
Received 10 April 2023, accepted 14 April 2023, date of publication 17 April 2023, date of current version 21 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3267804

Universal Image Embedding: Retaining
and Expanding Knowledge With
Multi-Domain Fine-Tuning
SOCRATIS GKELIOS1, ANESTIS KASTELLOS2, YIANNIS S. BOUTALIS 1, (Senior Member, IEEE),
AND SAVVAS A. CHATZICHRISTOFIS 2, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, Democritus University of Thrace, Kimmeria, 67100 Xanthi, Greece
2Department of Computer Science, Intelligent Systems Laboratory, Neapolis University Pafos, 8042 Paphos, Cyprus

Corresponding author: Savvas A. Chatzichristofis (s.chatzichristofis@nup.ac.cy)

This work was supported in part by the Democritus University of Thrace; in part by Neapolis Academic Enterprises Ltd.; and in part by the
European Union and Greek National Funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, by the
Call RESEARCH-CREATE-INNOVATE, under Project T2EDK-02743.

ABSTRACT The overall purpose of this study is to propose a novel fine-tuning method for the CLIP
architecture that enables the retention of pre-existing knowledge from large datasets and the creation of
a domain-agnostic image encoder for universal image embedding, addressing the challenge of transferring
knowledge from source to target tasks using deep learning models. The basic design of the study involves
applying the proposed method directly (without fine-tuning) to a wide range of instance retrieval and
recognition tasks to evaluate its effectiveness. The study’s major findings indicate that the proposed method
significantly enhances performance on unseen domains without requiring separate fine-tuning for each
domain. The authors’ success in the Google Universal Image Embedding competition, where they were
awarded a Gold medal out of 1200 teams, inspired their proposed method. These results have significant
implications for real-life applications where multiple domains are common. In conclusion, the study offers
a practical solution for transfer learning that addresses the challenges of dealing with multiple domains and
advances deep learning, potentially inspiring further research in this area and driving progress in the field.

INDEX TERMS CBIR, vision transformers, CLIP, deep learning, global features, image retrieval, universal
image embedding, local features.

I. INTRODUCTION
The effectiveness of deep learning models in generalizing
their knowledge to new scenarios has been a matter of signifi-
cant interest in the machine learning community, particularly
in light of the proliferation of both vision and language
models and the ongoing expansion of available datasets.
Pre-trained vision models trained on large datasets, such as
Imagenet [1], often perform well on various computer vision
tasks [2], [3] [4], [5].As the size and complexity of these
models grow, techniques such as distillation [6], [7] and
federated learning [8] have emerged as promising approaches
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to handle bigger models efficiently while maintaining their
adaptability to various tasks and data distributions.However,
they can struggle when the data distribution between the
training dataset and the target task differs significantly [9].
For example, a pre-trained ResNet architecture trained on
ImageNet may perform poorly when applied to instance
recognition tasks. To achieve satisfactory performance, fine-
tuning such models using datasets more closely related to the
target task is often necessary.

Various techniques have been suggested for addressing
instance recognition problems by incorporating intricate loss
functions to enable the model to distinguish between dif-
ferent instances that may occur. While these approaches
have demonstrated promising outcomes, they necessitate the
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fine-tuning of the model for each benchmark individually,
as training a single model to recognize a diverse range of
objects can be challenging due to the distinctive characteris-
tics and features inherent to each object domain. For instance,
a model trained to recognize landmarks may need to learn to
identify specific architectural elements, while amodel trained
to recognize products may need to recognize branding logos
or packaging. As a result, it is common for researchers to
focus on a single object domain when developing recognition
models, allowing them to create models specialized for that
particular domain and achieve high accuracy. However, this
process is time-consuming, as it requires the creation of a
separate model for each individual object domain, and is also
not reflective of real-life applications, which are not restricted
to a single domain.

The Google Universal Image Embedding competition
hosted on Kaggle1 aimed to assess the universality and gen-
eralization ability of various techniques through the presen-
tation of three main challenges: (1) the absence of a provided
training dataset, requiring competitors to assemble their own
datasets for model training, (2) the significant differences
in categories in the test distribution, requiring the model to
handle intra-class similarity across a wide range of categories
with dissimilar characteristics in an image retrieval task at
the instance level, and (3) a constraint on the size of the
embedding to a maximum of 64.

Our team achieved 6th place in the Google Universal
Image Embedding competition. Our final solution was based
on the CLIP [10] architecture and involved training on the
LAION-2B dataset, a subset of LAION-5B [11]. We also
used the ArcFace [12] loss function, a popular loss function
in Kaggle competitions that increases intra-class separability,
specifically employing the SubCenter ArcFace [13] variant
of the original ArcFace with dynamic margins [14].

Inspired by the Google Universal Image Embedding com-
petition, our goal is to further evaluate the performance of
our fine-tuned model on a range of challenging instance
recognition and retrieval benchmarks.The motivation behind
this research is to develop a domain-agnostic image encoder
that can perform well across different domains without the
need for individual fine-tuning for each domain. Also, the
multi-domain fine-tuning field for instance retrieval is novel,
and there is limited prior work in this area, if any. In this
regard, we share some architectural choices that were refined
during the competition to maximize performance. We thor-
oughly assess the model’s discriminatory capability by uti-
lizing it as a black box image descriptor extractor in both
general and unseen domains (during the training phase).
Given a pre-trained neural network f with parameters θ and
a database of N images I1, I2, . . . , IN , the goal of fine-tuning
is to optimize the parameters θ of f to better fit the image
database.

1https://www.kaggle.com/competitions/google-universal-image-
embedding

The optimization problem can be formulated as:

θ∗
= argminθL(I , y; θ) (1)

where L is a loss function that measures the difference
between the predicted output y and the true label of image
I , and θ∗ is the optimized set of parameters that minimize the
loss function.

When the training set distribution is significantly different
from the fine-tuning set, the model might suffer from poor
generalization, leading to a suboptimal performance on the
target task. In contrast, when the fine-tuning set and the
test set share similar distributions, the model is more likely
to adapt effectively, reducing the loss function value and
improving its performance on the target task.

Let’s consider two fine-tuning sets, A and B, where A has a
similar distribution to the test set, and B has a significantly
different distribution. After fine-tuning the model on both
sets, we obtain the optimized parameters θ∗

A and θ∗
B . The

loss function values for these two sets can be represented
as LA and LB, respectively. Since the fine-tuning set A has
a similar distribution to the test set, the loss function value
LA is expected to be lower than LB. In general, when the
test set distribution differs significantly from the training
set, it becomes challenging to optimize the model for high
performance on the test set, as it contains previously unseen
data samples.

Once the neural network is fine-tuned, the goal of image
retrieval is to find the image Ii in the database that is most
similar to the query image Iq. This can be mathematically
expressed as:

Ii = argmaxsim(f (Iq; θ∗), f (Ij; θ∗)), j = 1, 2, . . . ,N (2)

where f (I ; θ∗) is the fine-tuned neural network with opti-
mized parameters θ∗, and sim is a similarity function that
measures the similarity between the feature representations
of the query image and the database image.

As the loss function value LA is lower than LB, the model
fine-tuned on set A (with parameters θA) is expected to yield
better image retrieval results than the model fine-tuned on
set B (with parameters θB), as the similarity function will
produce higher values for the model adapted to the similar
distribution.

In summary, the process of image retrieval using pre-
trained and fine-tuned neural networks involves optimizing
the parameters of a pre-trained neural network using a loss
function and then using the fine-tuned network to compute the
similarity between the query image and the database images.
In our case, our contribution can be summarized as follows:

• The development of a domain-agnostic image encoder
that emphasizes the universality of the embeddings.

• A novel training scheme that involves freezing specific
parts of the model, using distinct learning rates for the
head and backbone, and exposing the model to instance
categorization tasks involving multiple domains.

• Demonstration of the superiority of our fine-tuned
model to the pre-trained CLIP on all benchmarks,
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with exceptional results and even state-of-the-art perfor-
mance in some cases.

The structure of this paper is as follows. Section II provides
an overview of related work that is directly relevant to this
paper. Section III discusses the system architecture, pilot
employed in this study, and outlines the proposed scenario.
In Section IV, the authors assess the proposed scenario and
present the results obtained. Finally, Section V summarizes
the conclusions drawn from this study.

II. RELATED WORK
A. IMAGE-TEXT FOUNDATION MODELS
Image-text foundation models, which combine visual infor-
mation with raw text descriptions for classification tasks,
have gained popularity in recent years as an alternative to
traditional visual-based classification models. These models
do not have the restriction of a predetermined number of
classes, which can be limiting for certain tasks.

The CLIP [10] architecture is a state-of-the-art deep learn-
ing model that seeks to mitigate the limitations of pre-
trained models concerning their real-world performance.
It eliminates the requirement of task-specific training datasets
and can effortlessly adapt to various tasks without arduous
retraining the model. This is made possible by leveraging
widely available large image-text datasets in its training pro-
cess and attempting to match the visual perception of images
with natural language. Despite its remarkable performance
when compared to conventional ImageNet pre-trained mod-
els, CLIP still falls short in handling abstract or instance-
specific tasks.

ALIGN [15] constitutes a similar architecture to CLIP,
employing contrastive learning to match text-image pairs.
Despite the architectural differences, ALIGN adopts a novel
approach to data acquisition. Rather than subjecting the data
to cleaning or filtering processes that could result in the
presence of anomalous samples, ALIGN illustrates that the
sheer magnitude of its data compensates for any potential
noise, thereby incorporating a greater number of samples that
would have otherwise been disregarded. LIT [16] augments
CLIP and ALIGN by advancing a modular training paradigm
that includes two distinct models - one for image embed-
dings, and the other for textual embeddings. The authors also
introduce a novel technique referred to as contrastive tuning.
This approach leverages contrastive pre-training with a pre-
existing image model to detach the image model’s learning
process from image-text alignment, thereby improving the
image features.

To further improve the generalization capabilities of the
deep learning models the authors in [17] introduced Florence.
They achieved this by incorporating task adaptations and
the UniCL loss that integrates a single learning objective,
enabling the seamless collaboration of two distinct data
types (image-text). The task adaptations include mapping
scenes to objects, images to videos and images to natural
language. The data acquisition method is similar to ALIGN’s.
Florence significantly outperformed all the previous

image-text foundationmodels in various vision transfer learn-
ing tasks.

The unification of image and text information presented
a major challenge for foundational models in the image-text
domain. ALBEF [18] attempted to address this issue by inte-
grating the image and text spaces through cross-modal atten-
tion. The authors utilized the Image-Text Contrastive (ITC)
loss to enhance the learning capability of the multimodal
encoder while concurrently improving the hard negative min-
ing selection process. Additionally, momentum distillation
was employed to facilitate the model’s learning from a larger
dataset.

The Contrastive Captioners (CoCa) [19] represent a signif-
icant step forward in the image-text integration, addressing
several limitations inherent to ALBEF regarding computa-
tional efficiency and performance. This model can be effec-
tively trained from scratch, without any pre-trained weights,
by employing a combination of contrastive and generative
loss. The cross-attention mechanism is exclusively employed
in the multimodal decoder layers to integrate the outputs
from the image encoder. The captioning loss further enhances
the integration by serving as a high-level, fine-grained
descriptor. CoCa exhibits state-of-the-art results in various
zero-shot tasks bridging the gap with supervised learning
models.

B. METRIC LEARNING
Metric learning is a field of study that aims to develop
discriminative descriptors, which are useful for classifying
instances within datasets that have small inter-class variance.
These datasets consist of objects that belong to the same
category but are not the same instance (for example, different
species of birds, cars, or types of food). There are various
techniques for training models to perform tasks such as
image retrieval and fine-grained classification. Many of these
approaches focus on the loss function used during training,
which can be divided into contrastive losses and classification
losses.

Triplet loss [20] and N-pair loss [21] (InfoNCE [22],
NT-Xent [23]) represent early endeavors in the field of con-
trastive loss functions. The former aims to reduce the prox-
imity between positive pairs while concurrently maximizing
the separation between negative pairs by utilizing triplets
comprised of one positive and one negative example. The
latter expands upon triplet loss by comparing a single positive
example to multiple negatives, effectively generalizing the
triplet loss concept. Both of these losses are sensitive to the
selection process of positive and negative pairs, with the most
favorable results being achieved through the use of hard-
negative or semi-hard negative mining. Subsequently, a more
advanced learning paradigm emerged, SupCon loss [24],
which incorporated multiple positive and negative examples,
thereby eliminating the need for fine-tuning the negative
mining process. Another similar loss function is the multi-
similarity loss [25], which uses the LogSumExp operation on
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all pairs but gives special emphasis to the relative similarities
between each embedding and its neighbors.

Classification losses include various modifications to the
classic softmax loss. Normalized softmax [26] normalizes the
input vectors to have unit magnitude, while Proxy-NCA [27]
implements softmax on the Euclidean distances. Addition-
ally, the angular-losses family, consisting of Arcface [12],
CosFace [28], SphereFace [29], is a prevalent approach.
ArcFace and CosFace compute the margin based on cosine
similarity between the output embeddings and class weights,
albeit they differ in their margin computation method. A vari-
ant of ArcFace, known as Sub-center Arcface [13], has been
proposed to make the loss robust to label noise. Sphereface,
on the other hand, transforms the features into a hypersphere
space by computing the angle between the output vector and
class weights.

III. THE PROPOSED APPROACH
A. MODEL ARCHITECTURE
Our approach utilized the CLIP architecture, which was
initially proposed for the image-to-text task. Two different
datasets were utilized for the training process in two public
implementations - OpenAI’s CLIP [10] and OpenCLIP [30].
The former involved pre-training the model on Imagenet22K,
with ViT-L being the best-performing model. The latter
involved training on the LAION-2B dataset [11], with ViT-H
being the best-performing model. We only utilized the image
encoder section of the original topology for both implemen-
tations. Our results indicated that the OpenCLIP model was
significantly better than OpenAI, primarily because ViT-H
had been exposed to more data and had greater learning
capacity than ViT-L. Therefore, we proceeded with ViT-H
CLIP.

The Vision Transformer (ViT) [31] is a new approach
that uses the encoder part of the NLP Transformer [32] to
process images. Images are split into fixed-sized patches and
fed into the model with a learnable positional embedding
vector assigned to every patch. The model uses self-attention
with three components (Query, Key, and Value) to highlight
important patches and a position-wise feed-forward neural
network. The ViT model uses constant latent vector size in
all its layers and incorporates skip connections and layer
normalization. Multi-headed attention improves performance
by allowing the model to focus on different positions and
representation subspaces. The ViT-H14 model has 32 layers,
a hidden dimension of 1280, an MLP size of 5120, 16 heads,
and 632 million parameters.

We also modified the head by taking the output of the
projection layer and feeding it to a BatchNormalization-
Dropout-FullyConnected (FC) block. The dropout rate is set
to 0.2, and the FC downsizes the 1024-dimensional embed-
ding to 256. The 256 vector passes through the ArcFace
layer to obtain the classification logits. Figure 2 showcases
an overview of our proposed architecture.

To facilitate the instance retrieval task, we employed the
Sub-Center ArcFace methodology. This approach has been

suggested as a viable alternative to traditional facial recogni-
tion losses, as it demonstrates improved training convergence
and performance by utilizing margin losses. The ArcFace
methodology relies on the normalization of the dot product
between the features extracted by a deep convolutional neural
network (DCNN) and the last fully connected layer, resulting
in a cosine distance calculation that allows for the compu-
tation of the angle between the feature and the centroid for
each unique instance. An additional angular margin is then
appended to each computed angle, and the resulting angles
are converted to cosines before undergoing cross-entropy cal-
culations. This variant of ArcFace enhances robustness when
presented with noisy training data by relaxing the constraint
that each class has a single center and introducing multiple
sub-centers per class. Models trained using this approach can
showcase improved representation capability and generate
high-quality embeddings.

Despite the relatively even distribution of classes in our
training dataset, some classes exhibit a disparity in repre-
sentation, with some having fewer instances (approximately
5 images per class) in comparison to others (more than
40 images per class). To mitigate this issue, we utilized
dynamic margins. Essentially, these margins are allocated
dynamically for each class based on its number of instances.
We assign larger margins to underrepresented classes to
enhance the training procedure to facilitate their differenti-
ation. The upper bound for the margins was established as
0.45, while the lower bound was set at 0.05.

B. DATASETS
We conducted a comprehensive examination of datasets
closely aligned with the distribution of the test. To attain our
optimal score, we selectively utilized subsets from the follow-
ing datasets: Google LandmarksV2, Products10k, Food-101,
iMaterialist, Fashion200k, DeepFashion, RP2K, Stanford
Cars, Stanford Online Products, MET Artwork dataset, and
Storefront-145. Despite the absence of instance labels in
iMaterialist, we manually generated approximately 400 addi-
tional labeled furniture images with the assistance of the
pre-trained CLIP. In an attempt to approximate the category
percentages on the test set, we prioritized the most signifi-
cant categories. During our preliminary experiments, we had
roughly 200k images in the training set and observed that
the dataset size and public leaderboard score displayed a
corresponding trend. Hence, we amassed a dataset consisting
of approximately 655k images from the aforementioned cat-
egories, randomly selecting classes with a minimum of three
samples.

For the evaluation process, we selected a diverse array
of instance recognition and retrieval datasets across a broad
range of domains to demonstrate the universality of our fine-
tuned model. To this end, we employed datasets from both
domains familiar to the model through the training proce-
dure and those unknown to it, including Paris6k, Oxford5k,
INSTRE, In-Shop, Consumer-to-Shop, Cub200, Stanford
Cars, UKBench, Inria Holidays, DukeMTMC-reID.
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FIGURE 1. System architecture.

FIGURE 2. Test distribution of object types in the dataset of Kaggle
competition.

• UKBench [33] comprises 10,200 images, divided into
2250 categories. Each category contains four pictures
of the same object, captured from different angles and
lighting conditions. To evaluate retrieval accuracy, the
top-4 candidate score (NS score) is utilized for this
dataset.

• INRIA Holidays [34] contains 1491 images captured
by cellphones, depicting various holiday scenes and
objects. The number of images per group ranges
from 2 to 13. Unlike the UKBench database, the INRIA
Holidays dataset offers numerous query images. The
ground truth of the dataset includes images that match
the query image in visual definition but does not specify
whether they depict the same object or scene.

• The Paris6K Dataset [35] contains 6412 photographs
that showcase distinct landmarks in Paris. Out of these,
55 images are dedicated to buildings and monuments
that were requested to be included. Compared to the

Oxford5K dataset, Paris6K exhibits a greater diversity
of landmarks.

• The Oxford5K dataset [36] is comprised of 5062 images
from Flickr that depict buildings. The dataset has been
manually annotated to create a comprehensive ground
truth for 11 unique landmarks, each of which is repre-
sented by five potential queries. The index comprises a
total of 55 requests. Notably, different perspectives of
the same building are labeled with the same name in this
dataset, making it a challenging task for image retrieval.

• The INSTRE [37] dataset is utilized to evaluate various
computer vision algorithms, including feature match-
ing, invariant features, instance-level object retrieval,
detection, and recognition. The dataset is divided into
three separate subsets - INSTRE-S1 (single object
case 1), INSTRE-S2 (single object case 2), and
INSTRE-M (multiple object case). INSTRE-S1 con-
sists of 11,011 images, and INSTRE-S2 consists of
12,059 images, with each subset having 100 distinct
object classes. INSTRE-M comprises 5,473 images,
grouped into 50 two-tuple classes, each featuring two
distinct objects. The dataset categorizes the objects
into architectures, daily stereoscopic objects, and planar
objects.

• Stanford Cars [38]: The Cars repository encompasses
16,185 visual depictions, classified into 196 distinct
categories of automobiles. The corpus is partitioned into
two segments, with 8,144 images allocated for training
and 8,041 designated for testing purposes, each category
being apportioned equitably.
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• The In-Shop Clothes Retrieval Benchmark constitutes a
substantial portion of the DeepFashion [39] database.
Substantial variations in pose and scale characterize
this subset and exhibit a rich diversity of clothing
items with a considerable quantity of annotated images.
Specifically, it comprises 7,982 articles of clothing,
52,712 in-shop clothing images, and approximately
200,000 cross-pose/scale pairs. Additionally, each
image is comprehensively annotated with bounding
box information, garment classification, and pose
classification.

• The Consumer-to-Shop Clothes Retrieval Benchmark
is also a substantial component of the DeepFashion
database that evaluates the competency of a retrieval
system to match consumer photos of apparel to the cor-
responding shop photo. This benchmark is distinguished
by the presence of cross-domain correspondences and
diverse variations encountered in real-world scenarios.
It encompasses a substantial number of clothing items,
totaling 33,881, and an abundant quantity of consumer
and shop-clothing images, numbering 239,557, along
with 195,540 cross-domain pairs. Annotations are simi-
lar to In-shop.

• The CUB-200 dataset [40], also known as the Caltech-
UCSD Birds-200, is a comprehensive image dataset of
birds that contains 200 species of birds and more than
11,000 images. The dataset was created to train com-
puter vision algorithms and evaluate their performance
in recognizing and classifying birds. The images in the
dataset were taken from various angles, under different
lighting conditions, and in various environments.

• Google landmarks v2 (GLDv2) dataset [41] is a large-
scale instance recognition/image retrieval dataset that
features more than 5M images with 200k different
classes. GLDv2 dataset poses significant difficulties for
researchers due to the disparity in the distribution of
samples across its different classes and the significant
variance within each class.

• The RP2K dataset [42] is a recent and extensive col-
lection of instance recognition data for the retail indus-
try, comprising over 500,000 images and featuring
2000 distinct categories. The images were acquired
through manual means within physical retail stores,
under conditions that accurately reflect reality.

• The Food Recognition Dataset [43] contains
101,000 images of 101 food categories, created to
evaluate the performance of a Random Forest-based
technique for extracting discriminative parts of images.
The images were pre-processed only to consider patches
aligned with image superpixels, called components, for
improved efficiency in mining and classification.

• Another large-scale dataset in the retail sector is the
Products-10k [44] which is human-labeld and features
10k products. The products belong to diverse categories:
fashion, furniture, packaged goods, and food. Labels are
provided at both instance and category levels.

• The Stanford online products dataset [45] comprises
around 120,000 images and over 22,000 classes. The
images have been sourced from eBay and primarily con-
sist of objects related to home appliances and furniture.

• Fashion200k [46] is another dataset created by crawl-
ing various online shopping websites to collect fashion-
related images and their descriptions. The dataset
includes five clothing categories: dress, top, pants, skirt,
and jacket. The purpose of this dataset is to develop a
visual-semantic embedding.

• Storefront-1452 is a collection of 4,545 retail storefront
images generated by a Kaggle user. The images are
divided into 145 storefront brands.

• DukeMTMC-reID [47] is a dataset created by assem-
bling high-resolution videos captured by eight cam-
eras. The dataset includes footage of pedestrians, which
has been manually cropped. The dataset comprises
16,522 images and 702 pedestrian instances.

• Met [48] is an art collection dataset sourced from
the Metropolitan Museum of Art. It comprises around
400,000 images and 224,000 instances. Like the Google
landmarks dataset, Met also exhibits a disparity in the
distribution of samples across its various classes, with
more than half of the classes containing only one sample.

• iMaterialist3 is another Kaggle dataset that was cre-
ated as part of the Fifth Workshop on Fine-Grained
Visual Categorization(FGVC5) workshop for fine-
grained visual categorization. It contains over 210k
images from 128 furniture and home decor classes.

C. EXPERIMENTS
The OpenCLIP model offers top-notch performance on zero-
shot tasks, enabling it to provide high-quality image descrip-
tors without additional training. However, training the model
without causing catastrophic forgetting was challenging as
significant changes to the learned weights can cause the loss
of previously acquired knowledge. During our initial training
attempts, we kept the CLIP backbone frozen and trained the
head for five epochs with a learning rate of 0.0001. Subse-
quently, we unfroze the ViT-H until resblock 15 and trained
for an additional epoch with the learning rate reduced by a
factor of 10. As we incorporated more data into our pipeline,
we realized we could further train the backbone. To address
this, we adopted a scheme that involves applying different
learning rates to the backbone and the head.

LearningRate =

{
1e−7, for model.backbone
1e−4, for model.head

and trained the model for four epochs. We utilized a batch
size of 32 and employed the Adam optimizer. We limited the
model’s unfreezing to resblock 31 to resblock 15 for three
primary reasons. Firstly, we did not observe any improvement

2https://www.kaggle.com/datasets/kerrit/storefront-146
3https://www.kaggle.com/c/imaterialist-challenge-furniture-2018
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by unfreezing additional blocks. Secondly, we considered the
computational complexity and training time associated with
unfreezing more blocks. Finally, we noted that the initial
layers typically contain low-level generic features, andwe did
not want to modify the learned features from a larger dataset.

We used the following augmentations during training
inspired by past Kaggle instance-level competitions: Hori-
zontal flip, image compression, shift, scale, rotate, cutout,
random brightness, contrast, and RGB-shift.

IV. EVALUATION RESULTS
To exhibit the refined generative capacity of CLIP, we have
incorporated a diverse range of instance recognition and
retrieval tasks and have contrasted our results with those
obtained from the pre-trained CLIP and with the current
top-performing models for each benchmark. The assessment
datasets can be divided into two categories: relevant datasets
to the training domain - that is, domains that have been
encountered during the training procedure; and datasets that
encompass uncharted domains, where the model has not been
directly fine-tuned to separate instances.

The first category comprises of Paris, Oxford, consumer-
to-shop, Stanford cars, datasets similar to what the model has
been trained on, such as Google landmarks, Stanford training
set, and In-Shop dataset, which includes apparel. The rest of
the datasets belong to the second category as they either con-
tain generic instances such as UKBench, Inria, INSTRE or
unknown instances such as CUB-200 and DukeMTMC-reID,

The model was refined during Kaggle’s competition to
yield optimal results on Kaggle’s private dataset. In this
manuscript, the model has been employed out-of-the-box,
without any additional tweaks to enhance its performance
on the utilized benchmarks. This constitutes another notable
advantage of our approach, which deviates from the conven-
tional practice of fine-tuning amethod by getting feedback on
the evaluation benchmarks, as is often observed in published
results.

For inference, we resized the images to 224×224 to match
the expected input of the model and then normalized them.
Feature extraction was carried out by utilizing the projection
layer located after the final resblock of ViT-H14, which had
an embedding size of 1024. In our specific scenario, we also
incorporated the arc face-refined descriptor with a dimension-
ality of 256 and the PCA instance, which we had previously
used in Kaggle’s competition, to reduce the embedding size
from 256 to 64. The PCA was trained on a public dataset4

consisting of 130k images from all categories of the test set,
which was shared on Kaggle.

Tables 1 and 2 showcase the performance of our approach,
as well as the original clip and the state-of-the-art (SOTA)
result for each individual benchmark. It’s important to note
that we cherry-picked the best-performing algorithm for each
distinct domain based on reported results to compare with

4https://www.kaggle.com/datasets/rhtsingh/google-universal-image-
embeddings-128 × 128

our approach. This means that we compared our method to
multiple algorithms that have set the SOTA result in each
domain, emphasizing the importance of our performance
evaluation. The SOTA row in the results table represents the
highest reported result for each domain.

To elaborate, in studies [50] and [49], researchers focused
on effectively merging local and global features within CNNs
and Transformer architectures to bolster their performance.
In [47], a novel approach is introduced to enhance Vision
Transformer embeddings by applying hyperbolic geometry
to these structures. In [53] and [55], the authors developed
methods to capitalize on the nearest neighbor graph, which
retains discriminative information. The first technique uti-
lizes a convolutional graph network to seamlessly integrate
graph data into the embedding. In contrast, the secondmethod
presents a manifold-ranking procedure accompanied by an
innovative graph architecture. Consequently, both approaches
effectively employ the nearest neighbor graph to elevate
the overall performance of their respective models. Lastly,
the research in [51] investigates the use of class centroids
for retrieval by implementing a novel centroid triplet loss
function, while in [54], the authors trained a model to
determine the optimal method to complement the feature
output of a baselinemodel and subsequently fuse the acquired
information.

Comparing the CLIP model and our finetuned variant on
Table 1 and 2, we observe a significant enhancement in results
across all benchmarks consequent to finetuning. Notably,
the finetuned model substantially increases performance for
datasets within similar domains and improves upon generic,
unknown domains. In view of the likelihood of catastrophic
forgetting in such circumstances, which can lead to a distri-
butional shift, our findings attest to the effectiveness of the
proposed training procedure. The results prove that the model
leverages its pre-existing learned features and expands its
knowledge to new domains without any forgetting occurring.

The second observation that can be extrapolated from the
figures pertains to the performance of our method relative to
the SOTA. Even though the SOTA outcomes presented herein
are derived from explicit training on pertinent domains for
each benchmark while also applying other advanced tech-
niques(feature fusion, re-ranking, etc.) that improve perfor-
mance substantially, our model exhibits comparable and even
superior performance in certain cases, such as Consumer-to-
shop and Stanford Cars. Our approach demonstrates notable
competency even on unfamiliar domains, such as CUB,Duke,
and Instre. It is worth noting that our training set did not
contain a single image from these datasets or similar classes,
highlighting the generalization ability of ourmethod. It stands
to reason that the difference between domain-specific and
domain-agnostic models is relatively small across a broad
range of domains, and with the incorporation of a larger
dataset, the disparity would likely be negligible.

It is important to highlight that the comparison tables
presented in our paper do not directly aim to compare our
methodwith SOTAbenchmarks. Instead, we demonstrate that
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TABLE 1. Performance evaluation of fine-tuned CLIP on general or new domains compared to the original CLIP and SOTA methods. The first column also
includes the corresponding embedding size. Specifically, 1024 refers to the size of the last projection layer, 256 refers to the arcface refined layer, and
64 refers to the PCA.

TABLE 2. Perfomance evaluation of fine-tuned CLIP on general or new domains compared to the original CLIP and SOTA methods. The first column also
includes the corresponding embedding size. Specifically, 1024 refers to the size of the last projection layer, 256 refers to the arcface refined layer, and
64 refers to the PCA.

a single model with a single fine-tuning and a single descrip-
tor can deliver impressive results across diverse domains,
approaching or surpassing SOTA techniques’ performance.
It is worth noting that many SOTA methods have been tai-
lored to achieve optimal performance in specific benchmarks,
which could potentially lead to overfitting for those par-
ticular tasks. Our approach, on the other hand, emphasizes
the model’s versatility and adaptability to handle various
domains, providing a practical solution for transfer learning
across multiple domains.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed a method that builds on the pre-
existing CLIP architecture on LAION-2B dataset to create
a universal image encoder that can be fine-tuned for tasks
such as image retrieval and recognition. We demonstrate
that our method outperforms the original CLIP in all bench-
marks, including those in familiar and unfamiliar domains,
and can even match or surpass the performance of state-of-
the-art algorithms trained explicitly for a single domain. The
results suggest that our approach offers a practical solution
for transfer learning that addresses the challenges of dealing
with multiple domains. The implications of this research are
significant for real-life applications where multiple domains
are common.

One significant limitation that may arise in this setup is
the high number of distinct instance classes involved when
multiple domains are considered. This problem is twofold:
first, it can become computationally burdensome as the fully-
connected layer grows in size, and second, instance sepa-
rability can become increasingly difficult as the number of

domains and instance classes increases. A larger dataset with
even more domains would need to be used to understand
this limitation better. Unfortunately, such a dataset does not
currently exist.
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