
Received 19 March 2023, accepted 13 April 2023, date of publication 18 April 2023, date of current version 21 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3268106

YOLOX++ for Transmission Line Abnormal
Target Detection
ZHONGQIN BI 1, LINA JING1, CHAO SUN 1, AND MEIJING SHAN 2
1College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 201306, China
2Institute of Information Science and Technology, East China University of Political Science and Law, Shanghai 200042, China

Corresponding author: Chao Sun (sunchao0226@163.com)

This work was supported by the Project of Shanghai Science and Technology Committee under Grant 23010501500.

ABSTRACT The detection of abnormal targets in transmission lines plays a significant role in maintaining
the stability and safety of transmission systems. To achieve improved detection performance for abnormal
targets, we propose a new target detector based on YOLOX, called YOLOX++. First, a multiscale cross-
stage partial network (MS-CSPNet) is designed, which fuses multiscale feature information and expands the
receptive field of the target through channel combination. Furthermore, depthwise and dilated convolutions
are introduced in an object decoupling head to better capture the long-range dependencies of objects in
feature maps. Finally, the alpha loss function (α-IoU) is introduced to optimize the localization of small
objects. Experiments show that in a comparison with the YOLOX model, the YOLOX++ approach in
this paper achieves 86.8% and 96.6% detection accuracies for high-voltage tower bird nest and power line
insulator targets, respectively. On the PASCAL VOC dataset, the AP50 and APS are improved by 9.3% and
5.0% over those of YOLOX, respectively, showing that the YOLOX++ network possesses better robustness
for small target detection.

INDEX TERMS Target detection, transmission line anomaly target, small target detection, YOLOX.

I. INTRODUCTION
In recent years, with the continuous development of social
and economic development, China’s power grid construc-
tion has made very significant achievements. Among them,
transmission lines are equivalent to the pulse of the power
system, connecting the whole set of power facilities, and
are in a pivotal position in the power grid. However, due to
the long-term erection of lines in the natural environment,
problems such as birds nesting [1] and insulators falling
off [2], [3] are prone to occur, which may lead to short cir-
cuits or open circuits in severe cases. Therefore, transmission
lines must be checked regularly to maintain the stability of
power transmission. Traditional power line detection meth-
ods include manual detection [4] and sensor detection [5].
Manual detection mainly relies on inspectors climbing line
towers or using telescopes to inspect power lines, which is
difficult and dangerous. At the same time, sensor detection
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requires the installation of the device in a fixed position,
which is easily damaged and has low flexibility.

In recent years, the application of UAV technology [6]
has alleviated the disadvantages of high costs and low effi-
ciency of early line inspection. Inspectors now only need to
operate drones to photograph transmission lines and then use
image processing technology to detect the acquired images.
In general, traditional image processing techniques use fea-
ture information such as texture [7], shape [8], [9], and
saturation [10] to segment objects and then achieve fault
detection through matching algorithms. However, the images
captured by UAVs contain complex natural scenes, and the
existing recognition accuracy cannot meet the requirements
of industrial applications.

With the development of deep learning, image process-
ing methods based on neural networks have gradually
become mainstream. Compared with traditional methods,
deep learning-based detection methods [11], [12] have better
accuracy and real-time performance. However, the current
detection algorithms based on deep learning aremainly aimed
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FIGURE 1. YOLOX network structure.

at detecting general objects, and the performance of the algo-
rithm will decrease when applied to detect transmission line
anomalies [13]. Comparedwith other targets, bird’s nests [14]
and insulators [15] on transmission lines have smaller physi-
cal sizes and lower contrast. Improving the accuracy of small
object detection [16], [17] is also a significant challenge in
current object detection tasks.

Most of the existing target detection algorithms are anchor-
based detectors, and the anchor setting is not friendly to
small targets. Considering the limited computing resources of
embedded devices carried by UAVs, it is necessary to strictly
balance detection accuracy and real-time performance.
Therefore, the anchor-free [18], [19] detection algorithm
YOLOX [20] is chosen as the basic network. In addition,
to meet the needs of transmission line anomaly detection,
the following improvements have been made to the YOLOX
network:

1. We propose the multi-scale cross-stage partial network
(MS-CSPNet). By usingmultiple feature extraction branches,
obtain multi-scale feature information of the target while
enhancing the feature representation of the target and further
improving the detection accuracy of the target.

2. We propose a new decoupling header for the target. The
target’s important features and long-range dependencies are
extracted by stacking and uniting convolution kernels with
different functions while expanding the field-of-perception
region of small targets in the feature map.

3. We reconsider the offset between target and predicted
frames and use the a-IoU function to optimize the regression
task of the YOLOX network to improve the accuracy of
transmission line anomaly target detection.

4. Due to the scarcity of the anomaly target dataset, we con-
structed a bird’s nest dataset and expanded the defective
insulator dataset. The experimental results show that the
YOLOX++ model improves the detection accuracy of bird

nests and defective insulators by 9.4% and 8.9%. Meanwhile,
the PASCAL VOC dataset verifies that the model has good
robustness.

The rest of the paper is organized as follows: Section II
introduces the related detection methods and the YOLOX
network. Section III describes the specific details of the
YOLOX++ network. Section IV presents the relevant exper-
imental analysis results. SectionV summarizes the results and
discusses future work plans.

II. RELATED WORK
In this section, we present deep learning-basedmultistage and
single-stage target detection algorithms, along with a detailed
description of the YOLOX base network used in this paper.

A. MULTI-STAGE TARGET DETECTION ALGORITHM
The multistage detection algorithm extracts the target candi-
date frame and then identifies and locates the target based
on the candidate frame. Early region-based convolutional
neural network (RCNN) algorithms [21] utilized a selec-
tive search [22] strategy to build regions of interest (ROIs)
and used SVM for object classification. After this, Fast
R-CNN [23] utilizes ROI pooling to optimize regional fea-
tures but increases the model complexity. Subsequently,
based on Faster R-CNN [24], Wang et al. [25] extracted pro-
posal regions through different sliding windows and detected
bird’s nest targets. Li et al. [26] proposed a deep learning-
based framework for automatic bird nest detection-ROI min-
ing and a faster RCNN. The detection accuracy of bird nest
targets was improved by k-means clustering and the focal
loss function. In addition, Zhao et al. [27] used RCNN for
insulator identification and improved the detection accuracy
of faults by FPN for target feature enhancement. However,
the detection speed cannotmeet the requirements of industrial
applications because the candidate frame operations extracted
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FIGURE 2. YOLOX++ network structure.

by the multistage detection algorithm often have many redun-
dant features.

B. SINGLE-STAGE TARGET DETECTION ALGORITHM
Single-stage algorithms treat detection as a regression prob-
lem and output the detection results directly. Among them, the
YOLO [28] algorithm removes the region proposal process,
which greatly improves the model training speed. The SSD
[29] algorithm combines the regression idea of YOLO and
the anchor frame mechanism of Faster R-CNN and uses hier-
archical feature maps to predict objects of different scales.
To solve the problem of low detection accuracy of YOLO,
YOLOv2 [30] adds an a priori frame and multiscale training
strategy on its basis, which improves the overall performance
of the network. Subsequently, Ying et al. [31] optimized
the width and height of the prediction box and the class
imbalance loss function to improve the recognition accuracy
of the YOLOv3 algorithm for the bird’s nest target. To detect
defective insulators, Yang et al. [32] added a new feature layer
to the YOLOv4 model to enrich the feature information of
insulators. In addition, Liu C et al. [33] proposed a cross-stage
partially dense YOLO model, which improved the detection
performance of the network for insulators by improving its
clustering algorithm and loss function.

C. YOLOX TARGET DETECTION ALGORITHM
To better meet the real-time requirements of abnormal tar-
get detection for transmission lines, this paper studies the
YOLOX algorithm with speed advantages.

YOLOX is the YOLO series network, and its structure
is shown in Fig. 1. It uses CSPDarknet [30] as a feature
extraction network, enriches the feature information with an
FPN [34] structure, and finally localizes and classifies objects
through a decoupling head.

After the input image, the target features are extracted
using the focus, superimposed CBS, and CSPNet structures.

The CBS structure consists of 3 × 3 convolutional kernels,
BN, and SiLU activation functions. CSPNet [35] uses the
residual structure in ResNet [36] to segment the stacked
residual blocks. In addition, an SPP module is added to the
last stacking block of the backbone. SPP utilizes a paral-
lel structure containing pooling kernels of different sizes
(5 × 5, 9 × 9, 13 × 13), which have various sizes, to obtain
the perceptual fields of the target. Finally, after multiple
processing by CBS and CSPNet, three effective feature maps
are generated with sizes of 80 × 80 × 256, 40 × 40 × 512,
and 20 × 20 × 1024, which are sequentially used to detect
small, medium, and large objects.

After extracting effective feature information from the
backbone, the feature layers at different scales are used to
build a feature pyramid, which can strengthen the extraction
of target feature information. The specific details include
upsampling the deep feature map, merging it with the
midlevel feature channel, and performing an upsampling
operation to match the shallow feature channel. Through a
top-down information flow, the semantic target information
can be preserved in shallow feature maps. To enhance its tar-
get feature expression ability, YOLOX integrates PANet [37]
into an FPN to construct a bottom-up feature transfer path to
further enrich the target feature information.

Compared with other detectors, YOLOX uses a more con-
vergent decoupling head in the detection head component
[38], [39]. The decoupling head divides the input features
and processes the target’s classification task and localization
task in parallel. Finally, the target detection task is com-
pleted using the prediction information obtained by different
branches.

III. THE PROPOSED YOLOX++ MODEL
To better detect small targets on transmission lines, this
paper proposes the YOLOX++ model, which enhances the
multiscale sensory fields of targets through an MS-CSPNet
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FIGURE 3. Multi-scale cross stage partial ResNet (MS-CSPNet).

while constructing a new target decoupling head for small
targets and finally improving the target localization effect
by optimizing the loss function. The network structure of
YOLOX++ is shown in Fig. 2.

A. MULTI-SCALE CROSS STAGE PARTIAL RESNET
The backbone network of YOLOX is CSPDarknet, which
extracts target features by stacking multiple CSPNets.
To explore the feature information of the target, this
paper proposes a multi-scale cross-stage partial ResNet
(MS-CSPNet), a novel network structure that learns the tar-
get features at different scales. MS-CSPNet splits the input
into multiple branches and employs stacked convolutional
kernels to each branch to enhance the feature information.
Moreover, MS-CSPNet utilizes residual networks to increase
the network depth and improve detection accuracy. Notably,
MS-CSPNet adopts cross-stage channel connections to mit-
igate the vanishing gradient problem caused by the depth
increment.

The primary purpose of designing the MS-CSPNet is to
allow the architecture to achieve rich gradient combina-
tions while enhancing the perceptual fields of small targets.
As shown in Fig. 3, the input of H × W × C is truncated
into three parts. Path 1 uses a 3 × 3 convolutional kernel
to extract target features and reduces the input channels to
C/4. Path 2 enhances the target representation by stacking
3 × 3 convolutional kernels, BN layers and ReLU activation
functions and splits the output into two parts: one part of
the target information awaits merging, and the other part
continues with feature extraction. Path 3 uses residual blocks
tomitigate gradient variations and provide the output. Finally,
the channel information in different paths is merged, and the
effective feature maps at different scales are output.

During the feature information transfer process, stacked
3 × 3 convolutional kernels are used instead of 5 × 5 and
7 × 7 convolutional kernels to further enhance the feature
extraction effect for small targets. Furthermore, retaining
the original cross-stage strategy can alleviate the network
overhead caused by explicit feature maps. To avoid exces-
sive feature redundancy, we use the MS-CSPNet only in the

effective feature map layer and remove the final SPP structure
to enhance the extraction speed for target features.

Overall, through its splitting and merging strategy, the pro-
posed MS-CSPNet retains the advantage of feature reusabil-
ity and enhances the perceptual field areas of small targets in
the feature map. It also prevents the presence of too much
repetitive gradient information by truncating the gradient
flow and finally uses a simple convolution operation to inte-
grate the extracted feature information.

B. TARGET DECOUPLING HEAD
After obtaining feature information from the feature extrac-
tion network, the feature layers at different scales are passed
into the YOLOX detection head to complete the classification
and regression tasks. In this paper, we follow two branches
of classification and regression, using depthwise convolution
to further extract the local information of the target, dilation
convolution to improve the perceptual field region of the tar-
get in the feature layers, and subsequently joint input feature
layers to capture the remote dependence of the target. Finally,
the prediction results of each feature layer are obtained by
convolutional layers. By improving the detection head of
YOLOX and making full use of the feature information of
the target, the detection effect of the network can be improved
while reducing the number of parameters.

As shown in Fig. 4, the effective feature maps of different
feature channels enter the detection head. First, a 1 × 1
convolutional layer is used to reduce the channel dimension.
The feature channels are then processed through two parallel
depthwise convolutional layers, a dilated convolutional layer
and a 1× 1 convolutional layer. For each feature layer, obtain
feature point’s regression parameters and classification cate-
gory. Finally, the small object detection task is accomplished
by stacking multiple branches.

In the decoupling head, the output is fused with the local
information processed by the 1× 1 convolutional layer to bet-
ter capture the long-range target information. The calculation
process is as follows:

F ′
= Conv1×1 (DConv (DWConv (F))) (1)

Output = F ′
⊗ F (2)

Here, F ∈ R(C×H×W ) is the input feature, and ⊗ refers to
the product of elements. The detection head of YOLOX++

can retain more target feature points while reducing the num-
ber of network parameters and strengthening the classifica-
tion and positioning of small targets.

C. LOSS FUNCTION
In the anchor-free detector, YOLOX reduces the number
of predicted bounding boxes from 3 to 1 for each loca-
tion and makes them directly predict the offset value. This
improvement reduces the number of parameters and the com-
putational effort of the detector but also obtains better perfor-
mance. However, for anomalous targets on transmission lines,
which are more challenging to locate than ordinary objects
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FIGURE 4. Target decoupling head.

due to their lower resolution, a better evaluation of the offset
of the prediction frame from the target frame is needed for
detection.

In YOLOX, the loss function contains three components:
classification loss, bounding box regression loss, and confi-
dence loss. Among them, the binary cross-entropy loss func-
tion is used to calculate the loss of category probability and
target confidence score, the IoU function is used as the loss
of bounding box regression, and the total loss function is as
follows:

LYOLOX = Lcls + Lreg + Lobj (3)

To improve the target localization accuracy, this paper uses
the α-IoU loss [40] function for regression calculation and
combines the cross-entropy loss function to train the detection
branch together. The α-IoU function is calculated as follows:

Lα−IoU =
1 − IoUα

α
, α > 0 (4)

Among them, α is a controllable parameter.
When α ≥ 1, the power penalty/regularization term is

introduced in the formula, which can be extended to a general
expression:

Lα−IoU = 1 − IoUα1
+ ρα2(B,Bgt ) (5)

Here, α1 > 0, α2 > 0, and ρα2(B,Bgt ) denotes any penalty
term computed based on B and Bgt . This simple extension
enables the straightforward generalization of existing IoU
based losses to their α-IoU versions.
Compared with the IoU loss, the α-IoU loss can yield

improved regression accuracy for small targets by adaptively
enhancing the weights of the loss and gradient through the
deployment of α and then improve the detection accuracy of
the YOLOX++model for transmission line anomaly targets.

IV. ANALYSIS OF EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS
The computer processing model used in the experi-
ment includes an Intel i9-9900K CPU, an NVIDIA
GeForce 2080 GPU, 16 GB of memory, and the Ubuntu

TABLE 1. Experimental parameter settings.

18.04 operating system, and the PyTorch deep learning
framework is used to train the network. The experimental
parameters used for training the network are shown in Table 1.

To evaluate the effectiveness of the YOLOX++ model in
terms of abnormal target detection for transmission lines, the
detection accuracy (AP), F1 score, and detection speed (FPS)
are selected as evaluation indicators:

AP =

∫ 1

0
P(R)dR

F1 = 2
PR

P+ R

(6)

where P is the accuracy rate of target detection, and R is the
recall rate: 

P =
TP

TP+ FP

R =
TP

TP+ FN

(7)

The TP term represents the number of samples where the
detected target category is consistent with the actual target
category. The FP term is the number of examples where the
detected target category is inconsistent with the true target
category. The FN term is the number of samples where the
actual target exists but has not been detected by the network.

B. EXPERIMENTAL DATASET
We perform all experiments on different data benchmarks,
i.e., a high-voltage tower bird nest dataset, a Chinese power
line insulator dataset (CPLID) [41], and PASCAL VOC [42].
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FIGURE 5. Illustrations of a high-voltage tower bird nest and a power line insulator.

FIGURE 6. Visualization of the YOLOX and YOLOX++ model detection results (the top shows
the YOLOX model, and the bottom shows the YOLOX++ model).

The high-voltage tower bird nest dataset is self-built,
and the detection targets are high-voltage tower bird nests
observed under different weather and lighting conditions.
To enrich the image dataset, this paper uses image enhance-
ment techniques (cropping, flipping, rotation, etc.) for expan-
sion purposes. There are 2,864 images for training and
716 images for testing network performance.

While the CPLID dataset provides 600 images of insulators
and 248 images of defective insulators, we perform the same
data augmentation operations we end up with 2800 images
for training and 700 images as the test set. In the high-voltage

tower bird’s nest and transmission line insulator datasets, all
images are uniformly cropped to 1368 × 912. Additionally,
we annotate the expanded parts of both datasets to make them
conform to the standard format of PASCAL VOC. Relevant
examples from the dataset are shown in Fig. 5.

C. EXPERIMENTAL RESULTS ON THE BIRD NEST DATASET
We first conduct an experimental study on the bird nest data
benchmark, where different versions of the YOLOX model
are trained under the same experimental conditions and anal-
ysed in comparison with the mainstream detection models.
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TABLE 2. Comparison among different versions of the YOLOX and YOLOX++ models.

TABLE 3. Comparative analysis of different models.

TABLE 4. Results of ablation experiments.

1) COMPARATIVE PERFORMANCE ANALYSIS
Table 2 shows the detection results of the YOLOX models
with different depths and widths (S, M, L, X) for bird nests
in high-voltage towers. In terms of the AP and F1 metrics,
the different YOLOX++ detection models are superior to
the YOLOX network. Among them, the F1 score of the

TABLE 5. Overall performance comparison analysis.

YOLOX-X model with the most parameters is improved by
12%, the detection accuracy is improved by 9.4%, and the
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TABLE 6. Comparison of the detection results achieved on the PASCAL VOC dataset.

FIGURE 7. The PR curves of YOLOX and YOLOX++ models.

AP reaches 86.8%. We further reduce the model to YOLOX-
Tiny and obtain a 1.1% AP improvement. The YOLOX++

nano model for mobile devices has an accuracy of 81.7%
for target detection, with only 1.1 M parameters. As shown
in Table 2, the YOLOX++ model possesses better detection
performance than YOLOX.

Based on the test set of the high-voltage tower bird’s
nest (shown in Fig. 6), we demonstrate that the YOLOX++

detection algorithm can locate the target more accurately than
the YOLOX baseline while improving the detection accuracy
of the bird’s nest target.

2) COMPARISON WITH OTHER DETECTION MODELS
To further verify the effectiveness of the YOLOX++ net-
work, we compare it with mainstream detectors, and the
results are shown in Table 3.
According to Table 3, we find that the version of YOLOv3

with Darknet-53 as the backbone has a detection accuracy
of 71.9% for bird nests, and it takes 64.9 ms to detect each
image. The PP-YOLOmodel with ResNet50 as the backbone
achieves a detection accuracy of 75.5% at a detection speed
of 43.2 FPS. Under the same input image, the detection
accuracy of PP-YOLOv2 with a deeper backbone reaches
77.5%. In contrast, the modified YOLOX++ network based
on the YOLOX baseline achieves a better balance between
accuracy and speed.

3) ABLATION EXPERIMENTS
In this section, we incrementally present the effectiveness
of each module, and the experimental results are shown in
Table 4.

The AP of the detector with YOLOX-S, as the baseline for
target detection, is 78.8%, and its FPS is 72.5. When using
the MS-CSPNet to extract the multiscale features of small
targets, a 2.9% accuracy improvement is obtained, but the
FPS drops to 69.4 due to the increased number of network
parameters. By replacing the detection head and capturing the
contextual information of the target in the feature map, the
detection accuracy can be improved to 82.1% while reducing
the number of network parameters to 8.2 M. Finally, opti-
mizing the regression loss of the network for small targets
can improve the detection accuracy of the YOLOX++S
network for bird nests in high-voltage towers to some
extent.

As show in Table 4, YOLOX++S improves the detection
accuracy to 85.9%, and the detection speed is 68.7 FPS, indi-
cating that the improved network in this paper can effectively
improve the detection performance of small objects in the
transmission line.

D. EXPERIMENTAL RESULTS ON THE INSULATOR DATASET
The improved YOLOX++ network achieves better detection
accuracy and speed on the high-voltage tower bird’s nest
dataset with occlusion problems. To verify the effectiveness
of YOLOX++ for other object detection, we conducted
related experiments on the CPLID data benchmark, and the
results are shown in Table 5.
Defective insulators have smaller physical dimensions and

less feature information than bird’s nest targets. However, the
YOLOX-S algorithm achieves an insulator detection accu-
racy of 90% due to the absence of obscurants. Meanwhile,
our YOLOX++S model improves the detection accuracy by
6.6% and reaches the highest level among the four baseline
models. Although the method in this paper can effectively
achieve improved detection accuracy for small targets in real-
time industrial applications, the detection speed is still a
factor to be considered, which is also an issue that needs
further improvement in this paper.

In addition, as seen from the PR curve in Fig. 7, the
improved YOLOX++ network based on the YOLOX model
improves the detection accuracy and recall of objects to a new
level. To better verify the detection ability of the YOLOX++

network for defective insulators, we show the visualiza-
tion results in Fig. 8. Compared with the YOLOX network,
YOLOX++ in this paper can detect smaller insulator targets
and simultaneously improve the target detection accuracy.

E. ROBUSTNESS TO SMALL TARGETS
Considering that the targets in both the high-voltage tower
bird nest dataset and the CPLID dataset are small tar-
gets belonging to a single category, to better illustrate the
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FIGURE 8. Visualizations of the YOLOX and YOLOX++ model detection results (the top part contains the YOLOX results, and the bottom part
contains the YOLOX++ model results).

TABLE 7. Detection results obtained for different data categories.

robustness of YOLOX++ to small targets, we conduct a
study on the PASCAL VOC dataset, and the related results
are shown in Table 6.
The AP50 achieved by the YOLOX-S network on the

VOC dataset is 65%, and the detection accuracy for small

targets less than 32 pixels in size is only 25.2%. The net-
work is improved by the method in this paper. The AP50
obtained by YOLOX++S on this dataset is 74.3%, and the
APS is improved by 5.0%. In addition, according to the
detection results for each target category in Table 7, the
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YOLOX++ model can improve the detection accuracies
obtained for small targets such as ‘‘bird,’’ ‘‘boat,’’ and ‘‘bot-
tle’’ by 9.6%, 15.5%, and 10.5%, respectively, indicating that
the YOLOX++ model in this paper has better robustness to
small object detection.

V. CONCLUSION
In this work, we take bird’s nests and defective insulator
targets on transmission lines as research objects and combine
them with YOLOX target detection algorithms to solve the
problem of low accuracy and poor robustness of anomaly
target detection in power scenarios.

In this paper, we propose a YOLOX++ detector based
on MS-CSPNet. First, a new feature extraction network is
used to obtain more feature information about the target and
improve the detection accuracy. In addition, in the detec-
tion head, the classification and localization of small objects
are enhanced by depth and dilation convolution and joint
input features. Finally, the α-IoU loss function is used to
improve the regression accuracy of the target. The experi-
mental results show that the YOLOX++ model significantly
improved the detection accuracy of bird nests and defective
insulators in high-voltage towers compared with mainstream
detectors such as YOLOX, with mAP of 86.8% and 96.6%,
respectively. In addition, the experimental results of PASCAL
VOC show that the proposed YOLOX++ model has better
application value for small targets and can effectively solve
the detection problems caused by small size and foreign
object occlusion of abnormal targets on transmission lines.

Although the YOLOX++ network has achieved good
detection results for abnormal targets on power lines, real-
time detection still needs to be considered. In future research,
we will continue to propose a lightweight feature extrac-
tion network and feature enhancement network to signifi-
cantly improve the detection’s real-time performance based
on improving the target detection accuracy. In addition, only
two transmission line anomaly targets are investigated in
this paper. More anomaly targets will be tried in the next
step to continuously improve our method and enhance the
detection capability of the YOLOX model for transmission
line anomaly targets.
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