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ABSTRACT Discovering Out-of-Domain (OOD) intents is essential for developing new skills in a
task-oriented dialogue system. Previous methods suffer from poor knowledge transferability from in-domain
(IND) intents to OOD intents, and inefficient iterative clustering. In this paper, we propose an efficient
unified contrastive learning framework to discover OOD intents, bridging the gap between IND pre-training
stage and OOD clustering stage. Specifically, we employ a supervised contrastive learning (SCL) objective
to learn discriminative pre-trained intent features for clustering. And we introduce an efficient end-to-end
contrastive clustering method to jointly learn representations and cluster assignments. Besides, we propose an
adaptive contrastive learning (ACL) method to automatically adjust the weights of different negative sample
pairs for a given anchor according to their semantic similarities. Extensive experiments on two benchmark
datasets show that our method is more robust and achieves substantial improvements over the state-of-the-art
methods.

INDEX TERMS Clustering, contrastive learning, knowledge transfer, OOD intent discovery, dialogue

system.

I. INTRODUCTION
Discovering Out-of-Domain (OOD) or unknown intents from
user queries is an essential component in a task-oriented
dialog system [1], [2], [3], [4], [5]. By grouping new unknown
intents into different clusters, we may identify future devel-
opment directions to improve the dialogue system. Different
from normal text clustering tasks, OOD discovery needs to
consider how to leverage the prior knowledge of known in-
domain (IND) intents to enhance clustering unknown OOD
intents, which makes it difficult to directly apply existing
clustering algorithms [6], [7], [8], [9] to the OOD discovery
task.

We classify the existing methods of OOD discovery into
two main categories, unsupervised and semi-supervised OOD

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia

63714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

discovery. Unsupervised methods [10], [11], [12] only model
OOD data but ignore prior knowledge of in-domain data thus
impair final clustering performance. Therefore, recent work
focus on the semi-supervised setting where there exist a few
labeled IND intents [4], [5]. [5] firstly pre-trains a BERT-
based [14] in-domain intent classifier using cross-entropy
classification loss then uses intent representations to cal-
culate the similarity of OOD sample pairs as weak super-
vised signals. The gap between pre-trained IND features and
unseen OOD data makes it hard to generate high-quality pair-
wise pseudo labels. Then, [4] proposes an iterative clustering
method, DeepAligned, to obtain pseudo classification labels.
For each training epoch, they firstly perform k-means [7]
on the extracted pre-trained intent features, and then use
the produced aligned cluster assignments to finetune the
intent classifier. However, DeepAligned learns intent rep-
resentations and cluster assignments in a pipeline manner,
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FIGURE 1. The overall architecture of our proposed framework.

Fig (a) denotes the SCL pre-training to learn better discriminative
features. Fig (b) represents adaptive contrastive clustering to adjust
sample weights given an anchor sample so that a negative sample within
the same cluster gets a smaller penalty than distant negatives from other
clusters.

which is notably inefficient and may cause error propagation.
Generally, these semi-supervised methods don’t match the
IND pre-training objective in the first stage with the OOD
clustering objective in the second stage and suffer from poor
knowledge transferability. Therefore, in this paper, we aim
to align the two-stage learning objectives and improve the
efficiency and accuracy of OOD discovery via a unified
contrastive learning framework.

The main challenges of OOD intent discovery are sum-
marized as follows: (1) Knowledge Transferability. It’s hard
to effectively transfer prior IND knowledge to OOD data.
Because classification objectives in the IND pre-training
stage don’t align with the clustering objectives in the OOD
clustering stage, which makes the knowledge transfer from
IND to OOD has a natural gap. (2) Jointly Learning Represen-
tations and Cluster Assignments. Previous OOD clustering
methods [4], [6] iteratively learn intent features and cluster
assignments. Limited by the inherent inefficiency of cluster-
ing algorithms like k-means, these methods suffer from lazy
two-stage back-propagation signals thus result in poor perfor-
mance. Consequently, it’s vital to jointly learn representations
and cluster assignments.

To solve these challenges, we propose an efficient uni-
fied contrastive learning framework (COD) to discover OOD
intents as shown in Fig 1. For knowledge transferabil-
ity, we employ a supervised contrastive learning (SCL)
pre-training objective [15] to better learn discriminative
pre-trained intent features for clustering. Previous cross-
entropy (CE) loss only focuses on whether a sample is
correctly classified and does not explicitly distinguish the
margins between categories [3], [13]. In contrast, SCL aims
to minimize intra-class variance by pulling together IND
samples belonging to the same class and maximize inter-class
variance by pushing apart samples from different classes.
Moreover, pre-training with SCL aligns with the clustering
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objective we will discuss later, which can bridge the gap
between pre-training and clustering. For jointly learning
representations and cluster assignments, we introduce an effi-
cient end-to-end contrastive clustering method to simultane-
ously model instance-level and cluster-level representation
space. Specifically, we regard the rows of the input feature
matrix of a batch of augmented examples as instance rep-
resentations and the columns as cluster representations [16],
[17]. Then we can construct two levels of contrastive objec-
tives where the instance-level one helps capture low-level lin-
guistic knowledge and the cluster-level one facilitates learn-
ing high-level semantic concepts. Further, we theoretically
find the instance-level contrastive objective indeed has a
negative impact on clustering performance since it pushes
apart representations from different instances even while they
belong to the same cluster with strong semantic similari-
ties. Therefore, we propose an adaptive contrastive learning
(ACL) method to automatically adjust the weights of differ-
ent negative samples for a given anchor according to their
semantic similarities. ACL aims to perform a smaller penalty
on semantically similar negative intent samples but a larger
penalty on distant negatives, which can be regarded as a soft
negative sampling strategy. Combining the pre-training stage
and the clustering stage, we propose a simple but strong uni-
fied contrastive learning framework for the OOD discovery
task, which can effectively solve both knowledge transfer and
clustering efficiency issues.

The novelty of our proposed method comes from three
aspects: (1) We are the first to propose a unified contrastive
learning framework for the OOD discovery task. In contrast,
previous methods [4], [S], [6] use two indenpedent models to
learn IND features and OOD clustering respectively, which
make the gap between pre-trained IND features and unseen
OOD data. Our method employs a unified view to solve
the two problems. (2) We introduce a supervised contrastive
learning pre-trained objective to learn discriminative intent
features compared to the previous cross-entropy loss. (3) We
propose a novel adaptive contrastive learning mechanism to
perform better OOD clustering using soft negative sampling.

Our contributions are four-fold: (1) To the best of our
knowledge, we are the first to propose a unified contrastive
learning framework for OOD discovery, bridging the gap
between pre-training and clustering. (2) We introduce a super-
vised contrastive learning pre-trained objective to learn dis-
criminative intent features by maximizing inter-class variance
and minimizing intra-class variance. (3) We propose a novel
adaptive contrastive learning mechanism to perform soft neg-
ative sampling. (4) Experiments and analysis on two bench-
mark datasets demonstrate the effectiveness of our framework
for OOD discovery.

Il. RELATED WORK

A. INTENT MODELING

There are two main applications of intent modeling in the
task-oriented dialogue system, intent classification and OOD
discovery. The former aims to distinguish intent types jointly
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with other tasks, like slot filling [24], [25], [26]. The latter
is to leverage intent representations to construct clustering
signals [4], [5], [12]. In this paper, we focus on the latter appli-
cation. It’s important to leverage hidden semantic information
to construct supervised signals for intent feature learning.

B. CLUSTERING

Most existing clustering methods are unsupervised, such as
partition-based methods [7], hierarchical methods [27] and
density-based methods [28], feature dimensionality reduc-
tion methods [27]. However, these methods suffer from high
computational complexity and poor performance since they
can’t capture high-level semantics of intent features. Then
deep clustering methods are proposed to leverage the strong
feature modeling capability of deep neural networks (DNNs),
such as JULE [29], DEC [9], DeepCluster [6]. The joint
unsupervised learning (JULE) [29] combines deep feature
learning with hierarchical clustering but needs huge com-
putational and memory costs on large-scale datasets. Deep
Embedded Clustering (DEC) [9] trains the autoencoder with
the reconstruction loss and iteratively refines the cluster cen-
ters by optimizing KL-divergence with an auxiliary target dis-
tribution. Compared with DEC, Deep Clustering Network [6]
further introduces a k-means loss as the penalty term to recon-
struct the clustering loss. However, these methods follow
a two-stage clustering process and only use unsupervised
data.

Recent work perform semi-supervised clustering with the
aid of some labeled data, such as KCL [30], CDAC+ [5],
DeepAligned [4] and DKT [46]. KCL [30] uses deep neural
networks to perform pairwise constraint clustering. It firstly
trains an extra network for binary similarity classification
with a labeled auxiliary dataset. Then, it transfers the prior
knowledge of pairwise similarity to the target dataset and uses
KL-divergence to evaluate the pairwise distance. CDAC+ [5]
is specifically designed for discovering new intents. It uses
limited labeled data as a guide to learn pairwise similari-
ties. However, it is limited in providing specific supervised
signals and fails to estimate the number of novel classes.
DeepAligned is the previous mainstream baseline for OOD
discovery which iteratively learns intent representations then
cluster assignments. DKT is a newly proposed method, which
introduces contrastive learning in OOD discovery for the first
time, and uses a multi-head decoupling framework to map the
shared intent representations of BERT to the instance-level
and cluster-level subspaces. Our proposed COD signifi-
cantly outperforms all previous methods on two benchmark
datasets.

lll. APPROACH

A. PROBLEM FORMULATION

In this paper, we denote OOD discovery as OOD clustering
with IND pre-training unless otherwise stated. Given a set
of labeled in-domain data (Xjyp, Vinp) and unlabeled OOD
data (Xoop, Yoop), OOD discovery aims to cluster OOD
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groups from unlabeled OOD data using prior knowledge from
labeled IND data. Note that IND classes have no overlapping
with OOD classes.

B. OVERALL ARCHITECTURE

Fig 2 displays the overall architecture of our proposed unified
contrastive learning framework for OOD discovery, COD.
We follow the similar two-stage framework as [5] and [4]:
IND pre-training and OOD clustering. For IND pre-training,
we employ a supervised contrastive learning (SCL) objec-
tive to better learn discriminative pre-trained intent features
along with the traditional cross-entropy (CE) loss. For OOD
clustering, we introduce an efficient end-to-end contrastive
clustering method to jointly learn representations and cluster
assignments. Besides, we propose an adaptive contrastive
learning (ACL) loss to automatically adjust the weights of
different negative sample pairs for a given anchor according
to their semantic similarities. We will dive into the details in
the following sections.

C. SUPERVISED CONTRASTIVE PRE-TRAINING

We firstly pre-train an intent feature extractor using labeled
IND data. Specifically, we use the similar BERT [14] intent
classifier following [4] for fair comparison, including the
input layer, BERT encoder, and a pooling layer. Finally,
we obtain the intent representation z; € R for the input sam-
ple x;. Previous intent classification models [2], [4], [5], [19]
always use cross-entropy objective which only focuses on
whether a sample is correctly classified, and does not explic-
itly distinguish the margins between categories. Inspired by
recent contrastive work [3], [15], [20], we employ a super-
vised contrastive learning (SCL) objective to learn discrim-
inative intent features by maximizing inter-class variance
and minimizing intra-class variance. We formulate SCL as
follows:

N 1 N
Lscr = Z _Ny- 1 Z li#jl)’i=y.i
i=1 i =1

exp (si - 5j/7)
>t Lizk exp (s - 5x/7)

log ()

where N), is the total number of examples in the batch that
have the same label as y; and 1 is an indicator function.
Following [21], [22], we employ simple dropout [23] as
data augmentation. As Fig 1(a) shows, SCL aims to pull
together IND samples belonging to the same class and push
apart samples from different classes, which helps distinguish
OOD cluster boundaries. In the implementation, we perform
joint training both using SCL and CE. We also try other
variants, such as only using SCL, firstly use SCL then CE,
etc. However, simply adding SCL and CE gets the best per-
formance. We conduct a comprehensive analysis (see Section
V-A) of the effect of SCL from multiple perspectives, includ-
ing IND and OOD, both achieving superior performance
than CE.
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FIGURE 2. The overall architecture of our proposed unified contrastive learning framework for 00D discovery, COD. Stage 1 denotes IND

pre-training and Stage 2 denotes OOD clustering.

D. ADAPTIVE CONTRASTIVE CLUSTERING

After transferring knowledge from known intents, we pro-
pose an efficient end-to-end contrastive clustering method to
group similar OOD intents into the same cluster. The key
challenge of OOD clustering is how to jointly learn represen-
tations and cluster assignments. Previous mainstream method
DeepAlighed [4] uses the DeepCluster [6] algorithm with an
aligned mechanism to iteratively learn intent representations
then cluster assignments. We argue that this method suffers
from poor clustering efficiency and lazy back-propagation
signals. Therefore, we introduce an end-to-end contrastive
clustering method [16] to mitigate the above issues. Specifi-
cally, we firstly use the pre-trained intent classifier to obtain
a feature matrix given a batch of dropout-augmented OOD
samples. Then we adopt two individual two-layer nonlinear
MLPs g(-) to map the feature matrix to a new subspace where
two contrastive objectives are applied. We regard the rows
of the new feature matrix as instance representations and
the columns as cluster representations [17]. Next, we can
construct two levels of contrastive objectives where the
instance-level one helps capture low-level linguistic knowl-
edge and the cluster-level one facilitates learning high-level
semantic concepts. We use different transformation MLPs for
the two-level contrastive objectives, which has been proved
effective by [16].

1) ADAPTIVE INSTANCE-LEVEL CONTRASTIVE LOSS
We formulate the original instance-level CL loss for a given
sample z;:
exp (sim (zi, zj) /r)
2N :
2 k=1 ks €xp (sim (2, zk) /T)
where z; represents the transformed vector of i-th intent sam-

ple and z; is the dropout-augmented sample. 1jx»; € {0, 1}
is an indicator function evaluating to 1 if k& # i. T denotes a

Kﬁ';* = —log 2
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temperature parameter. Then we extend the normalized item
as follows:

2N

Z Lk €xp (sim (z;, zk) /T)

k=1

= Z exp (sim (z;, z) /T)+ Z exp (sim (z;, zx) /7). (3)
keP keN

where P is the positive set of anchor z; and AV is the negative
set. Original instance-level CL uses the anchor sample and
its augmented sample as a positive pair, but regard the other
samples in the batch as negatives, which is not suitable to
OOD clustering. Because clustering tries to pull together
samples within the same cluster and push apart samples from
different clusters. Therefore, to decrease the weight of these
false negative samples which belong to the same cluster with
the anchor, we propose an adaptive contrastive loss as shown
in Fig 2: Soft Negative Sampling. The main intuition is to
adaptively adjust the temperature of each negative sample
according to their semantic similarities:

T ift > 1

“

Tij= .
/ 9 ift' <1

7' =C0 C; (5)

where 7;; denotes the temperature between anchor z; and
other sample z; and © represents the dot product of z;’s cluster
logits C; and z;’s cluster logits C; from cluster-level con-
trastive head. Here we use samples’ cluster logits to compute
their semantic similarities of belonging to the same cluster.
If the similarity of (z;, z;) is above a fixed hyperparameter T
(we set it to 0.5), then the negative sample z; gets a relatively
larger temperature and a smaller penalty so that (z;, z;) don’t
stay away from each other. By this way, we can keep pairs
with the similar semantics as near as possible.
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Here we give a theoretical explanation of our proposed
adaptive instance-level contrastive (ACL) loss. The original
instance-level contrastive loss is formulated as follows:

exp (si,,‘/r) ©
Zk#i exp (s,',k/r) +exp (si,i/r)

where s;; = sim(f (x;) , f (xj)). For convenience, we denote
s;,; as the positive pair and s; j, i # j as negative pairs, which
is slightly different from Eq 2. Then we analyze the gradi-
ents with respect to positive samples and different negative
samples following [37], [38].

L (x;) = —log [

oL Xi 1
S P g
Sii T ki
0 2 1
L@ _1p, ®)
asi’j T
exp (s;i/t
P = (si/7) ©

D k£i €XP (sik/7) +exp (sii/7)
We observe from Eq 8 & 9 that the gradients with respect
to negative samples is proportional to the exponential term
exp(s; j/T) since all other items are the same for all negative
samples. If we increase the temperature t of negative samples
belonging to the same cluster, the gradient (penalty) gets
smaller so that these false negatives within a cluster can get
closer than true negatives from different clusters. Therefore,
we can keep intent representations from the same cluster
close and dense. For specific implementation, we use the dot
product of cluster logits between two samples to measure
whether they belong to the same cluster as shown in Eq 4
& 5.

2) CLUSTER-LEVEL CONTRASTIVE LOSS

When projecting a data sample into a space whose dimen-
sionality equals the number of clusters, the i-th element of its
feature can be interpreted as its probability (logit) of belong-
ing to the i-th cluster. Meanwhile, all the i-th elements from
a batch of feature vectors (i-th column of the feature matrix)
denote the i-th cluster representation accordingly. Intuitively,
OOD clustering aims to pull together cluster representation
pairs(positive) from the same cluster and push apart nega-
tive pairs from different clusters. We simply use dropout
augmentation to get its augmented version corresponding
to the cluster representation of original samples. Therefore,
we formulate the cluster-level CL as follows:

exp (sim (v, ) /7)
2M :
2 k=1 ks exp (sim (i, yi) /7)
where y; denotes i-th cluster representation (also i-th column
of feature matrix) and y; is the dropout-augmented cluster
representation. M is the cluster number. To avoid the trivial

solution that most instances are assigned to the single cluster,
we also add an regularization item H (y;):

]
ij‘ = —log

(10)

N
H(yi) = —pGlogpG), povi) = D vi/I¥Ih (1)
j=1
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TABLE 1. Statistics of CLINC and Banking datasets.

Dataset  Classes Training Validation Test Vocabulary —Length (max,/mean)
CLINC 150 18,000 2,250 2,250 7,283 28 / 8.31
BANKING 77 9,003 1,000 3,080 5,028 79 /11.91

where yj; is the (j, i) coordinate of cluster-level feature matrix
Y. We simply add the above three objectives and opti-
mize together in the experiments which still gets significant
improvements. For inference, we only use the cluster-level
contrastive head and compute the argmax to get the cluster
results without additional k-means.

IV. EXPERIMENTS

A. DATASETS

We conduct experiments on two benchmark datasets,
CLINC [33] and Banking [34]. CLINC contains 22,500
queries covering 150 intents and Banking contains 13,083
customer service queries with 77 intents. We show the
detailed statistics in Table 1. Following previous work,
to construct IND/OOD data, we divided the two datasets
according to the specified OOD ratio(10%, 20%, 30% for
CLINC, 10% for Banking), and the rest is IND data. For the
semi-supervised setting (we mainly focus on in this paper),
we use the labeled IND data for pre-training and use unla-
beled OOD data for clustering. For the unsupervised setting,
we only use unlabeled OOD data for clustering. We rerun all
the baselines for three times using our settings and report the
averaged results on the same divided IND/OOD datasets for
reliable and fair evaluation. For each run, all the models use
the same divided dataset. Due to limited resources, we only
perform a 10% split on Banking, but pay more attention to
extensive ablation studies to understand the effectiveness of
our proposed method.

B. BASELINES

We mainly compare our method with semi-supervised base-
lines: PTK-means (k-means with IND pre-training), Deep-
Cluster [6] and three OOD discovery methods CDAC+H [5],
DeepAligned [4] and DKT [46]. We also report the results of
unsupervised methods for a comprehensive comparison. For
fairness, we use the same BERT backbone as the baselines.
To avoid the randomness of splitting IND/OOD, we aver-
age results over three random runs following [4]. For each
run, all the models use the same divided dataset. We adopt
three widely used metrics to evaluate the clustering results:
Accuracy (ACC), Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI). To calculate ACC, we use
the Hungarian algorithm [35] to obtain the mapping between
the predicted classes and ground-truth classes.

C. IMPLEMENTATION DETAILS

For a fair comparison with previous work, We use the same
pre-trained BERT model (bert-base-uncased!) as our net-
work backbone. During the pre-training phase, the train-
ing batch size is 128, and during the clustering phase,

1 https://github.com/google-research/bert
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TABLE 2. Performance comparison on two datasets. For CLINC, We randomly sample 10%, 20% and 30% of all classes as OOD types. For Banking,
we randomly sample 10% of all classes as OOD types. We evaluate both unsupervised and semi-supervised methods. Results are averaged over three

random runs. (p < 0.05 under t-test).

Method CLINC-10% CLINC-20% CLINC-30% Banking
ACC ARI NMI | ACC ARI NMI | ACC ARI NMI | ACC ARI NMI
k-means 58.67 43.81 67.77 | 48.89 30.90 64.68 | 42.22 23.65 60.55 | 32.81 8.30 17.30
Unsup DeepCluster 53.15 37.80 62.31 | 47.73 34.55 65.91 | 33.96 18.89 56.21 | 29.81 7.79 17.34
) DeepAligned 62.66 47.60 71.50 | 48.24 34.49 66.24 | 39.02 2450 61.16 | 36.56 12.57 21.84
PTK-means 70.22 50.39 73.92 | 57.56 37.02 72.71 | 61.63 40.96 75.90 | 55.00 36.18 53.75
DeepCluster 78.13 6831 82.87 | 8342 76.18 89.33 | 78.09 71.05 88.70 | 60.59 41.88 55.22
Semi-sup CDAC+ 88.00 75.18 88.33 | 84.89 7598 89.96 | 73.04 64.44 87.90 | 77.50 60.53 71.14
" | DeepAligned 95.11 89.81 94.13 | 93.80 90.22 95.83 | 91.56 86.58 94.91 | 77.78 66.95 76.91
DKT 97.78 95.16 96.97 | 96.89 93.69 96.94 | 94.96 90.25 9594 | 84.69 71.11 76.92
COD(ours) 96.44 92.50 95.62 | 95.11 91.32 96.12 | 92.44 87.90 95.15 | 84.69 71.07 78.72
COD w. ACL(ours) | 98.22 96.15 97.79 | 97.11 94.43 97.63 | 94.81 90.30 96.10 | 86.56 73.31 79.03

the training batch size is 512 for CLINC-10, CLINC-30,
Banking-10, and 400 for CLINC-20. The learning rate is
5e-5 in the pre-training phase and 0.0003 in the clustering
phase. Notably, We use dropout [21] to construct augmented
examples for contrastive learning. For the instance-level con-
trastive head, the dimensionality of the row space is set to
128, and the temperatures of SCL and ACL are 0.5. As for
the cluster-level contrastive head, the dimensionality of the
column space is naturally set to the number of clusters,
and the cluster-level temperature parameter t= 1.0 is used
for all datasets. The dropout value is fixed at 0.5. We use
Adam optimizer [36] to train our model. We use the SC
metric (see details in Appendix A) of valid OOD data (still
unlabeled data) to choose the best checkpoint. The pre-
training stage of our model lasts about 30 minutes and clus-
tering runs for 10 minutes on CLINC-10%, both using a
single Tesla T4 GPU(16 GB of memory). For comparison,
DeepAligned almost consumes 30 minutes for clustering and
similar 30 minutes for pre-training. The average value of the
trainable model parameters is 17.34M.

For DKT, during the pre-training phase, the training batch
size is 128, and during the clustering phase, the training batch
size is 512 for CLINC-10%, CLINC-30%, Banking-10%,
and 400 for CLINC-20%. The learning rate is Se-5 in the
pre-training phase and 0.0003 in the clustering phase. For
the instance-level contrastive head, the dimensionality of the
row space is set to 128, and the temperatures of SCL and
instance-level CL are 0.5, and the cluster-level temperature
parameter T= 1.0 is used for all datasets. For DeepAligned,
the training batch size is 128, the learning rate is Se-5, and the
dimension of intent features is 768. For CDAC+, the training
batch size is 256, and the learning rate is Se-5. We use the
same dynamic thresholds as [5]. we freeze all but the last
transformer layer parameters to speed up the training proce-
dure and improve the training efficiency with the backbone
of BERT.

D. MAIN RESULTS

Table 2 shows the main results of our proposed method
compared to the baselines. Our method consistently outper-
forms all the previous baselines with a large margin. For
the semi-supervised setting on CLINC-10%, COD w. ACL
outperforms the DeepAligned by 3.11%(ACC), 6.34%(ARI),
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TABLE 3. Representation distribution of different pre-training objectives.

Intra-class |  Inter-class T | SC 1
No-pretraining 0.42 0.30 0.10
SCL 0.19 0.56 0.43
CE 0.20 0.57 0.31
CE+SCL 0.12 0.74 0.43

TABLE 4. Clustering performance comparison of different pre-training
targets using the same clustering method.

ACC | ARI NMI SC
No-pretraining | 86.67 | 75.28 | 85.50 | 0.51
SCL 96.46 | 92.93 | 95.96 | 0.79
CE 96.44 | 92.51 | 95.70 | 0.83
CE+SCL 98.22 | 96.15 | 97.79 | 0.92

3.66%(NMI). On Banking, COD w. ACL also gets significant
improvements of 8.78%(ACC), 6.36%(ARI), 2.12%(NMI).
The results prove the effectiveness of our proposed con-
trastive framework for OOD discovery. Specifically, com-
paring COD with DeepAligned, COD gets an improvement
of 1.33%(ACC), 2.69%(ARI), 1.49%(NMI) on CLINC-10%.
Comparing COD with COD w. ACL, we find ACL also gets
an improvement of 1.78%(ACC), 3.65%(ARI), 2.17%(NMI),
which confirms adaptive contrastive learning helps learn
better cluster assignments. Besides, comparing unsup COD
with semi-sup COD, the latter significantly outperforms the
former by 9.77%(ACC), 15.34%(ARI), 7.87%(NMI), which
demonstrates the effectiveness of SCL pre-training. Overall,
both COD and ACL achieve superior performance and the
combination of the two is the best.

V. QUALITATIVE ANALYSIS

A. EFFECT OF SUPERVISED CONTRASTIVE LEARNING
Supervised contrastive learning (SCL) contributes to model
discriminative representation. We analyze the effect of SCL
from multiple perspectives.

We first analyze the spatial distribution of representations
when our proposed clustering objective is not used. For in-
domain data, we use the intra-class distance, which is the
mean value of the Euclidean distance between each sample
and its class center, and the inter-class distance, which is
the mean value of the Euclidean distance between the center
of each class and the center of the 3 classes closest to it.
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FIGURE 3. OOD intent visualization of different models. We use the same OOD test set of CLINC-10%.
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For OOD data, we use the SC metric [32] for evaluating
the quality of OOD clusters (see details in Appendix A).
It can comprehensively consider the relationship between the
intra-cluster distance and the inter-cluster distance and is used
to characterize the tightness of clusters. It should be noted that
the cluster label of OOD data is calculated by k-means since
we aim to analyze the effect of SCL. As shown in Table 3,
we use two basic settings, No-pretraining and CE (using
cross-entropy as the pretraining loss). On this basis, we find
that after adding SCL, each statistical indicator significantly
improves. It shows that SCL is effective for improving data
distribution and modeling discriminative representations.

Then, we further conduct experiments on the model that
added our proposed clustering method. As shown in Table 4,
compared to the corresponding base setting, the addition of
SCL brings consistent improvement on all metrics. It indi-
cates that pre-training with SCL does align with the clus-
tering objective, and can effectively bridge the gap between
pre-training and clustering. Furthermore, we also indepen-
dently analyze the 5 OOD clusters with the worst cluster-
ing metric (get the lowest SC in the no-pretraining setting).
As shown in Fig 5, after adding the SCL training objective,
we observe significant improvements in SC, which shows
that our method brings obvious improvements to the OOD
clusters that are difficult to cluster accurately. This is of great
significance in practical applications.

B. EFFECT OF COD AND ACL
To understand the effectiveness of COD and ACL, we per-
form OOD intent visualization of DeepAligned, COD and
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COD w. ACL in Fig 3. COD is the overall contrastive learning
framework for OOD discovery and ACL is our proposed
adaptive instance-level contrastive (ACL) loss. Comparing
COD to DeepAligned, we can observe DeepAligned gets
some mixed OOD clusters (see red and black dots in Fig
a) while COD successfully separates them, which indicates
COD learns discriminative OOD cluster assignments. But we
also find some OOD clusters have narrow distributions (see
black, brown dots in Fig b). We argue it’s because COD uses
the original instance-level contrastive loss which pushes apart
the samples within the same cluster. After using ACC, we can
get a more uniform and tight distribution. The visualization
proves both COD and ACL helps OOD discovery and have a
mutual complementary effect on each other. We also display
OOD SC curves in the training in Fig 4. Results show COD
converges faster and better than DeepAligned. Note that the
initial SC of COD (w. ACL) is worse than DeepAligned
because we add a new cluster-level MLP head(randomly
initialized) while DeepAligned directly uses k-means, but
our methods still converge faster via contrastive objectives.
It demonstrates the efficiency of our proposed COD.

C. ESTIMATE THE NUMBER OF CLUSTER K

Since we may not know the exact number of OOD clusters,
we use the following K estimation method [4] to determine
the number of clusters K before clustering. The method esti-
mates K with the aid of the well-initialized intent features.
We assign a big K’ as the number of clusters at first. As a good
feature initialization is helpful for partition-based methods
(e.g., k-means), we use the well pre-trained model to extract
intent features. Then, we perform k-means with the extracted
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FIGURE 6. OOD intent visualization of different training epochs for our proposed COD w. ACL.

TABLE 5. Estimate the number of OOD clusters.

ACC ARI NMI K
PTK-means(fixed K) 70.22 50.39 73.92 | 15
PTK-means(auto K) 56.89 34.71 68.96 | 12
Relativel 18.98% | 31.12% | 6.71% | -
DeepAligned(fixed K) 95.11 89.81 94.13 | 15
DeepAligned(auto K) 81.78 T7.47 88.04 | 19
Relative] 14.02% | 13.74% | 6.47% | -
COD w. ACL(fixed K) 98.22 96.15 97.79 15
COD w. ACL(auto K) 91.56 87.60 94.39 14
Relativel 6.78% 8.89% | 3.48% | -

features. We suppose that real clusters tend to be dense even
with K’, and the size of more confident clusters is larger
than some threshold 7. Therefore, we drop the low confidence
cluster whose size is smaller than ¢, and calculate K with:

K’

K=> 8081>=1 (12)

i=1

where |§;| is the size of the i produced cluster, and 46(-) is
an indicator function. It outputs 1 if condition is satisfied,
and outputs 0 if not. Notably, we assign the threshold ¢ as
the expected cluster mean size % in this formula.

Table 5 shows the OOD clustering results using the auto-
matic K-value estimation strategy. We find that our method
both achieves the best performance under the fixed or auto
K settings. Besides, under the auto K, all methods have
observed a decline in the metrics, which shows that the
unknown K value is a great challenge for OOD discovery.
However, the reduction of our proposed method is signifi-
cantly lower than other methods, indicating that our method
has strong robustness to the challenge of unknown K which
reflects the good practicability of our method.

D. VISUALIZATION AT DIFFERENT TRAINING EPOCHS

To see the evolution of our method in the training, we show
a visualization at four different timestamps throughout the
training process in Fig 6. Results show features are mixed in
the beginning and cluster assignments become increasingly
visible and distinct as the training process goes.

E. EFFECT OF IND DATA

We analyze the impact of in-domain data on the effect of
clustering from two perspectives, number of IND classes
and number of samples per class. Figure 7 (a) shows the
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FIGURE 7. Effect of IND data for clustering. The left subfig shows the
effect of number of IND classes and the right subfig shows the effect of
number of IND samples per class.

trend of the number of different IND classes, and Figure 7
(b) shows the trend of the number of different samples in
each class. Overall, the performance of our method is much
better than the baselines. Moreover, with the decrease of the
amount of in-domain data, all methods show varying degrees
of performance fluctuation, and the fluctuation amplitude of
our proposed method is the smallest, which shows that our
method has little dependence on the in-domain data, and has
stronger performance and robustness in the few-shot scenario.

F. ERROR ANALYSIS

We further analyze the error cases of DeepAligned and
COD w. ACL in Fig 8. We find for semantically similar
OOD intents, DeepAligned is probably confused but our
COD w. ACL can effectively distinguish them. For example,
DeepAligned incorrectly clusters accept_reservation intent
into cancel_reservation (14% error rate) while COD w. ACL
gets 100% accuracy. The result shows COD w. ACL helps
separate semantically similar OOD intents. We hypothesize
it’s because the adaptive instance-level contrastive learning
helps the model learn discriminative linguistic knowledge.

G. EFFECT OF TEMPERATURE

Fig 9 shows the effect of different temperature 7o of ACL.
Results show for all the OOD clustering metrics ACC, ARI
and NMI, 7p = 0.5 gets the best performance. Too larger
or smaller temperatures both result in a significant perfor-
mance drop. Our method with tp in (0.4, 0.9) outperforms
the sota baselines, and 7¢ in (0.5, 0.7) brings larger improve-
ments(above 2%), which proves tg is robust. To avoid the
randomness, we average results over three random runs. The
standard deviation (std) of DeepAligned is 1.16, and the std
of COD(t=0.5) is 0.67.
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TABLE 6. Effect of different batch size. We report the results of our
proposed COD w. ACL on CLINC-10%.

Batch Size | ACC ARI NMI
128 95.11  90.23  94.82
256 96.44 92.58 95.71
512 98.22 96.15 97.79

H. EFFECT OF DIFFERENT BATCH SIZE

Table 6 show the effect of different batch size of our proposed
COD w. ACL on CLINC-10%. Results show that a larger
batch size of input samples obtains a better performance on
OOD discovery.

I. ABLATION STUDY

In the OOD clustering stage, the intent representation of
BERT output is mapped to instance-level and cluster-level
subspaces respectively, and optimized with different con-
trastive losses. In Table 7, we remove two subspaces respec-
tively, where w/o cluster-level means only instance-level
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TABLE 7. Effect of different learning objectives.

Models ACC ARI NMI
COD w. ACL 98.22 | 96.15 | 97.79
COD 96.44 | 92.50 | 95.62
-w/o instance-level 90.93 | 85.43 | 92.07
-w/o cluster-level (SimCLR) | 90.36 | 82.91 | 90.55

contrastive learning used for learning representations,” and
w/o instance-level means only cluster-level contrastive learn-
ing used for learning representations. Results show both
instance-level and cluster-level contrastive losses contribute
to the performance. When the cluster-level contrastive loss is
removed, it is difficult for the model to learn the cluster struc-
ture from the unlabeled data, so the performance degradation
is the most significant.

VI. CONCLUSION

In this paper, we propose a unified contrastive learning
framework for OOD discovery, bridging the gap between
pre-training and clustering. For IND pre-training, we employ
a supervised contrastive learning (SCL) loss to learn dis-
criminative intent features. For OOD clustering, we intro-
duce an efficient end-to-end contrastive clustering method
to jointly learn representations and cluster assignments.
Besides, we propose an adaptive contrastive learning (ACL)
method to automatically adjust the weights of different nega-
tive samples. Experiments on two benchmark datasets prove
the effectiveness of our method. And extensive analyses
demonstrate our method converges faster and better than the
previous SOTA, helps separate semantically similar OOD
intents and is robust to different IND data and K. Besides,
we find even if the number of OOD clusters is not given, our
method still gets relatively accurate estimation and is more

2This setting is equivalent to the original SimCLR.

VOLUME 11, 2023



Y. Mou, H. Xu: Bridge Pre-Training and Clustering: A Unified Contrastive Learning Framework

IEEE Access

robust to K. We also perform visualization and error analysis
to understand the reason for the performance improvements.
We hope to explore more self-supervised learning methods
for future work.

APPENDIX A

SILHOUETTE COEFFICIENT (SC)

Following [4], we use the cluster validity index (CVI) to
evaluate the quality of clusters obtained during each training
epoch after clustering. Specifically, we adopt an unsupervised
metric Silhouette Coefficient [32] for evaluation:

1 by —ady
S€= szax{a(l,-),b(li)}

i=1

(13)

where a (I;) is the average distance between I; and all other
samples in the i-th cluster, which indicates the intra-class
compactness. b (I;) is the smallest distance between I; and
all samples not in the i-th cluster, which indicates the inter-
class separation. The range of SC is between -1 and 1, and the
higher score means the better clustering results.

APPENDIX B

COMPARISON WITH DKT FRAMEWORK

Our proposed COD w. ACL and DKT framework are two
different training strategies. They have two differences: (1) In
terms of implementation, since the motivation of DKT is to
decouple the shared intent representations obtained through
BERT into instance-level and cluster-level representations
through a multi-head framework, thus DKT maps BERT’s
output into two subspaces on the model structure. And in
the IND pre-training stage and the OOD clustering stage,
the contrastive learning objectives is designed respectively
to optimize the two subspaces. However, our COD w. ACL
does not adopt the multi-head framework in the IND pre-
training stage, but directly uses the CE4-SCL objective to
constrain the representation of BERT output. (2) In terms of
method, the clustering algorithm adopted by DKT is con-
trastive clustering [16], that is, using an instance-level CL
and a cluster-level CL to optimize the instance-level and
cluster-level subspaces respectively. In this paper, we pro-
pose an adaptive contrastive clustering (ACC) method, which
improves the problem that traditional instance-level CL will
make similar samples be pushed away as negative samples.
Adaptive contrastive clustering method, which automatically
adjusts the weight of different negative samples according
to the semantic similarity of a given anchor, is beneficial to
form a more compact cluster distribution, which is one of the
innovations of this paper. We also made a theoretical analysis
of this in section III-D.
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