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ABSTRACT Fuzzy inference systems, in general, and complex fuzzy inference systems, in particular, play
an increasingly important role in many fields, such as change detection, image classification, recognition
problems, etc. Despite being the well-known technique to solve with time series data, the rulebase still has
the considered limitation because of the directly affecting the results as well as the processing time of these
methods. To overcome this limitation, this study proposes an Adaptive spatial complex inference system that
can automatically infer and adapt to the new remotely sensed image. In the proposed model, to predict the
image of time t 4 1, the system will generate a new rulebase according to this expected image. This new
rulebase and the previous Co-Spatial-CFIS+ rulebase are evaluated using a complex fuzzy measure. This
measure is built by determining the intersection domain between two rule spaces; this intersection value
estimates removing, merging, or adding a newly generated rule into the current rulebase. Finally, a more
suitable set of rules is obtained for image prediction. To illustrate the efficiency of the proposed approach,
it is applied to the remote sensing cloud image data of the U.S. Navy. Our model evaluated the model’s
effectiveness in comparison to the state-of-the-art along studies in detecting changes in remote sensing cloud
images. Moreover, the findings of the experiments revealed that the proposed model could improve the
change detection results in terms of R?, RMSE, time-consuming, and the number of rules.

INDEX TERMS Complex fuzzy inference system, remote sensing images, rule pruning, rule-based system,
image change detection.

I. INTRODUCTION

Change detection in remote sensing image (RSI) concerns
identifying and analyzing changes in multi-temporal pictures
captured at different times. This process takes into account
correlations between the temporal lags and the observations
in the photos. Timely and accurate change detection is crit-
ical for gaining insight into the relationships and interac-
tions between human and natural phenomena, enabling better
decision-making. Therefore, different approaches have been
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adopted for change detection in RSI, such as artificial neural
networks [1], [2], [3], fuzzy modeling [4], [5], [6], [7], mixed
methods [8], [9], [10], [11], etc. These approaches offer the
potential to improve the accuracy and robustness of change
forecasting, particularly in complex and uncertain environ-
ments.

The importance of change detection is to specify the sig-
nificant change that has occurred over a series of images
across a period, which helps in decision-making. However,
images are often inherently imprecision due to many factors,
including observed phenomena, acquisition process, as well
as image processing steps. This may affect imprecision in
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the objects to be recognized. Hence, fuzzy logic models are
one of the suggestions that many researchers pay attention
to in developing in order to be able to model and take
into account these imprecision, uncertainty, and ambiguity
factors of images at different levels. The fuzzy logic sys-
tem, in general, or fuzzy inference system (FIS), is attrac-
tive because they are interpretable and provide an analyst
with a deeper insight into the problem. Generally, a FIS
is typically superior to other methods regarding memory
usage and inference speed. With the rapid advancement of
space science and technology, a large amount of Remote
Sensing (RS) data with high spatial-temporal resolution has
become available, which brings new challenges in describing
RSI. Modeling time series RSI can be particularly challeng-
ing due to the dynamic characteristics and uncertainty of
the data.

In recent year, the complex fuzzy set (CFS) theory has
been introduced and provided a practical expression to
address problems involving temporal, vague, and periodic
elements [12], [13], [14], [15], [16], [17], [18]. CFS can
effectively characterize data by considering an event’s ampli-
tude and phase values. Each component of CFS is assigned
a complex fuzzy membership function, and the values lie on
the unit circle in the complex plane. Inspired by the success of
CFS in modeling time series data, CFS-based systems have
become increasingly important as a new approach to solving
temporal or time series datasets. This approach has shown
great promise in addressing the challenges of time series RSI.

Because earlier works have indicated that fuzzy models
built using complex fuzzy logic could be very accurate in
time-series forecasting, Chen et al. [22] introduced the first
neuro-fuzzy system-based CFS for time series forecasting.
Then, Yazdanbakhsh et al. presented an extended version
of the forward- and backward-pass computations, the Ran-
domly Adaptive Neural Complex Fuzzy Inference System
(RANCFIS) [23]. To enhance the first version, the author
uses a randomized-learning to train and optimize parameters
in CFIS. Moreover, another related performance [24] is sug-
gested to improve computational time and accuracy for the
forecasting model. In this work, the author applied the Fast
Fourier Transform algorithm is applied to determine the pre-
vailing frequencies in time-series data and then established
CFS to match them as the antecedents of a complex fuzzy
rule (CFR).

According to the series of research on complex fuzzy sys-
tems, in 2019, Selvachandran et al. introduced the Mamdani
complex fuzzy inference system (M-CFIS) [17] as a valuable
tool for addressing problems with vague and temporal factors.
Subsequently, Lan et al. proposed two enhanced versions of
M-CFIS [25], [26]. The first version improved the rulebases
by leveraging complex fuzzy measurements and granular
computing, while the second version decreased the compu-
tational time by employing fuzzy knowledge graphs. These
advancements demonstrate the effectiveness of the complex
fuzzy sets in representing temporal factors in data. However,
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limited attention has been given to incorporating spatial ele-
ments in studies utilizing CFS.

In recent research, Giang et al. [27] proposed a system
for handling spatial-temporal data using a CFIS. This system
utilized the FWADAM+- optimization algorithm to optimize
the rule parameters. However, when applied to time series
image forecasting, the model’s effectiveness was reduced by
accumulating step-by-step errors over time. Besides, estab-
lishing new rules poses a challenge as they may overlap
or intersect with existing ones, leading to longer process-
ing times and unexpected errors. The large rule generation
time and quality of the rulebase were the main challenge
and motivations for our research. However, some obstacles
were encountered in the process of tackling the challenges.
Firstly, we observed that generating rules for new images
was a large time-consuming in previous studies. We made
theoretical and practical modifications, such as adjusting the
clustering algorithm’s number of clusters or replacing the
clustering algorithm, but the rest could have been a better
story. To address this issue, we adopted methods that directly
generate rules from images with significantly faster process-
ing time and minimize errors. Second, with the generating
rule evaluators. Initially, determining the intersection of two
rules using 3-class integrals for calculation was our planned
approach. However, this approach involved complex mathe-
matical concepts, so we had to approximate the calculation
method. Although this new method resolved the issue of a
calculation error, it marginally increased computation time.
Hence, we proposed a method while evaluating coefficients
for the rule pooling process.

The purpose of our work is to adjust the rulebase to adapt
to the new images to improve the accuracy and computa-
tional time of the previous work, Co-Spatial CFIS. The paper
proposes an adaptive spatial complex fuzzy inference system
called Spatial CFIS++ to overcome the limitations of exist-
ing methods [27] for change detection. The key contributions
of this work are summarized as follows:

First, an adaptive spatial complex fuzzy inference system
model based on complex fuzzy measures is introduced for
change detection in the RSI series. The proposed model
uses the CFS theory to describe both spatial and temporal
characteristics of RSI images.

Second, a method is proposed to generate rules directly
from the newly obtained images in the testing set. This
method involves several steps: preprocessing, fuzzing, calcu-
lating the rule space, and determining the rule parameters.

Third, complex fuzzy measures are introduced to compare
two rule systems and improve the effectiveness of the rule-
base.

Finally, a comparison experiment is conducted to demon-
strate the validity and effectiveness of the proposed model.
The evaluation parameters used for comparison include
RMSE, RZ, computational time, and the number of rules.
Overall, the proposed approach outperforms related studies
in these metrics.
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The remaining paper is arranged to accomplish the above:
Part II presents the basic knowledge of CFS, complex
fuzzy measures, the gray image extraction method using
fuzzy logic, and Co-Spatial complex fuzzy inference sys-
tems. Part III dedicates an adaptive spatial complex fuzzy
inference system using complex fuzzy measures. The pro-
posed model’s main idea and detailed steps are described and
illustrated by an example. Part IV represents the practical
experimentation and a comparison with some related methods
to confirm the model’s efficiency. Finally, Part V concludes
the paper and suggests possible future developments.

Il. RELATED WORKS

RSI change detection involves identifying significant dif-
ferences between RSIs taken at different times. In recent
years, automated CD technology has played a crucial role
in developing remote sensing applications, with much atten-
tion given to soft computing approaches such as fuzzy logic
systems. FIS-based strategies have been assumed to be a
reliable solution to various image-processing problems, with
different rule-generation mechanisms developed to address
these issues.

For instance, Mondal et al. [28] proposed a novel approach
to fuzzy rule generation based on image features for seg-
mentation and image extraction. The authors noted that tra-
ditional methods often need more noise, leading to imprecise
results. By leveraging the FIS’s ability to handle uncertain
information, they could generate rules directly from input
images and use them to partition the image. Experimental
results on multiple datasets demonstrate the positive impact
of this approach on image processing. In [29], an intelligent
approach is presented that utilizes RSI processing and Fuzzy
Inference System (FIS) to optimize the orientation of solar
PV panels. The model uses the cloud cover index to describe
the difference between the viewed and reference images and
the block-matching algorithm to evaluate cloudy periods.
The FIS then uses these parameters to determine the optimal
position of the PV panel.

Senthilselvi et al. [30] proposed a method that combines an
adaptive neural network and an adaptive FIS solving image-
denoising problems. The work takes advantage of the ability
to learn the parameters of Artificial Neural Networks (ANN)
combined with generating rules from the image and infer-
ence capability of ANFIS to reduce the noise of the picture.
Another study applying a FIS for images can be mentioned as
the study of Tang et al. [31]. The authors proposed an adaptive
approach based on a FIS mechanism to balance and improve
the quality of hiding information in images. Compared with
algorithms of the same group, experimental results show
the outstanding performance of the export model. SziovCa
et al. [32] proposed a model that uses FIS to detect colorectal
polyps in colonoscopy pictures. The author performs image
preprocessing, generates rules from the image, and selects
regions that may contain tumor pictures for evaluation. The
experiment shows promising initial results and opens up new
research opportunities for this problem.
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Rules play a crucial role in assessing the accuracy of
a rule-based inference system. While rule systems in FIS
systems are often generated directly from data, for datasets
with dynamic elements and time series data, the old rulebase
needs to be adjusted and improved to adapt to new data.
Dutu et al. [33] introduced Precise and Fast Fuzzy Modeling
based on the Mamdani inference mechanism and a powerful
rule optimization method. The approach aims to strike a
balance between the accuracy of the obtained rules and the
speed required to generate them. The authors evaluated the
results obtained under various factors to enhance the study’s
reliability.

The ANFIS model has been used in various studies
to improve the efficiency of different systems. One such
study [1] used various membership functions and a mixed
learning mechanism to adjust the rule parameters of a geo-
graphic information system. The experimental results on land
subsidence susceptibility mapping in the Marand plain, north-
west Iran, have indicated the remarkable effectiveness of the
proposed model with high prediction precisions.

Another study [2] utilized the ANFIS model for semantic
segmentation of RSI. The authors also encountered limita-
tions in reference results due to the method that generates
the rulebase. To address this, the authors have proposed an
ANFIS system that automatically infers the fuzzy rules for
pixel classification. The experiment achieved good accuracy
in classifying pixels despite the limited features and training
images.

From the above analyses, it is clear that the variety of
methods to generate rules directly from the image and to
optimize those rule systems. While these initial approaches
have obtained profitable results in practice, they still have
limitations that require further consideration and develop-
ment. Thus, the generation and optimization of rule systems
from images offer several possibilities, yet there is a need for
ongoing research in this area.

Ill. BACKGROUND

First, we review basic definitions used throughout this work,
including complex fuzzy sets, complex fuzzy measures, gray
Image extraction using fuzzy logic, and Co-Spatial CFIS+-.

A. COMPLEX FUZZY SET AND COMPLEX FUZZY MEASURE
1) COMPLEX FUZZY SET

Definition I [34]: A mapping A : U — D is called a
complex fuzzy set on U where U is a fixed universe and D is
a set of values on a complex unit disk. For any x € U, the

complex fuzzy membership function has the form: p4 (x) =
g (x) efoa )

2) COMPLEX FUZZY MEASURE

Definition 2 [35]: Assume A, B, and C be three CFSs
in a universe of discourse X with membership degrees
of ta(x) = ha (0) &4, up(x) = hgx) ™ and
e (x) = he (x) é®C® respectively. A distance of complex
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fuzzy sets if a function 4 : CFS(X) x CFS (X) — [0, 1]if it
satisfies some conditions as follows:
(i) h(A,B)>0, h(A,B)=0iff A=B
(i) h(A,B) = h(B,A)
(iii) h(A,B) <h(A,C)+h(C,B)

B. GRAY IMAGE EXTRACTION METHOD USING FUZZY
LOGIC
The process of extracting information directly from the
image [42] is built based on information related to how to
determine the threshold value and transform the spatial region
according to the following steps:

Step 1. Read a noisy image as input

Step 2. Determine the focal area of the image according to
different threshold values

Step 3. Extract image features by pixel value and the
threshold value for the next use.

Step 4. Build an independent input fuzzy function for the
image

Step 5. Generate fuzzy rules from previous results. The
fuzzy rule generation process consists of 5 steps:

a. Define the space bounds of Input and Output

b. Create fuzzy rules from input data

c. Mapping threshold values obtained by different thresh-
old value evaluation methods in respective fuzzy spaced. Cre-
ate an association fuzzy rule base based on this association
fuzzy rule.

Step 6. Calculate the approximate value obtained in Step 5

Step 7. Display the resulting image.

C. CO-SPATIAL COMPLEX FUZZY INFERENCE SYSTEM
The Co-Spatial complex fuzzy inference system (Co-Spatial
CFIS+) [27] is a developing version of Mamdani-CFIS based
on CFS theory. for change detection from satellite images
contains some stages as follows:

Stage 1: Data preprocessing. In this stage, the color
input images are converted to gray images. After reduc-
ing the size of images and calculating the complex fuzzy
membership values corresponding to representative pixels of
images.

Stage 2: Establish the complex fuzzy rules of each image.
Determine the boundary point value of each image and gen-
erate the rule that has Mamdani-CFIS’s form.

Stage 3: Calculate the parameters using for reference
and predict the next image. The parameters contain ref-
erence value, rule coefficient, and value of neighborhood
points.

Stage 4. Optimize the reference parameters using the
FWADAM+ method, so the RMSE value reaches a
minimum.

Stage 5: Predict the following image. Using obtain
parameters to calculate the norm, the interpolation,
the defuzzification, and the adjustment of the ampli-
tude and phase components of the forecasted image for
the image.
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IV. PROPOSED ADAPTIVE SPATIAL COMPLEX FUZZY
INFERENCE SYSTEMS

As discussed in the introduction, Giang et al. [27] utilized
the FWADAM+ optimization algorithm to optimize the rule
parameters in the Co-Spatial CFIS+. However, when fore-
casting time series problems, the effectiveness of the forecast-
ing system diminishes as the outdated rule system becomes
unsuitable for new data. Therefore, this section introduces
the proposed Adaptive Spatial Complex Fuzzy Inference Sys-
tems model. Part A presents the critical concepts of the model,
followed by a detailed description of the proposed model in
Part B. Finally, a numerical example is provided to illustrate
each step of the proposed model.

A. MAIN SYSTEM

The primary idea of the proposed model is to improve the
rulebase in Co-Spatial CFIS+ in the cases of change detec-
tion with time-series RSI. The foremost priority of this work
is to decrease the computational time and keep the overall
efficiency of the model.

The main steps are summarised: Firstly, input images are
executed to preprocess data by converting color images to
gray photos and determining the image’s amplitude and phase
term, respectively. The amplitude and phase terms are trans-
formed into the fuzzy domain using the Gaussian complex
fuzzy membership function (GCFMF). Then we create the
spatial complex fuzzy rule (Spatial-CFR) from the input
images.

Next, the rule pruning stage is executed in the rule space
domains based on a complex fuzzy measure. Specifically,
subdivide the rule space domain into tiny square blocks.
Then, determine the relative positions of these blocks in the
rule space to calculate the intersection of the two rules.

After obtaining the comparing value between 2 rule spaces,
the process of combining or removing rules is executed based
on the predefined threshold values. The duplicate or redun-
dant rules are synthesized to improve the quality of the rule
base and obtain the new set of rules. The new rule base
consists of the old rule base generated based on Co-spatial
CFIS+ and the new rule base established directly from the
image. Finally, a new set of rules is obtained that adapts and
accommodates the novel image set. The new rule base is used
to predict the following RSI with the aim of improving both
the accuracy and time of the model.

Details of the steps are modeled as shown in Figure 1.

B. DETAILS OF THE PROPOSED SPATIAL CFIS++ METHOD
« Step 1. Preprocessing input data
Preprocessing is performed to prepare data to be applied
in the proposed method. The purpose of this step is to
execute the preprocessing data to enhance the contrast of
images. Some data preprocessing techniques are used,
such as: converting all color images into gray images
to minimize the algorithm’s complexity, determining the
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FIGURE 1. The implementation process.

amplitude and phase term of the input image (HoD), and
normalizing the data to the form [0,1].

Step 1.1 Convert color images into gray images

All color pixels are displayed as a tint of gray pixels to
enhance the contrast of images. This process results in a
linear mapping of the color pixel values to the complete
range of grays (black to white), creating an image of
higher contrast.

Step 1.2 Determine the phase part (HOD)

The phase part is specified by the different points
between the firstimage in the forecast set (the picture has
just been obtained) and the last image in the previously
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trained. The phase value is obtained using the following
formula (1).

HoD; = (I; — I;-1)) (D

Step 1.3 Transform the amplitude and phase part of the
grayscale image into the form [0,1]

The obtained results received the set of images that have
the form: X(I.HoD).

« Step 2. Fuzzification

The fuzzification aims to map the image’s grey-level
intensities from the spatial domain to the fuzzy envi-
ronment. The two most significant factors of the
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membership function are its format and the parameters
that express these functions’ behavior. The Gaussian
complex fuzzy membership function (GCFMF) [36] is
used to fuzzify the image. This process’s output deter-
mines the input data’s corresponding complex fuzzy
values.

The Gaussian complex fuzzy membership function for
the amplitude and phase parts of the image can be cal-
culated as follows:

M gaussian (x;m,0) = e_i(T) )

where: o and m represent the width and center of a
complex fuzzy set.

Step 3. Determine the rule space

After obtaining the parameters from step 2, the process
of determining the rule space is executed. The following
definition specifies the rule space for satellite images.
Definition 3: The rule space [35] is the space that is
calculated by the formula (3) as follows:

Q= 1{0, 5 2 Xmin <X < Xmax, Ymin <Y = Ymax

Zmin < 2 = Zmax) 3)

In which:

- Xmin: The minimum fuzzy value for amplitude part
Min (Mgaussian (li; my, Ui))

- Xmay: The maximum fuzzy value for amplitude part
Max (/'Lgaussian i; m;, O'i))

- Ymin: The minimum fuzzy value for phase part
Min (Mgaussian (HoDj; mj, Ui))

- Ymax: The maximum fuzzy value for phase part
Max (/‘Lgtlussian (HoDj; m;, Ui))

-Zmin = 0: The minimum interpolation value

-Zmax = 1: The maximum interpolation value

Finally, the rule space is present in the following Fig-
ure 2:

Step 4. Rule generation

Aim to reduce the time-consuming of the model; we
will group the data with neighbor pixels due to the
histogram [37], then determine the rule parameters via
the Ternary search [38] and Co-Spatial CFIS+ [27].
The output of this process will produce a new rule base
corresponding to the input image.

Specifically, the process of generating rules directly
from the image is described as follows.

Step 4.1 Define regions (groups of pixels)

In the case of RSI with a vast number of pixels, pro-
cessing each pixel will consume a lot of computational
time and system resources. Therefore, reducing the data
dimension to minimize computation time and system
resources is necessary. This study suggests using a his-
togram [37] to group pixels, then divide pixels into
specific regions.

Step 4.2 Determine the boundary parameters of a rule
(a,b,c,d,b,c)
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FIGURE 2. Solution space.

Because of using complex fuzzy rulebase of Co-Spatial
CFIS+ [27], this step needs to determine the rule param-
eters such as (a, b, c,d’, b, ¢):

Step 4.2.1. Determine value (b, V')

The values b and b’ have been established via the
Ternary search algorithm [38] as follows:

Step 4.2.2. Determine the value (a, d , c, c)

The values (a, d/, ¢, ¢') are the boundary parameters and
calculate by the following formulas (4-7) [27]:

(k)
2 Uij x X}
i=1.2, ... |NPj| and X{© <b;
a; = : 4
J Z Ui,j ( )

i=1.2, .. |NP;| and X[© < b

> Uij x HoD}")
i=1,2, .., |NP;| and HoD'® <b;
/ v -
d;= &)
Uij
i=1,2, ... |NP;| and HoD{} < b
k
5 Ui x X%
i=12, ..|NPj| and X} >b;
¢ = (0)
Uij

i=1.2, ..|NP;| and X[ > by

k
Uij x HOD}")
i=1,2, ...,|NP;| and HoD'® > b;;
/ v ’
Uij
i=1,2, ... |NP;| and HoD}’ > by

where:
|N P; | Number of pixel groups of the group j
-U; k] : The membership value of the i pixel in group j
®): The amplitude term of the i pixel in the group j
at t1me k
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Algorithm The Ternary Search Algorithm

Input — An sorted array X, range [start, end], and key to find
Output — The position corresponding to the key (If there
exists a satisfactory solution)

NI R LD =

A

10.
11.
12.
13.

Begin
if start <= end then
midLeft:= (2 xstart + end)/3
midRight:= (start + 2xend)/3
if X[midLeft] == key then
return midLeft
if X[midRight] == key then
return midRight
If key < X[midLeft] then
call ternarySearch (X, start, midLeft - 1, key)
If key > X[midRight] then
call ternarySearch (X, midSecond + 1, end, key)
else

call ternarySearch (array, midFirst 4. 1, midSecond

— 1, key)

14.
15.
End

else
return invalid location

- Hng;.): The phase term of i pixel in the group j at
time k
Step 5: Rule review
Definition 4: Let D be the solution coverage region, V
be the domain of the rule space, and D is bounded by:
1) Axis value ox € [a, b];a,b € RT
2) The Oy axis is limited by two continuous functions
g1(x) and ga(x)
3) The Oz axis is limited by two continuous functions
Si(x, ), fax, y).
The domain of the rule space V of D is determined by
the formula (8) and shown in Figure 3:

o
D
b rgax) rhxy)
& / / / dzdydx
a Jgix) Jfix,y)
b rgx) f2(x,y)
= / / ( / dz)dydx. ®)
a Jgi(x) f1(x,y)
Steps 5.1: Determine the intersection between two rule

sapce domains p, g The rule space domain of two rules
P, q is specified by the formula (9 - 10) as follows:

AW AN AR

Vp = / / / dz \dydx 9)
ar Jghx) \JA ()
b gl [ pfy ()

Vy = / / / dz |dydx (10
at Jgdx) V&)

We determine the measure of two complex fuzzy rules
in the triangular space as the intersection space part
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FIGURE 3. Illustrate the rule space domain V.

FIGURE 4. The intersection space part between the two rules p, q.

between the two rules p, g due to formula (11) and
shown in Figure (4) below:

Vog =V, NV, (11)

To determine the value V), of the intersection domain
between two rules, the solution space €2 divided into
square blocks according to formula (12) as follows:

Qi = [xi—1, xi] x [yj—1, yj] * [zk-1, 2] (12)

where

- Xi € [Xmin> Xmax], |[xi—xi—1l=6, Vi=1,2,...
-3j € Dmins ymaxls [y —yj—1| =6, Vi=1,2,...

- Zi € [Zmins Zmax]» |zi —zic1l =0, Vi=1,2,...

- 6: denote the size of each square block, and it satisfies
the conditions in (13).

Vactual e
Vo - (13)

Vactual = Sbase area X h

1—

with

- Vaetuar: the actual volume of rule space

- Vp: is the actual volume of the rule space when calcu-
lated by summing the volumes of the squares

- ¢: acceptable threshold value of error (< 5%)
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- Shasearea: the bottom area of the rule space R

- h: the height of the rule space R

Steps 5.1.1: Determine the relative position of the
square block with the rule space

Since the size of each square block £ is very
small, we consider the center point of each square
Gijk (xj, yj, z) to represent the block. Thus, the problem
is finding the center point’s relative position G with
the rule space V. This step contains the following steps
Steps 5.1.1.1: Consider the first side of the rule space V

Suppose points’ coordinates A (x4, Y4, z4), B (xB, ¥B, ZB),

C (xc, yc, zc) are on the first side of the rule space. The
equation of the first side is determined by equation (14)

Nox +Npy +Nez+d =0 (14)

The coefficients (N,, Np, N,) satisfy the following set of
equations (15):

Ng xxp+Np xya+Nexza+d=0
Ny xxp+Np xyp+Nexzp+d =0 (15)
Ny Xxc+NpXxyc+NexXzc+d=0

Based on the equation of the first side, the normal vector
of the plane has the form: N = (Ng, Np, N¢)

Steps 5.1.1.2: Determine whether the point is inside or
outside the plane by calculating the dot product of the
normal vector with the coordinates of the considered
point by the following formula (16):

K’-Gijk:Naxxi—i—Nbxyj—f—chzk (16)

Repeat step 5.1.1.1 and step 5.1.1.2 with all the remain-
ing sides of the solution space domain V and determine
the point’s relative position Gyjx with the rule space V' as
formula (17). After that, we can specify the square block
v in the rule space V.

{If N -Gy <0, Gy ¢ V

. (17
elsewise, Gy €V

Steps 5.1.2: Determine the intersection of two rule
spaces

The intersection of two rule spaces (denote V) is the
set of square blocks €2 in the rule spaces p and q.
Therefore, V), is determined by the following formula:

Vog =D Vay, (18)
Vau = xi—1, xil X [yie1. ¥i| % lzk—1, 2! (19)

where:

- V)q: the volume of the intersection of two rule spaces
- VQW(: the volume of square block €2

Steps 5.2. Optimizing rule

At this step, we process to optimize the rule, including
combining rules, removing rules, or adding rules to
obtain a better rule system as follows:

Assuming ¢, is the ratio between the volume of the
intersection region and the volume of rule space, ¢g is
the ratio factor between the rule’s parameters.
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FIGURE 5. New rule space after merging two rules p, q.

-If ”">8Vand ”">8vand ”+C”+ +C”<8R
then combmlng the rules:

4 _ap+tag. b _bp—i—bq. _cpteg

new — 2 new — 2 ’ new — 2
- dp+ a/q, [ by + b/q, [ cp+cy

new — 2 ’ new — 2 ’ new — 2

The new rule space after merging two rules as (5) fol-
lows:

V a
-1If 4 > &, and ”q < &yand 2
q P

cp dp
—i—c— < gpor o +
P P

C
ﬁ < &g Then remove the rule q.

\% \% a ¢ a
SIf 22 < g, and 22 > g,and £ + 2 < ggror £ +
Vq Vp ap Cp ap

/

C

-+ < eg Then remove the rule p.
P

-If p" < &, and ‘1 < &, Then use both rules p and g.
After evaluatlng all pairs of rules, we obtain the rule base
generated from the new image R'.

o Step 6: Synthesize the old rulebase R and new rule-

base R’

In this step, we will compare each rule of the new
rulebase with the rules of the old rulebase using the
intersection of the rulebase in step 5.

C. AN EXAMPLE OF THE PROPOSED METHOD
Let us take a working example to comprehend the intuition
behind this model.

« Step 1. Preprocessing input data

Input data includes:

- Iy: The last image (the most recent image) in the
training set

- I: The first image in the new album

Step 1.1: Convert image from color image to gray
image

Use the method of converting from a color remote sens-
ing image to gray according to the formula (20) below:

Y =0.2126R 4+ 0.7152G + 0.0722B (20)

VOLUME 11, 2023



L. T. Giang et al.: Adaptive Spatial Complex Fuzzy Inference Systems With Complex Fuzzy Measures

IEEE Access

TABLE 1. The most recent image in the training set (/o). TABLE 5. Image /; representation in range [0,1].
4 95 235 [ 205 | 128 | 166 74 15 59 0.765] 0.702] 0.016] 0.922] 0.906[ 0.659] 0.082] 0.663| 0.961
109 | 209 | 234 84 114 | 151 | 214 | 168 | 247 0.776| 038 | 0.455| 0.153| 0.933] 0.161| 04 | 0.412[ 0.718
145 64 113 90 175 29 68 202 | 124 0.231] 0.376] 0.816] 0.137| 0.667| 0.996| 0.616] 0.49 | 0.22
79 202 | 130 | 220 | 133 | 148 | 190 | 159 | 222 0.722] 0.031] 0.408] 0.2 | 0.043] 0.906| 0.737] 0.235| 0.886
88 52 57 221 | 224 | 100 92 164 55 0.918] 0.475] 0.702] 0.941| 0.302] 0.302| 0.502] 0.255| 0.886
170 | 230 | 118 | 215 | 242 16 175 | 215 | 128 0.929] 0.82 | 0.878] 0.298] 0.729| 0.212| 0.286| 0.843| 0.824
231 | 123 | 123 | 143 25 153 4 96 1 0.553] 0.667| 0.631| 0.8 | 0.792| 0302 0.773| 0.569| 0.914
68 90 103 | 172 69 195 | 144 38 70 0.192] 0.102] 0.871| 0.188| 0.051| 0.663| 0.769] 0.973| 0.616
0 29 88 46 244 | 218 | 134 | 242 24 0.561| 0.682] 0.071] 0.157| 0.345] 0.729| 0.6 | 0.718| 0.427
TABLE 2. The first image in the new training set (/). TABLE 6. Image HoD, representation in range [0,1].
195 | 179 4 235 | 231 | 168 21 169 [ 245 0.7497 0.329[ 0.906] 0.118] 0.404[ 0.008] 0.208] 0.604[ 0.73
198 97 116 39 238 41 102 | 105 | 183 0.349] 0.44 | 0.463] 0.176| 0.486| 0.431| 0.439] 0.247| 0.251
59 96 208 35 170 | 254 | 157 | 125 56 0.338] 0.125| 0.373| 0.216] 0.019| 0.882[ 0.349| 0.302| 0.266
184 8 104 51 11 231 | 188 60 226 0412 0761 0.102] 0.663| 0.479] 0.326| 0.008| 0.389| 0.015
234 | 121 179 | 240 77 77 128 65 226 0.573| 0.271] 0.478] 0.074| 0.576] 0.09 | 0.141| 0.388] 0.67
237 | 209 | 224 76 186 54 73 215 | 210 0.262] 0.082| 0.415| 0.545| 0.22 | 0.149] 0.4 0 0.322
41 | 170 | 161 | 204 | 202 77 197 | 145 | 233 0.353] 0.185| 0.149] 0.239] 0.694| 0.298] 0.757| 0.193| 0.91
49 26 222 43 3 169 | 196 | 248 | 157 0.075| 0.251| 0.467| 0.487| 0.22 | 0.102] 0.204| 0.824| 0.341
143 | 174 18 40 88 186 | 153 | 183 | 109 0.561| 0.568| 0.274| 0.023] 0.612| 0.126] 0.075| 0.231| 0.333
TABLE 3. The imaginary part HoD,. TABLE 7. The result of the fuzzied amplitude term of the image /,.
191 84 231 30 103 2 53 154 | 186 0.763] 0.874] 0.185] 0.444| 0.475] 0.933] 0.273] 0.929] 0.371
39 112 | 118 45 124 | 110 | 112 63 64 0.742] 0.841] 0.947] 0392 0.422] 0.407| 0.874] 0.892| 0.848
86 32 95 55 5 225 89 71 68 0.546| 0.835] 0.661| 0.363| 0.924] 0.311| 0.975] 0.978| 0.524
105 | 194 26 169 | 122 83 2 99 4 0.841] 0.203| 0.886| 0.483] 0.218| 0.475| 0.815| 0.555| 0.515
146 69 122 19 147 23 36 99 171 0.451] 0.966| 0.874| 0.407| 0.693| 0.693| 0.986| 0.596| 0.515
67 21 106 | 139 56 38 102 0 82 043 | 0.652] 0.532] 0.685| 0.829] 0.507| 0.661| 0.604| 0.644
90 47 38 61 177 76 193 49 232 1 0.924] 0.963| 0.693] 0.71 | 0.693| 0.748| 0.998] 0.459
19 64 119 | 124 56 26 52 210 87 0.467| 0304 0.546] 0.459| 0.229] 0.929| 0.755| 0.349| 0.975
143 | 145 70 6 156 32 19 59 85 0.999| 0.904] 0.257| 0.4 | 0.778] 0.829| 0.986| 0.848| 0.913
TABLE 4. Image I, representation in range [0,1]. TABLE 8. The result of the fuzzied imaginary term of the image HoD;.
0.016] 0.373| 0.922] 0.804] 0.502| 0.651] 0.29 | 0.059| 0.231 0.233] 0.995[ 0.058] 0.599] 0.976] 0.331[ 0.823] 0.557] 0.267
0.427| 0.82 | 0918] 0.329| 0.447| 0.592| 0.839| 0.659| 0.969 1 0.932] 0.894| 0.747] 0.848| 0.945] 0.934| 0.901| 0.908
0.569| 0.251| 0.443| 0.353| 0.686| 0.114| 0.267| 0.792| 0.486 0.9981 0.617] 0996] 0.84 | 0.355| 0.074 1 0.976| 0.932
0.31 ] 0.792| 0.51 | 0.863| 0.522| 0.58 | 0.745] 0.624| 0.871 0.968] 0.213| 0.557| 041 | 0.863| 0.993| 0.331| 0.988] 0.346
0.345] 0.204| 0.224] 0.867| 0.878| 0.392| 0.361| 0.643| 0.216 0.638] 0.939| 0.865| 0.485| 0.63 | 0.526] 0.659| 0.989| 0.393
0.667| 0.902] 0.463| 0.843| 0.949| 0.063| 0.686| 0.843| 0.502 0.926] 0.505| 0.965] 0.71 | 0.848| 0.679] 0.98 | 0.314| 0.991
0.906] 0.482| 0.482] 0.561| 0.098| 0.6 | 0.016] 0.376] 0.004 I 0.769] 0.679| 0.886| 0.34 | 0.972| 0.22 | 0.788] 0.056
0.267| 0.353] 0.404| 0.675| 0.271| 0.765| 0.565| 0.149| 0.275 0.488] 0.908| 0.886| 0.846| 0.848| 0.557| 0.814| 0.127| 0.999
0 0.114] 0.345] 0.18 | 0.957] 0.855] 0.525| 0.949] 0.094 0.669| 0.651] 0.944] 0.364| 0.536] 0.62 | 0.488] 0.871| 0.996
where:

The amplitude term /.

- Y: gray matrix to find
- R: the red-gray matrix of the image
- G: the green-gray matrix of the image
- B: the blue-gray matrix of the image

o Stepl.2: Determine the phase part (HoD)
After applying formula (1) the phase part of the images
I and I has the following results.

o Step 1.3: Transform the amplitude and phase part of
the image to [0,1]
Gray image has the largest value of 255, so to convert to
[0,1], by dividing each pixel value by 255, we get the (4,
5, 6) the following result:
From there, the input data to process the following steps
has the following form: X (11, HoD1)

« Step 2: Fuzzification Process

VOLUME 11, 2023

- The fuzzy value corresponding to the amplitude and
phase term of image I is calculated using the Gaussian
membership function (2) as follows:

()

M gaussian (i;my,0o1) =e o

With the amplitude term of image [/, the standard
deviation of pixel intensities o = 0.291 and
m; = 0.551 the obtained fuzzied value is shown
in Table 7

The calculation is the same as for the amplitude part of
the image, the Gaussian function (2) is used to calcu-
late the phase part (HoDp) with the standard deviation
ogop = 0.232 and my,p = 0.353 . The results are
represented in Table 8
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FIGURE 6. The solution space of image '~| - ) 25 50 75 100 125 150 175 200 225

FIGURE 7. Histogram of the input image.
o Step 3: Determine the solution space

After the fuzzification process, solution space €2 is deter-
mined by applying formula (3) specifically as follows:

Min (igaussian (i mi, 07)) = 0.185;
Max (Mgauxsian (l;; my, Ui)) =1

Min (tgaussian (HoDj; mj, 07)) = 0.056;
Max (pgaussian (HoDy; mj, o)) = 1

Then, the coordinates of the points A,B,C,D,E
A’, B, C', E respectively are determined as follows:

A : (Min (wgaussian (is mi, 07)) , 0, 0)
B : (Max (,ugaussian (I m;, Ui)) .0, 0)
C (0, Min (stgaus sian (HODi; mi, 7)) , 0)
D : (0, Max (igaussian (HoDi; mi, ,)) , 0)
E : (Max (Mgaussian i my, Ui)) ’

Max (gaussian (HOD;: mi, 7)) . 0)
A": (Min (igaussian (i mis 07)) , 0,1)
B : (Max (,ugaussian i my, Gi)) 0, 1)
C"+ (0, Min (ttgaussian (HoDy; mi, 07)) , 1)
D' : (0, Max (igaussian (HoDy; mi, 07)) , 1)
E: (Mllx (Mgaussian (i my, Ui)) ’

Max (ftgaussian (HoDi; mi, 07)) , 1)

The solution space is bounded by the set of points
A, B, C, D, E, A, B, C’', E as shown in Figure 6.
Step 4: Establish the rule base

Step 4.1. Determine the regions (the group of pixels in
the image)

With input image /1, assuming we choose the number of
regions to 10, we have the histogram in 10 data areas,
as shown in Figure 7.

From the histogram results, label the pixels correspond-
ing to the groups described in Table 8.

Steps 4.2. Determine the boundary point of a rule
(a,b,c,d, b, )

With the results obtained in step 4.1, the corresponding
values in each region are as follows::
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FIGURE 8. Results of labeling groups according to Histogram.

- Region 1: {(0.185,0.058), (0.273, 0.823), (0.203,
0.213), (0.311, 0.074), (0.218, 0.863), (0.229, 0.848),
(0.257, 0.944)}

- Region 2: {(0.392, 0.747), (0.407, 0.945), (0.363,
0.84), (0.467, 0.488), (0.304, 0.908), (0.459, 0.846),
(0.4, 0.364)}

- Region 3: {(0.546, 0.998), (0.524, 0.932), (0.483,
0.41), (0.555, 0.988), (0.596, 0.989), (0.507, 0.679),
(0.661, 0.98)}

- Region 4: {(0.841, 0.932), (0.835, 0.617), (0.693,
0.63), (0.693, 0.526), (0.685, 0.71), (0.693, 0.972),
(0.778, 0.536)}

- Region 5: {(0.947, 0.895), (0.874, 0.934), (0.892,
0.901), (0.978, 0.976), (0.886, 0.957), (0.966, 0.939),
(0.913, 0.996)}

- Region 6: {(0.986, 0.659), (1, 1), (0.998, 0.788),
(0.999, 0.669)}

- Region 7: {(0.933, 0.331), (0.929, 0.557), (0.924,
0.355), (0.975, 1), (0.924, 0.769), (0.963, 0.679), (0.929,
0.557), (0.904, 0.651), (0.986, 0.488)}

- Region 8: {(0.763, 0.233), (0.874, 0.995), (0.742, 1),
(0.848, 0.908), (0.841, 0.968), (0.815, 0.331), (0.874,
0.865), (0.829, 0.848), (0.748, 0.22), (0.755, 0.814),
(0.829, 0.62), (0.848, 0.871)}
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- Region 9: {(0.661, 0.996), (0.652, 0.505), (0.532,
0.965), (0.604, 0.314), (0.644, 0.991), (0.693, 0.886),
(0.71, 0.34), (0.546, 0.886) }

- Region 10: {(0.444, 0.599), (0.475, 0.976), (0.371,
0.267), (0.422, 0.848), (0.475, 0.993), (0.515, 0.346),
(0.451, 0.638), (0.407, 0.485), (0.515, 0.393), (0.43,
0.926), (0.459, 0.056), (0.349, 0.127)}

Steps 4.2.1. Determine the rule parameters (b, b')
Applying the Ternary search algorithm [29]:

- Region 1: (b, b') = (0.185, 0.185)

-Region 2: (b, ') = (0.392,0.407)

- Region 3: (b, b') = (0.546,0.524)

- Region 4: (b, b’) = (0.685,075)

- Region 5: (b, b/) = (0.978,1)

- Region 6: (b, b’) = (1,

-Region 7:(b, b') = (0.986,01901)

- Region 8: (b, b') = (0.763,0.874)

-Region 9:(b, b') = (0.532,0.62)

- Region 10:(b, b’) = (0.444,0.475)

Steps 4.2.2. Determine the rule parameters a, a’ and c, ¢’
The rule parameter a, @’ and ¢, ¢’ are obtained using the
formula (4-7) as follows:

S Ui1 x X%
i=1,2, .., INPy| and X <b;
ay = = 0.423
Ui
i=1,2, ., INP| and X} <by
!
> Ui x HODZ(- 1)
. i=1.2, ..INPy| and HoD\’ <b;
a)] =
Ui
i=1,2, ...,INPy| and HoDX <b;,
=0.354
(k)
Z Ui x Xi,l
i=1,2, ..., INPi| and X" >by
c] = = 0.784
Ui
i=1,2, ., INP{| and X = by
k
> Uiy x HOD)
, =12, .INP| and HoD\, > b
cl1 =
2 Uix

i=1,2, ..., INPy| and HoD'\ = by,
=0.778

Thus, the rule corresponding to region 1 is created by the
parameters (a1, @}, c1, ¢;) =(0.423,0.712,0.784, 0.354,
0.739, 0.788) as shown in Figure 9

Repeat the same with region 2; we get (a2, a5, c2, ¢)) =
(0.132, 0.423, 0.817, 0.265, 0.673, 0.882) and describe
in Figure 10.

We continue the above steps until all areas or groups of
pixels are exhausted.

Step 5: Rule review

Step 5.1: Determine the intersection of the solution
region created by two rules p, q
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FIGURE 10. Solution space 1 corresponds to region 2.

From the two rules obtained corresponding to regions
1 and 2 in the previous step, the volume of the intersec-
tion space of the two rule regions is based on steps 5.1.1,
5.1.2. We get the following results:

Region 1:

- Actual volume: Vieruai(1)=0.0242;

- Square block size: 6 = 0.01;

- The volume of the square block: V(1) = 0.0239;

- Threshold value: ¢ = 0.05

_|; 0.0242
- 0.0239

Vactual (D)

-

' =0013 <e¢
Vo)

Region 2:

- Actual volume: Vicrual(2)=0.01165

- Square block size: 6 = 0.01;

- The volume of the square block: Vg2) = 0.0112;
- Threshold value: ¢ = 0.05

_|; 0.0116
- 0.0112

Vactual 2)
Vo)

-

' =0.036 < ¢

Finally, the intersection of the solution region is speci-
fied: V(1y2) = Vo) N Vo) = 0.00176
Steps 5.2. Optimizing rule
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For the given input image example, suppose ¢, = 0.8,
er = 0.5, We have:

V(l)(2) _ 0.00176

= =0.074 < ¢,

Vi 0.0242
V(l)(2) _ 0.00176 —0157 <&
Vo) 0.0116 ~ Y

Hence using both rules 1 and 2.

« Step 6: Synthesize the old and new system of rules
From step 5, we get the rule system after being evaluated
and reduced. Then, the proceeds combine these rules
with those obtained from the Co-Spatial CFIS+ system
to infer the following image result.

V. REAL EXAMPLE RESULTS

To demonstrate the effectiveness and merit in improving
the efficiency of the rule base of Co-Spatial CFIS+, this
section shows experiments for implementation comparisons
in change prediction in RSI. The proposed Adaptive Spa-
tial CFIS method is compared with other state-of-art meth-
ods, including SeriesNet [40], Deep Slow Feature Analysis
(DSFA) [41], PFC-PFR [42], and Co-Spatial CFIS+ [27].
The evaluation criteria are used to estimate RMSE, R2, com-
putational time, and the number of rules.

A. EXPERIMENTAL DATA
Collection of time series satellite images collected from the
US Navy’s weather image database [39] at specific locations
and periods. The dataset used in the study consisted of more
than 12,000 images of 500 x 500 size with a 30-minute
interval between two consecutive images at three different
locations, the Gulf of Mexico (Data 3), the Pacific Coast
(Data 2), the US pacific, and regions of Hawaii (Data 1).
Our proposed model split the dataset to adopt a 7:3 ratio,
allocating 70% of the data for training and the remaining 30%
for testing. After determining the appropriate parameters of
the proposed methods, the model presents the results of the
first five prediction images to show the effectiveness of the
proposed method in predicting time series satellite images.

B. EXPERIMENTAL TOOLS
We have experimented the proposed method and related
methods on a virtualized server system with three physical

server nodes; each physical server node has CPU: 2.0 GHz,
RAM: 384 Gb, and Hard Drive: 1 T.B.

C. RESULTS AND DISCUSSION

Figure 11 describes in detail the RMSE value corresponding
to the prediction process for each image. At the same time,
Figure 12 visually compares the average RMSE value for
each image on three datasets. As shown in the above fig-
ures, it can observe that the Adaptive spatial CFIS++ has
a significant improvement over the baseline for predicting
five images. The RMSE evaluation index clearly shows the
Adaptive spatial CFIS++ has a substantial improvement
in accuracy, and the cumulative error decreases gradually
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along the forecasted image series. Actually, on the first three
images, the prediction results of the proposed method and the
Co-Spatial CFIS+ are almost no different and are equivalent.
The RMSE index obtained when predicting the first image on
dataset 1 is nearly 3% lower than that of Co-Spatial CFIS+
at most, while the RMSE result of the proposed method in
image 3 seems to be higher than about 1%. With data set 2,
the proposed method’s first 2 image prediction results give
the best results, but the third image is slightly worse than Co-
Spatial CFIS+.

Compared with the remaining three methods, the RMSE
values of the proposed method are much better on data 1 and
data 2. Primarily, the results are obtained with the first image
of the image dataset 1 reduced to about 42%, 43%, and
47% compared with the values obtained by three methods
Seriesnet, DSFA, and PFC-PFR. Even though the forecast
results of the second image on data 1 and 2 of the 3 methods
have improved and slightly increased, but still worse than the
forecast results applying the proposed method. For the second
and third images on the 3rd dataset, the DSFA is the most
effective model, with the obtained RMSE index of 6,705 and
7,129, respectively. This result is 7 to 8% higher than the pro-
posed method. However, as mentioned above, the advantage
of the proposed model is evident in the reduction of forecast
errors accumulated over time for the forecasting process. For
that reason, the prediction results of the proposed approach
give the best results for the fourth and fifth images on all
three data sets. The RMSE values obtained when predicting
the fourth and fifth images on 3 data sets are (6,954; 6,396;
7,860) and (7,676; 6,770; 8,231), respectively. This result is
much reduced compared with the Co-Spatial4+ method or the
method using DSFA deep learning.

Apart from using RMSE to evaluate the performance of
the five methods, the values of R2 are presented in Figures
13 and 14. The R? index is assessed to check the strength of
the relationship between the proposed model and the datasets.
Figures 13 and 14 describe the R? index corresponding to
predicting five images in detail. As shown in Figure 13, the
obtained R? of Adaptive CFIS++ would always be more
remarkable, such as above 0.9. These values suggest no
dissimilarities between the five images and show a high
correlation. For the purpose of demonstrating the stability
of the regression model, experimental results on three data
sets evaluated on the R? index are introduced to demonstrate
the strength of the proposed model. Although the number
of parameters of the model is very large, the stability of the
model is still guaranteed because the R? value has very high
reliability and is quite similar compared to the remaining
models.

Figure 16 shows the comparative results in terms of com-
putational time of the proposed method and SeriesNet, DSFA,
PFC-PFR, and Co-Spatial CFIS+ methods on all 3 datasets.
As shown in Figure 16, we have the total processing time
of the proposed method less than the Co-Spatial CFIS+
method (34%), SeriesNet (37%), DSFA (37%), and signifi-
cantly less than the PFC-PFR method (55%). The following
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Data SeriesNet DSFA PFC-PFR Co-SPATIAL CFIS+ Proposed method
FI(1) | FI(2) | FI(3) | FI(4) | FI(5) | FI(1) | FI(2) | FI(3) | BL(4) | FI(3) | FI(1) | E1(2) | EI(3) | FI(4) | FI(3) | FI{1) | EL(2) | FI(3) | FI(4) | FL(3) | BI{1) | FI(2) | FI(3) | FI(4) | FI(3)
Datal | 7359 | 7167 | 7220 | 6977 | 10045 | 7190 | 7183 | 7485 | 9521 | 10985 | 6709 | 8306 | 11050 | 14562 | 18791 | 3045 | 6219 | 6846 | 7891 | 9239 | 3126 | 6339 | 6796 | 6954 | 7676
Datal | 6877 | 7.032 | 7.168 | 6470 | 10007 | 5668 | 6357 | 6763 | 8274 | 9655 | 6932 | 8395 | 11323 | 15010 | 18.690 | 5497 | 5785 | 6.104 | 6.759 | 7.645 | 5483 | 5738 | 6.240 | 6396 | 6770
Datad | 7.143 | 7406 | 7.697 | 6917 | 10882 | 6.639 | 6.705 | 7.129 | §.625 | 10.664 | 6.933 | 8357 | 11477 | 14.626 | 18200 | 6430 | 7.059 | 7.620 | §.698 | 9.695 | 6458 | 7.196 | 7.701 | 7.860 | 8231
Note:

FI: Forecast image (1-3)

FIGURE 11. The average values of RMSE on three datasets.
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FIGURE 12. The average values of RMSE on three datasets.
SeriesNet DSFA PFC-PFR CO-SPATIAL CFIS + Proposed method
Data | FI FI FI | H FI FI FI FI FI | FI | H FI FI FI FI FI FI I FI FI FI I | H
[T T € 1 O € O € O O O € G N T 0 O = . O O T A 9 B B )]
Datal | 0.948 | 093¢ [ 0923 | 0922 | 0915 [ 0932 | 0924 | 0.919 [ 0.918 | 0913 | 0.934 | 0915 | 0.892 | 0.890 | 0.897 | 0.980 [ 0.975 | 0966 | 0.963 | 0.960 | 0.964 [ 0.961 | 0.966 | 0.967 | 0.966
Data2 | 0.969 | 0969 | 0.931 | 0.933 | 0.931 [ 0.950 | 0.941 | 0.942 [ 0.937 | 0935 | 0.958 | 0940 | 0.926 | 0.935 [ 0.948 | 0.987 [ 0.983 | 0980 [ 0.982 | 0.981 | 0.966 [ 0.961 | 0.961 [ 0.959 | 0.963
Data3 | 0.983 | 0983 | 0.979 | 0.978 | 0.965 | 0.963 | 0.960 | 0.957 [ 0.940 | 0936 | 0.972 | 0964 | 0.958 | 0.959 | 0.963 | 0.984 [ 0.983 | 0981 [ 0.978 | 0.976 | 0.960 [ 0.959 | 0.964 [ 0.967 | 0.966
Note:

FI: Forzcast image (1-3)

FIGURE 13. Table the average values of R2 on each dataset among five compared methods.

two reasons easily explain this result: the proposed method
allows generating rules directly from new images without
using traditional FCM; Furthermore, the improved method
is suggested with the new rulebase to establish an adaptive
rulebase through comparisons between two rulebases. Com-
paring the two rulebases has significantly reduced the number
of necessary rules generated in the forecasting process. And
especially the new rule system has a better fit with the latest
forecast image, leading to a reduction in the cumulative error
when forecasting time series images.

From the results mentioned above, the proposed method
has obtained almost equivalent accuracy results on different
data sets and forecast images compared to related works,
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TABLE 9. Results of computational time comparison on three datasets.

Data SeriesNet | DSFA | PFC-PFR | Co- Proposed
SPATIAL| method
CFIS+

Data 1 1.582 1.487 1.900 1.510 0.986

Data 2 1.501 1.519 2.223 1.364 0.967

Data 3 1.423 1.508 2.243 1.423 0.887

including Co-Spatial CFIS+, DSFA, SeriesNet, and PFC-
PFR. It is better than Co-Spatial CFIS+ slightly compared
to other methods.

For R? results, the proposed method has worse conse-
quences than Co-spatial or SeriesNet at some forecasting
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The average values of R? on each dataset among five compared methods
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FIGURE 14. The average values of R2 on each dataset among five compared methods.
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FIGURE 15. R? values of the methods for the Data 1.

time. Still, the proposed method’s results have stability
between forecast images and data sets. The separation of
the rule generation process after forecasting a new photo
significantly affects this predicting process. Instead of being
updated via Co-spatial CFIS+, the rulebase is updated
directly through each new image. This latest prediction
has dramatically reduced the reliability of the model. But
the The model’s final result is stable between the forecast
images and the data sets. This will help the model, when
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TABLE 10. Number of rules of PFC-PFR, Co-Spatial CFIS+, and Proposed
methods on three datasets.

Data PFC-PFR | Co-SPATIAL CFIS+ | Proposed method
Data 1 120 48 66
Data 2 115 48 64
Data 3 124 48 68

extended to other datasets will, still retain the necessary

reliability.
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FIGURE 16. Computational time of methods on three datasets.

TABLE 11. Detail rules of Proposed methods on three datasets.

Data The The rules | The rules | Total
previous rule | generate directly | generate directly | of
generated by | from the newly | from the newly | Rules
Co-Spatial obtained images | obtained images
CFIS+ before pruning after pruning

Data 1 | 48 30 18 66

Data2 | 48 30 16 64

Data3 | 48 30 20 68

Number of rules of methods on three datasets

.
=
=

v
=
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é’ 250
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g o0
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mData ] mDatal sData3

FIGURE 17. Number of rules of methods on three datasets.

Figure 17 shows the comparison results with 2 PFC-
PFR and Co-SpatialFIS methods on the number of rules
on 3 datasets. It is clear that the number of rules of the
proposed model is less than on the PFC-PFR on 3 datasets.
The number of rules compared to PFC-PFR for each
dataset is reduced by 54, 51, and 56, respectively. How-
ever, the number of rules has increased compared with
Co-spatial by more than 30%. But the goal of the pro-
posed model is to decrease the accumulation of errors
and the computation time. However, the accuracy of the
prediction model is still maintained within the acceptable
threshold.

The proposed method shows superior efficiency compared
to related methods in terms of computational time. Previ-
ously, for Co-spatial CFIS+, the factor that most affected
the time-consuming of the model was the FCM clustering
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TABLE 12. ANOVA analysis for values of RMSE.

Source  of SS df MS F P-Value | F crit
Variation
Datasets 1.48 2 0.74 3.22 0.09434 4.46
Models 54.92 4 13.73 | 59.51 | 0.00001 3.84
Error 2.40 8 0.30
Total 11.38 14

TABLE 13. ANOVA analysis for values of R2.
Source  of SS df MS F P-Value | F crit
Variation
Datasets 0.002 2 0.0011 6.439 0.0216 4.459
Models 0.004 | 4 | 0.0009 | 5.343 0.0215 3.838
Error 0.001 8 0.0002
Total 0.007 14

process. In addition, after predicting a new image, this clus-
tering process has to execute repeat from the beginning, even
though only 1 new photo is added to the dataset. By changing
the way of producing rules when dealing with a new image,
a method to establish rules directly from images is proposed.
In addition, the measure between two rule spaces is suggested
to evaluate and optimize the rulebase. These ideas led to
reducing the model’s processing process. Although the pro-
cessing time is significantly reduced, it does not change the
model’s accuracy. This result shows the initial effectiveness
of directly proposing a rule generation mechanism from the
image and using the complex fuzzy measure in space to
estimate and determine an adaptive rulebase to include in
predicting the following photos.

D. ANOVA ANALYSIS

Based on the experimental results, the two-way ANOVA with
o = 0.05 was applied to the values of RMSE, R?, and running
time. In this analysis, two null hypotheses in this analysis are:

Hj : There is no difference between the means of three data
sets

Hi: There is no difference between the means of the five
models

RMSE: Using two-way ANOVA without replication, the
results are presented as in Table 12.

From the results in Table 12, the P-value of the Datasets
row is 0.09434, greater than o = 0.05. Thus, it fails to reject
the first null hypothesis. This means that the means of RMSE
on the data sets are the same. On the Models row, P-value
is 0.00001, much lower than the value of «. It means that
the second null hypothesis is rejected. Hence, the means of
RMSE obtained by selected models are different. However,
doing the post-hoc test among the pairs of five of these models
shows that the differences are insignificant.

R?: For R? values, two null hypotheses in this analysis are
the same as RMSE. Two-way ANOVA without replication
is also performed, and the results are given in Table 13.
As shown in Table 13, the values of the P-value in the two first
rows are 0.0216 and 0.0215, respectively. These values are
both lower than the « value (0.05). Thus, two null hypotheses
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TABLE 14. ANOVA analysis for values of time-consuming.

Source  of SS df MS F P-Value | F crit
Variation

Datasets 0.002 2 0.0011 | 6.439 0.0216 4.459
Models 0.004 4 0.0009 | 5.343 0.0215 3.838
Error 0.001 8 0.0002

Total 0.007 | 14

are rejected. This leads to the differences of means of R? on
data sets and the models as well. To compare the means
of R? obtained by CO-SPATIAL CFIS+ and our proposed
method, a post-hoc (Bonferroni) test is done. The results
show the difference of means of R obtained by the proposed
method and that of CO-SPATIAL CFIS+.

Time Consuming: Two-way ANOVA without replication
is applied with the two null hypotheses mentioned above to
analyze the runtime of five models on different data sets. The
results of this analysis are shown in Table 14.

As same as the values of P-value in Table 12, the values
in Table 14 show that the means of time-consuming on
data sets are no different (P-value is 0.94761, greater than
alpha). However, the means of time-consuming on models are
different (P-value is 000002, lower than «). The post-hoc tests
show significant differences between our method and others.
Based on the comparison in Figure 16, the proposed method
takes the lowest run time among the five models.

VI. CONCLUSION

This study presented a novel spatial inference system capable
of adapting to new data. Our proposed model generates a
rulebase directly from the image and trains the parameters in
the rule system based on the Co-Spatial-CFIS+ model. This
new rulebase and the previous Co-Spatial-CFIS+ rulebase
are evaluated using a complex fuzzy measure. This measure
is built by determining the intersection domain between two
rule spaces; Then, it is used to estimate the removal, merging,
or addition of a new rule into the current rulebase, resulting in
a more suitable set of rules for image prediction. To demon-
strate the effectiveness of the proposed approach, the model
was applied to the SCI dataset of the U.S. Navy and compared
to state-of-the-art studies in detecting RSI changes.

Despite the initial positive results, the model has some
limitations. Determining the intersection domain of rules
and summarizing rules is quite simple, directly affecting the
model results. In addition, although the model gives better
results than other methods on the same platform, determining
the solution space is still simple, using only the Gaussian
function. This limitation is also the primary motivation for
the team to research and develop in the future. That is to
give way to determine the regions of the solution space and
synthesize the rules to improve the performance and the time
in the forecasting process.

APPENDIX
Source codes and Dataset of this paper are available at the
following address: https://github.com/vietdslab/Spatial CFIS-
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