network.

FIGURE 2. Control framework.

parameters from the measured data. Reference [24] studies
the time-varying formation tracking problem for linear mul-
tiagent systems, where followers reach a preset TVF when
tracking the leader’s state. The time-varying output bipartite
formation containment problem for linear multiagent systems
under directed graphs is an important problem, reference [25]
investigates two kinds of TVOBFC problems for heteroge-
neous linear MASs under signed digraphs by event-triggered
communication.

This new paper applies the existed direct data driven con-
trol into UAVs formation dynamic network and designs the
distributed controller for each UAV, while guaranteeing the
desired flight trajectory and goal in this complex formation
flight. More specifically, assume five UAVs fly in the forma-
tion to achieve the same battle mission, plotting in Figure 1.
The ground station receives the signal from these flyingUAVs
and sends the command to them. Each UAV, flying in this
formation, exchanges the useful information to other UAVs
and the ground station, i.e. the information interactions exist
among UAVs and the ground station. One efficient way to
describe these information interactions depends on our called
formation dynamic network, i.e. the communication links
constitute one dynamic network for Figure 1.
Consider one interesting controller design problem within

above UAVs formation dynamic network, three kinds of
control frameworks are always used, i.e.centralized control,
decentralized control and distributed control. The detailed
differences among these three control frameworks are shown
in our paper [26], which points out that the idea of distributed
control is to design controller for each UAV, while consider-
ing the influences from other adjacent UAVs. Then idea of

FIGURE 3. UAV cooperation architecture.

distribute control is shown in Figure 2, which shows the
closed relations among UAVs, controllers and the ground
station.
where, in Figure 2, each controller, corresponding to each
UAV, is devised by our considered direct data driven control.

The main contribution of this new paper is to design
each controller for each UAV in one formation dynamic
network by virtue of direct data driven control strategy. But
for the completeness, firstly we introduce a new cooper-
ation control architecture to achieve the effective cooper-
ation task, then this new cooperative control architecture
corresponds to one UAVs formation dynamic network. It pro-
vides an unified structure for various functional modules,
such as a physical layer, a functional layer and a manage-
ment layer. Secondly, for this UAVs formation dynamic net-
work, we consider the distributed controller design problem
through our proposed direct data driven control strategy,
i.e. each controller is designed from the collected data in
detail. Generally, after introducing UAVs formation dynamic
network as one new architecture, direct data driven control
is proposed to design each distributed controller for each
UAV. Furthermore, some considerations and more important
aspects about how to apply direct data driven control into
this new UAVs formation dynamic network are explained
in detail with tou own descriptions and mathematical
derivations.

The paper is organized follows. In section II, UAVs forma-
tion dynamic network is introduced to be a new cooperation
control architecture, being for the task cooperation planning
in UAVs formation. The main contribution about applying
direct data driven control to design the distributed controller
for each UAV in formation is given in section III, where
further control analysis is also done for better understand-
ing. Section IV uses some simulation examples to prove our
proposed results efficiently. Finally, section V formulates the
main conclusions and points our latter work. Generally, this
new paper combines the theory and practice together from
both points of architecture and controller design problem for
UAVs formation.
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FIGURE 4. Network module for cooperation task planning.

II. UAVs FORMATION DYNAMIC NETWORK
This section is similar to the system description, correspond-
ing to a new architecture as an unified framework for UAV
task implementation. And this new architecture includes our
mentioned dynamic network.

A. ARCHITECTURE
The design of this new architecture provides efficient support
for multi task allocation of UAV. A diagram of this new archi-
tecture is plotted in Figure 3, which includes themanagement,
functional and physical layer together.
where, in Figure 3, the lowest physical layer supports themost
basic operations among UAV. It mainly includes the bottom
control system and other hardware resources, such as sensor,
communication system, weapon system etc.

The functional layer in above dotted line box includes all
kinds of functional modules, for example safe navigation,
collision avoidance, trajectory planning, target search and
recognition, target tracking etc. Each functional module cor-
responds to the special type of each UAV task, and has its
own unique system object about state and parameter. The
middle task coordination layer can allow different functional
sub-modules to cooperate and share with each other. The state
and parameter in a functional module can be shared with
other functional modules through registering with manage-
ment layer, which include current information about UAV in
different task environment.

B. DYNAMIC NETWORK
That proposed cooperation control architecture is Figure 3
provides an efficient support system for single UAV or
multi UAVs formation cooperation task planning. Observing
Figure 3 again, the network module of the functional layer
can be used directly to ensure that all functional modules
cooperate during the communication network. Furthermore,
this network module gives the communication service proto-
col for other sub-modules. Figure 4 shows how the network
module among UAVs formation functional modules coop-
erates with the cooperation control architecture. To realize

FIGURE 5. Network module for cooperation reconnaissance planning.

cooperation, communication requirements are sent to net-
work module through task coordination layer module. The
network module processes the sequence of data, then data
fusion and data mining algorithms can be implemented to
deal with the collected data.

Specifically,the received data is sent directly forward to
the data receiving buffer of the relevant module in the man-
agement layer through the processing of network module.
Then the data set processed by network module will be sent
to the next UAV along the information flow path in the
communication network within the closed loop situation. the
network module in UAV functional module can not only
has the function of data processing and data transmission,
but also support the connectivity of communication network.
The connectivity of the communication network can satisfy
the communication dynamic characteristics for UAV task
planning, plotted in Figure 5.

Compared with other functional modules, the network
module sends the control requirements to the task coor-
dination layer, then UAV is controlled according to the
network target. Based on this network module, a variety
of functional modules on each UAV exist, for example,
cooperation task planning, cooperation trajectory planning,
attack, tracking and search module, which communicate with
their adjacent UAVs, flying in formation. To achieve the
sharing of information resources among flying UAVs, our
proposed architecture is satisfied to realize the desired control
performance.

III. DIRECT DATA DRIVEN CONTROL
From this section, we start to show our contribution about
applying the novel direct data driven control into designing
the distributed controller for each UAV, flying in the above
introduced UAVs formation dynamic network.

A. BACKGROUND
Observing Figure 1 again, assume M UAVs fly in the for-
mation flight, so some communication links or information
interactions exist among these M UAVs. Consider the dis-
tributed controller design problem for each UAV, we do not
neglect the influence from other adjacent UAVs. Combining
above introductions about dynamic network and distributed
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FIGURE 6. Relations between adjacent UAVs.

control, the intrinsic relations between two adjacent UAVs are
described in Figure 6.
where, r1(t) and r2(t) are two external signals for the first
and second UAV respectively. Similarly, {u1(t), u2(t)} and
{y1(t), y2(t)} correspond to the considered two UAVs’ input
and output signals. G1 and G2 describe the two rational ratio-
nal functions, C1 and C2 are their own distributed controllers,
G12is the influence on the first UAV, coming from the second
UAV, then G21 denotes the influence on the second UAV
from the first UAV. {v1(t), v2(t)} are two external noises or
disturbances.

More generally, consider ithUAV in the formation, its input
and output are {ui(t), yi(t)} at time instant t . Similarly, other
physical variables are also defined as Gi,Ci,Gij, vi(t), ri(t).
The neighbour set of UAV i ∈ {1, 2, · · ·M} is defined asNi =

{j ∈ {1, 2, · · ·M}|Gij ̸= 0}. To each UAV i ∈ {1, 2, · · ·M},
we yield a linear discrete time system with dynamic.

yi(t) = Giui(t) +

∑
j∈Ni

Gijyj(t) + vi(t)

vi(t) = Hiei(t), i = 1, 2, · · ·M (1)

The second term
∑

j∈Ni Gijyj(t) means the communication
information from other related UAVs. Hi is one transfer
function or filter on that unmeasured zero mean white noise
process, i.e.

Eei(t)ej(s) = 0, for i ̸= j

Eei(t)uj(s) = 0, for i ̸= j (2)

AsM UAVs are considered within the formation, so all output
signals for allM UAVs are formulated as that.

y1(t)
y2(t)

...

yM (t)

 =


G1 0 · · · 0
0 G2 · · · 0
...

...
...

...

0 0 · · · GM



u1(t)
u2(t)

...

uM (t)



+


0 G12 · · · G1M
G21 0 · · · G2M
...

...
...

...

GM1 GM2 · · · 0



y1(t)
y2(t)

...

yM (t)



+


H1 0 · · · 0
0 H2 · · · 0
...

...
...

...

0 0 · · · HM



e1(t)
e2(t)

...

eM (t)

 (3)

by stacking all the variables of above network equation (3) as

y = col(y1(t), y2(t), · · · , yM (t))

u = col(u1(t), u2(t), · · · , uM (t))

e = col(e1(t), e2(t), · · · , eM (t))

we write

y = Gu+ GI y+ He (4)

with

G = diag(G1,G2, · · · ,GM )

H = diag(H1,H2, · · · ,HM )

GI =


0 G12 · · · G1M
G21 0 · · · G2M
...

...
...

...

GM1 GM2 · · · 0

 (5)

Then the input-output (u → y) behavior of above dynamic
network is

(I − GI )−1y = Gu+ He

y = (I − GI )−1Gu+ (I − GI )−1He (6)

If M = 1, i.e. only one UAV is considered, then G1j =

0,GI = 0, and I − GI = I , so above equation (6) is reduced
to y = Gu+ He.

B. CONTROL ANALYSIS
Reformulate equation (1) as that

yi(t) = Giui(t) +

∑
j∈Ni

Gijyj(t) + Hiei(t) (7)

with three kinds of unknown rational transfer functions
{Gi,Gij,Hi}. Its one step ahead predictor for output yi(t) is
given by

ŷi(t) = (1 − H−1
i )yi(t)

+ H−1
i (Giui(t) +

∑
j∈Ni

Gijyj(t)) (8)

The corresponding prediction error ξi(t) = yi(t) − ŷi(t) is
minimized to get the rational transfer functions {Gi,Gij,Hi},
i.e.

argmin{Gi,Gij,Hi}
1
N

N∑
t=1

ξ2i (t) (9)

where, N is the total number of observed data.
The process of solving above minimization problem (9)

corresponds to closed loop system identification, being seen
our previous papers [27] and [28]. But here we do not want to
identify these three rational transfer functions {Gi,Gij,Hi},
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as our interesting goal is to design that distributed con-
troller Ci for the ith UAV without identifying {Gi,Gij,Hi}.
It is achieved from our proposed direct data driven control
strategy.

C. DIRECT DATA DRIVEN CONTROL
Direct data driven control is to apply the observed data to
design the controller or give some hints. Specifically, for each
UAV, assume the expected or designed trajectory be given as

yi(t) = Miri(t) (10)

with the external input ri(t) and expected transfer function
Mi. From Figure 1, it holds that

ui(t) = Ci(ri(t) − yi(t)) (11)

Substituting equation (11) into (1), we have

yi(t) = Giui(t) +

∑
j∈Ni

Gijyj(t) + Hiei(t)

= GiCi(ri(t) − yi(t)) +

∑
j∈Ni

Gijyj(t) + Hiei(t)

[I + GiCi]yi(t) = GiCiri(t)

+

∑
j∈Ni

Gijyj(t) + Hiei(t) (12)

i.e.

yi(t) = [I + GiCi]−1GiCiri(t)

+ [I + GiCi]−1(
∑
j∈Ni

Gijyj(t) + Hiei(t)) (13)

Comparing equation (10) and (13), we see the transfer func-
tion from the external input ri(t) to output yi(t) for each ith
UAV must be the same, i.e.

[I + GiCi]−1GiCi → Mi (14)

so that distributed controller Ci can be solved through mini-
mizing the following cost function.

argmin{Ci}∥[I + GiCi]−1GiCi −Mi∥
2 (15)

where, ∥.∥ means Euclidean norm.
An easy way to yield one explicit form for the distributed

controller Ci is to take the partial derivative with respect to Ci
and set the derivative equal to zero, then we have

[
GiCi

1 + GiCi
−Mi]

Gi
(1 + GiCi)2

= 0

1 −
1

1 + GiCi
−Mi = 0 (16)

as a straight forward calculation shows

GiCi = 1 −
1

1 −Mi

Ci =
Mi

(Mi − 1)Gi
(17)

Then above form is the distributed controller, which guaran-
tees those two transfer functions be same with each other.

Comment: The obtained distributed controller in
equation (17) is dependent of transfer function Mi and Gi.
Although that expected transfer function Mi is given and
known, but transfer function Gi is unknown, so equation (17)
is useful on basis of the given transfer function Mi and the
identified plant Gi, being identified in priori. The description
about the obtained distributed controller in equation (17)
corresponds to the model based control. To avoid Giin the
derivation of distributed controller Ci, one improvement is
proposed to neglect the existence of that unknown plant Gi.

D. ONE IMPROVEMENT
To delete the unknown plant Gi in equation (7), we see
Figure 6 again, the left side of the unknown distributed con-
troller Ci is that.

yi(t) = Miri(t)

ri(t) − yi(t) = ri(t) −Miri(t) = (1 −Mi)ri(t) (18)

so the right side of the unknown distributed controller Ci is
that.

ui(t) = Ci(ri(t) − yi(t)) = Ci(1 −Mi)ri(t) (19)

From the expected equity yi(t) = Miri(t), we get ri(t) =

M−1
i yi(t). Substituting it into equation (19), we have

ui(t) = Ci(1 −Mi)M
−1
i yi(t) = Ci(M

−1
i − 1)yi(t) (20)

Both sides of the unknown distributed controller Ci are
input-output signal {ui(t),Ci(M

−1
i −1)yi(t)}. As a pair of data

{ui(t), yi(t)} can be measured in priori, so they are known,and
also M−1

i is given, but only that distributed controller Ci is
unknown. From our explanation, the distributed controller Ci
is solved from the latter minimization problem.

argmin{Ci}
1
N

N∑
t=1

[ui(t) − Ci(M
−1
i − 1)yi(t)]2 (21)

with the given Mi and collected input-output pair
{ui(t), yi(t)}Nt=1. By differentiating with respect to Ci and by
setting the derivative equal to zero, it holds that

2
N

N∑
t=1

[ui(t) − Ci(1 −Mi)yi(t)](1 −Mi)yi(t) = 0

N∑
t=1

ui(t)yi(t) = Ci(1 −Mi)
N∑
t=1

yi(t)yi(t)

φuiyi (w) = Ci(1 −Mi)φyi (w) (22)

with two power spectrums φuiyi (w) and φyi (w), i.e,

φuiyi (w) = Eui(t)yi(t)

φyi (w) = Eyi(t)yi(t) (23)

From equation (22), the final distributed controllerCi is given
as.

Ci =
φuiyi (w)

(1 −Mi)φyi (w)
(24)
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Equation (24) is a nice form, due to the known variables in
the right side. Based on this form (24), our proposed direct
data driven control is reformulated as the following detailed
steps.

Step 1: Collect data {ui(t), yi(t)}Nt=1 for each UAV, i =
1, 2, · · ·M , and N is the total number of the collected
data.

Step 2: According to the control goal, the desired or
expected performance is reformulated as one transfer
functionMi.

Step 3: Use the collected output to compute the exter-
nal input ri(t) = M−1

i yi(t).
Step 4: Compute the power spectrums φuiyi (w) and

φyi (w).
Step 5: One rough distributed controller is chosen as

Ci =
φuiyi (w)

(1−Mi)φyi (w)
.

Step 6: Check whether ui(t)−Ci(1−Mi)ri(t) = 0, if it
holds then accept that rough distributed controller, or go
to step 1 until to be satisfied.

The above six steps are formulated as the following algo-
rithm format for well understanding.

IV. SIMULATION EXAMPLE
To prove our proposed control architecture and direct data
driven control for UAVs formation, here one simulation
example about UAVs formation path or trajectory planning
is introduced. The cooperative control problem of our mul-
tiple UAVs is established when our UAVs can carry out
reconnaissance and strike missions in the hostile environ-
ment. The goal of designing mission coordination layer is
to deal with multiple attack targets at the same time. The
objectives of the reconnaissance and strike process include:
1) to navigate our UAV safely in an enemy environment,
and to avoid the necessary obstacles and the threat of enemy
radar or artillery shells; 2) to realize the location and accurate
tracking of the search target; 3) to realize the recognition and
detection of the search target; 4) to achieve high precision
tracking performance for the detectable target. The simula-
tion architecture analysis framework of this paper is applied
to the trajectory planning simulation experiment of UAV in
3D mission environment. The controller design strategy for
trajectory planning is contained in the function module of the
architecture.

Set the task environment within one square ares, the orig-
inal position and terminate position are (0,0) and (310,310)
respectively. There are five mountains as the terrain threats,
where three of them are the radar threats, plotting in
Figure 8.

During the whole simulation example, equation (1) is the
dynamic equation for each UAV. The optimal distributed con-
troller is yielded through solving that minimization problem
(21), and the detailed implementation programs are written

FIGURE 7. Algorithm format.

FIGURE 8. The terrain threats.

in the functional module. The lowest physical layer includes
some hardware, for example, flight computer, sensors, and
human-machine interface etc. Let us apply the matlab pro-
gram, written for direct data driven control strategy, into the
functional module, then it can be adopted automatically. The
whole algorithm process is seen in above six steps, which run
iteratively until to terminate the zero error. The error function
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FIGURE 9. Cost function with time.

FIGURE 10. UAV trajectory.

in equation (21) is also one quadratic cost function, whose
value changes with time increase. Figure 9 shows the curve
about that cost function with time. From this curve, the cost
function is keeping decreased with time increase.

Figure 10 depicts a three-dimensional track map and con-
tour lines. According to the diagram, the obtained route can
effectively avoid the terrain threat and radar threat in the
mission area, and the security of UAV can be guaranteed
by following the optimal route. The selected tracks of each
UAV can avoid the known threat area, and have lower range
cost, and the different tracks are relatively scattered in space
because of the addition of the clustering algorithm contained
in the function module, there was no clustering of multiple
candidate tracks.

V. CONCLUSION
To solve the problem of task cooperative planning for UAVs
formation, a new cooperative control architecture is proposed
to achieve the effective cooperation of UAVs formation. This
cooperative control architecture provides a unified structure
for various function modules, being used in the task planning.
Consider this UAVs formation dynamic network, we consider
the distributed controller design problem through our pro-
posed direct data driven control strategy, i.e. each controller is
designed from the collected data in detail. As the considered
UAVs formation dynamic network corresponds to one com-
plex network structure, there are lots of unseen parts, being
unknown to us. So latter we want to use topology theory and
graph information to exploit this complex network structure.
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