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ABSTRACT This paper presents a new approach to estimate the probability of line-of-sight (LoS) for
unmanned aerial vehicle (UAV) communications. We provide lower and upper bounds on the probability
of LoS in terms of what we call the first-building-LoS probability. We provide a statistical model for the
ground distance to the first building along the line from the user to the UAV. Based on this we provide a
general formula for the first-building-LoS probability for urban environments where the building heights
follow a Rayleigh distribution. We show that the first-building-LoS probability is a good estimate for the
probability of LoS. Our closed-form formulas estimate the probability of LoS significantly more accurately
than the existing approaches. We also obtain closed-form estimates of Area Line-of-Sight Probabilities for
a scenario in which the UAV provides coverage to a circular region on the ground.

INDEX TERMS Aerial base stations, channel modelling, drones, probability of line of sight, UAV
communications, unmanned aerial vehicles.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) (also known as drones)
have been recently considered for use as aerial base stations.
UAVs are expected to be a vital component of 5G and
beyond 5G architectures [1]. UAVs can be used to enhance
the existing terrestrial infrastructure when there is a high
demand for communication services for a short period
[1], [2], [3], e.g., UAVs can act as additional base stations
for large gatherings such as sports events [4]. There is also
a rise in UAV applications in non-military public safety
scenarios [1], [3], [5], [6], e.g., UAVs can be rapidly deployed
during disaster scenarios such as earthquakes, bush fires,
floods, where the terrestrial communication infrastructure is
affected [2], [7].

The large scale propagation characteristics for the UAV
channel depend on whether the link (between the UAV and
the ground user equipment (UE)) is Line-of-Sight (LoS)
or not. Hence, a key aspect of UAV channel modelling
is the calculation of the probability of LoS, which is
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defined as the probability that the direct-path between the
UAV and UE is not blocked by any of the buildings. The
probability of LoS is required in many UAV applications,
including determining the optimal height and placement of
a UAV, for an energy-efficient deployment of UAV, and for
path-planning [6], [8], [9].

In this paper, we consider the problem of characterising
the probability of LoS for a wide range of urban built
environments. We derive a LoS probability expression which
is more accurate than previous results, and which is valid
for arbitrary Rayleigh building height distributions, arbitrary
square building footprint sizes and street widths.

In the International Telecommunication Union Radio-
communication Sector (ITU-R) standard [10], [11], the
probability of LoS for a given ground distance (distance
between UAV and UE) and for a given UAV height was
proposed. The probability of LoS was calculated assuming
that buildings were evenly spaced along a line connecting
the UAV and UE. Importantly though, that one-dimensional
(1D) assumption only holds when the projection of the line
connecting the UE and UAV on the ground is parallel to the
direction of the streets. In general of course, the spacing of
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the buildings (along the LoS) depends on the orientation of
the UAV and the UE with respect to the street grid in two
dimensions, andmoreover the buildings are not evenly spaced
along that direction in general.

In [8] and [12], closed form expressions for probability of
LoS as a function the elevation angle were provided for four
specific urban environments. In [8], the functionwas obtained
by curve-fitting the results of the 1D method in [11] for
various elevation angles. In [12], a function was obtained by
curve-fitting Monte-Carlo simulations for a two dimensional
(2D) grid model. In each case, the results only applied to the
specific scenarios that were considered, in terms of building
heights, building footprint sizes, and street widths, and cannot
be directly applied for other grid dimensions.

In contrast to the grid models, an alternative built model
was considered in [13], [14], and [15], where the buildings
were located on a 2D plane according to a homogeneous
Poisson point process. In [13], the probability of LoS was
derived assuming that all the building heights are equal.
In [15], communication between two UAVs was considered.
In each case, the Poisson point process model with restricted
building height assumptions facilitated mathematical anal-
ysis, however it is not realistic, since in practical urban
settings buildings are located in planned blocks with a grid
structure. In [14], buildings were also located according to
a spatial Poisson Point Process. In [16], the probability of
LoS as a function of UAV height and ground distance was
presented. It assumed that the building adjacent to the mobile
in the direct path will be the dominant obstruction to radio
propagation. It also made a simplifying assumption that the
building height distribution is symmetrical around the mean,
in order to facilitate their analysis. Their results are therefore
not applicable to the practical building model in ITU-R [11],
which is Rayleigh distributed, and therefore not symmetrical.

Many papers have used the probability of LoS models
from [8], [11], [12], [13], [14], and [16] when addressing
specific problems of UAV communications, including [6],
[9], [15], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34]. As such, they
all suffer from the inaccuracy of those models, from either
making 1D geographical approximations or assuming totally
randomised building location models.

In [35], we presented a significantly more accurate
probability of LoS model that can be applied to the specific
problems in [6], [9], [15], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], and [34]. We adopted the full 2D environment model
from [11] and provided an accurate numerical approach to
calculate the probability of LoS as a function of ground
distance and UAV height for the four urban environments
specified in [11], which had not been done before.

In [36], a 2D model was also considered for a UAV in a
mm-wave setting, in which there was a fixed base station
located in a street or intersection, and the UAV is placed
above an arbitrary fixed position on the 2D street grid.
Similar to our work [35], [37], they showed that the earlier

1D approaches based on [10] and [11] significantly over-
estimate the line of sight probability. Themodel in [36] differs
from the standard one [10], [11] in that street locations are
random, being governed by two independent Poisson point
processes. Closed-form expressions for the probability of
LoS to the fixed base stationwere obtained. They also showed
how to compute an area line-of-sight probability, but did not
provide a closed form expression for this quantity. In this
paper, we focus on a different problem where the UAV is the
base station communicating with randomly located UEs on
the ground, and we provide closed-form expressions for the
average probability of LoS for a UE at a fixed ground distance
from the UAV.

In our previouswork [35], we took a curve fitting approach,
as in [8] and [12], which we applied to four scenarios
identified in the ITU-R standard [10], [11], corresponding
to specific choices for building footprint size, street width,
and building height distribution. This approach can be
extended to other scenarios, but time consuming numerical
computations are required to curve fit to each particular
scenario.

In this paper, we propose a fully 2D approach to the
practical case of a rectangular street grid, and where the UAV
can be uniformly randomly located at any orientation relative
to the UE and the grid. We make an important observation
that the probability of LoS is dominated by the building that
is nearest to the UE along the direction towards the UAV.
We derive the associated first-building-LoS-probability, and
use it to provide two closed form expressions that accurately
approximate the average probability of LoS function. Our
expressions apply to a general urban environment with
arbitrary parameters of building footprint size, street width,
and Rayleigh building height distribution. This is in contrast
to expressions derived in other works, such as [8], [12],
and [35], that are restricted to particular settings of the
building footprint size, street width, and building height
distribution. Using Monte-Carlo simulations, we show that
our results are much more accurate compared to existing
methods.

In addition to considering homogeneous building distri-
bution scenarios, it is also important to consider practical
built landscapes, where the building distributions are in-
homogeneous. For example, consider a UAV flying over
high-rise buildings, communicating with UEs in a nearby
suburban area. The buildings between the UAV and UE are
a mixture of suburban and high-rise, with different height
distributions.We show that our first-building-LoS probability
expressions (derived for the homogeneous case) are also
accurate in in-homogeneous environments. We provide the
range of elevation angles and Rayleigh parameters for which
our model is highly accurate.

Our contributions are as follows:
• We provide a lower and upper bound on the average
probability of LoS for homogeneous building distri-
butions. The bound is in terms of the first-building-
LoS probability. We show that the first-building-LoS
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probability is a good estimate for the average probability
of LoS.

• We provide a statistical model for the distance to the first
building along the line from the UE to the UAV.

• We then develop a novel method for calculating the
first-building-LoS probability. Based on this we provide
two closed-form estimates for the first-building-LoS
probability that apply for all urban environments where
the building heights follow a Rayleigh distribution.
Our approach can be easily adapted for other building
height distributions, i.e., it is not limited to the Rayleigh
distribution.

• We provide the Monte-Carlo simulation results for the
four urban environments that were considered in [11].
We compare the results with our method and others from
the literature. We show that our closed-form formulas
are much closer to the Monte-Carlo simulations.

• We provide a formula to compute the area probability
of LoS, which is the average probability of LoS when
the UE is randomly (uniformly) located in a cell of
radius R around the UAV. We provide two closed-form
approximation formulas for this quantity.

• We propose a practical inhomogeneous built environ-
ment, where the building height distribution changes
with the building location on the 2D plane. Using
a Monte-Carlo simulation, we show that our results
are applicable in this inhomogeneous case, for a
wide-range of elevation angles and building height
parameters.

II. UAV OPERATING ENVIRONMENT PARAMETERS
An urban built environment is characterized by a two
dimensional grid of buildings, as shown in Fig. 1. In the
figure, the buildings are represented with light grey squares,
and the white space between them are streets. The width
of each building is denoted by w. The distance between
the buildings (or the width of the street) is denoted by
s. It is a homogeneous model in which the heights of
buildings are independent and identically distributed (i.i.d.)
Rayleigh with parameter γ, that is constant across the entire
region. This well-established model has been adopted as
part of the International Telecommunication Union Radio
Communication Sector (ITU-R) standard [10], [11].

An urban environment is characterized by the following
three statistical parameters, 1) α, the ratio of built-up building
area to the total area; 2) β, the number of buildings per sq.km;
and 3) γ. We note that s and w can be obtained from α, β as
follows.

w = 1000
√

α

β
; s =

1000
√

β
− w (1)

The parameters α, β and γ for the four urban environments
in Table 1 are specified by ITU-R in [11].

For the UAV and UE locations, we consider that the UEs
are uniformly distributed in the streets, and the UAV is
uniformly likely to be flying over each point on the 2D plane.

FIGURE 1. A top-down view of the urban environment showing the
buildings (grey squares) and streets, as well as example UE and UAV
locations. The Blue rectangle illustrates the 1D modelling approach taken
in [11]. The Green rectangle illustrates the more accurate 2D modelling
approach we take in this paper.

TABLE 1. Parameters for selected environments [11], [12].

FIGURE 2. Communication link between UAV and UE.

III. PROBLEM FORMULATION
Consider a communication link between a UAV and a ground
based UE as shown in Fig. 2. The UAV flies at a height h,
above a point v on the ground, that is at a ground distance r
from the UE at location u, with elevation angle, θ .
As mentioned in Section II, we consider that the

building heights are i.i.d Rayleigh distributed with param-
eter γ. Hence, the probability that a building at a
ground distance r ′ from the UE, blocks the direct-path
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FIGURE 3. Figure depicting the regions U and Vu.

(between UAV and UE) is

e
−

1
2

(
hr ′
γr

)2
(2)

For convenience, let ρ :=
h2

2γ2r2
.

In order to compute the probability of LoS, we need to
formulate a probabilistic model of the UE and UAV locations.
Without loss of generality, we will assume that the UEs are
uniformly distributed in a square region around a randomly
selected building. Let U be the square annulus around the
building, i.e., the shaded region in Fig. 3. Consider a UE at
location u ∈ U . We will assume that the UAV is uniformly
randomly located at a ground distance of r from u, i.e., the
distribution of the 2D UAV location is uniformly random on
the circle Vu =

⋃
φ∈(0,2π]{u+ (r cos(φ), r sin(φ))}. Let ω :=

(u, v) denote a sample point in � := {ω : u ∈ U , v ∈ Vu},
which is the set of all possible UE and UAV location pairs.

We define the probability measure µ on � in terms of an
underlying probability space, which is the set of all (u, φ)
pairs, where u ∈ U and φ ∈ (0, 2π ]. The ground location
of the UAV is a random variable defined by v(u, φ) := u +

(r cos(φ), r sin(φ)). The underlying probability measure µ is
the product of the marginals, with u uniformly chosen from
U , and φ uniformly chosen from (0, 2π ]. The probability
measure µ on � is then defined by∫

ω∈�

f (ω) dµ(ω) =

∫
u∈U

∫
φ∈[0,2π]

f (u, v(u, φ))
1
2π

dφ dµ1(u)

(3)

where f is the indicator of any event of interest, and µ1(·) is
the uniform probability measure onU . From now on, we will
treat � as the sample space, with probability measure µ.

A. PROBABILITY OF LoS
Consider an ω ∈ �. Let N (ω) be the number of buildings
on the line segment between u and v. Let Pb(ω, h) denote the
probability of blockage for a given ω and UAV height h. Let
ri(ω) be the ground distance between the UE location u (given
by ω) and the ith building in the direction of the UAV location
v (also given by ω). From (2), we obtain1

Pb(ω, h) ≜ P(blockage | ω, h)

= e−ρr21 (ω) +

N (ω)∑
i=2

( i−1∏
j=1

(1 − e−ρr2j (ω))
)
e−ρr2i (ω)

(4)

The average probability of blockage (i.e., averaged over
�) for a given UAV height h, and a given ground distance r ,
is denoted by Pb(r, h), and is given by

Pb(r, h) =

∫
�

Pb(ω, h)dµ(ω) (5)

The average probability of LoS, PLoS(r, h), is given by

PLoS(r, h) = 1 − Pb(r, h) (6)

Note that this probability is an average over all possible UAV-
UE orientations, whereas the closed-form expression in [36]
is for a fixed UAV-BS orientation with respect to the grid (and
for a different building and street model, as we discussed in
the introduction).

The key idea in this paper is to focus on the role of the
first building along the line from the UE to the UAV. For a
randomly chosen UE and UAV location pair, i.e., ω is chosen
from � according to µ, the probability that the direct-path is
blocked by the first building along the line from the UE to the
UAV location, for a given ground distance r , and UAV height
h, is denoted by P1b(r, h), and is given by

P1b(r, h) =

∫
�

e−ρr21 (ω)dµ(ω) (7)

The probability that the direct-path is not blocked by the
first building along the line from the UE to the UAV’s location
is denoted by P1LoS(r, h), which we call the first-building-LoS
probability, and is given by

P1LoS(r, h) = 1 − P1b(r, h) (8)

In the following section, we will provide a lower and upper
bound on PLoS(r, h) in terms of P1LoS(r, h).

IV. LOWER AND UPPER BOUNDS ON THE
PROBABILITY OF LoS
Let ai(ω, h) denote the i-th term in (4) for i = 1, . . . ,N (ω).
This is the probability that the direct-path is blocked by the
ith building and not by any of the previous i − 1 buildings,
for the given (ω, h). We observe that the ratio ai+1(ω,h)

ai(ω,h) is a
function of ri(ω) and ri+1(ω), and more particularly, that it is

1Note that the full random experiment involves building height real-
izations for the N (ω) buildings. We take account of the building heights
using (2).
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a function of ri+1(ω)−ri(ω) and ri(ω). This observation helps
us to upper bound the ratio, and will be used later to obtain
Theorem 1.

Note that for each 1 ≤ i ≤ N (ω) − 1,

ai+1(ω, h)
ai(ω, h)

=
(1 − e−ρr2i (ω))e−ρr2i+1(ω)

e−ρr2i (ω)
(9)

Note that from the geometry of the grid, ri+1(ω) ≥ ri(ω)+
s, ∀ i. We use this identity in the RHS of (9), to obtain an
upper on the ratio (9) as follows,

ai+1(ω, h)
ai(ω, h)

= e−ρ(r2i+1(ω)−r
2
i (ω))(1 − e−ρr2i (ω))

≤ (e−ρ(s2+2ri(ω)s))(1 − e−ρr2i (ω))

= e
−( tan

2(θ)
2γ2 )s2

e
−

tan2(θ)
γ2 ri(ω)s(1 − e

−( tan
2(θ)

2γ2 )r2i (ω))

≤ max
η∈[0,r]

e
−

tan2(θ )
2γ2 s2

e
−

tan2(θ )
γ2 ηs

(1 − e
−

tan2(θ)
2γ2 η2

)

=: c(θ, r) (10)

Theorem 1: The probability of Line-of-Sight, PLoS(r, h),
is bounded above and below, as follows

P1LoS(r, h) − c(θ, r)

1 − c(θ, r)
≤ PLoS(r, h) ≤ P1LoS(r, h) (11)

Proof: Using (10), we obtain the upper bound on the
ratio ai+1(ω,h)

a1(ω,h) as follows,

ai+1(ω, h)
a1(ω, h)

=
ai+1(ω, h)
ai(ω, h)

×
ai(ω, h)
ai−1(ω, h)

× . . . ×
a2(ω, h)
a1(ω, h)

≤ ci(θ, r)

(12)

From (4), (10) and (12), we obtain

a1(ω, h) ≤ Pb(ω, h) ≤

N (ω)∑
i=1

a1(ω, h)ci−1(θ, r) (13)

a1(ω, h) ≤ Pb(ω, h) ≤ a1(ω, h)
1

1 − c(θ, r)
(14)

By integrating (14) over �, we obtain∫
�

a1(ω, h)dµ(ω) ≤

∫
�

Pb(ω, h)dµ(ω)

≤

∫
�

a1(ω, h)
1 − c(θ, r)

dµ(ω)

P1b(r, h) ≤ Pb(r, h) ≤
P1b(r, h)

1 − c(θ, r)
(15)

The theorem is now immediate from (8).

Fig. 4 shows
P1LoS(r,h)−c(θ,r)

1−c(θ,r) , PLoS(r, h), and P1LoS(r, h)
curves for different urban environments for UAV height
h = 500m. From the figure, it can be observed

that the gap between the lower-bound
P1LoS(r,h)−c(θ,r)

1−c(θ,r) and
PLoS(r, h) increases with the ground distance. The upper-
bound P1LoS(r, h) is very close to the PLoS(r, h) curve,

FIGURE 4.
P1

LoS(r ,h)−c(θ,r )
1−c(θ,r ) , PLoS(r , h), and P1

LoS(r , h) curves for different
urban environments for UAV height, h = 500m.

although as the ground distance increases, for a given height
(or in other words the elevation angle, θ decreases), the
gap increases slightly. This is because the impact of the
2nd, 3rd, 4th, . . . buildings along the line between the UE
and the UAV ground location are greater at lower elevation
angles. Even so, the gap remains small.

In fact, we have found that the upper bound is close for all
the UAV heights and ground distances we have investigated.
Therefore we suggest that the first-building-LoS probability
P1LoS(r, h) can be used as an excellent estimate of PLoS(r, h).

V. STATISTICAL MODELING OF THE FIRST BUILDING
DISTANCE
In this section, we statistically model the distance to the first
building for a UE-UAV location pair, ω, that is randomly
selected (over � according to the probability measure µ).
This distance is a random variable, r1, that we call the first-
building-distance. Its probability density function (PDF),
pr1 (x), x ≥ 0, is defined by

pr1 (x) :=
d
dx

P[r1 ≤ x]

=
d
dx

∫
ω∈�

1[r1(ω) ≤ x] dµ(ω)

where 1[·] is the indicator function, and r1(ω) is a realization
of r1 for a specific UE-UAV pair defined by ω.
The first-building-LoS probability can be written in terms

of the PDF pr1 (x) using (8), as follows

P1LoS(r, h) = 1 −

∫ r

0
pr1 (x)e

−ρx2dx (16)

We now model pr1 (·) using empirical simulations for
various street parameter values, (s,w). We use a family
of parametric density functions to model the empirical
probability density function (PDF).We then provide values of
the parameters as functions of (s,w). We use the parametric
density functions to compute P1LoS(r, h) (≈ PLoS(r, h)), and
provide closed form expressions. Our formulas can be applied
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FIGURE 5. Empirically calculated PDF of distance to the first building
along the LoS.

to any of the four urban environments in Table 1, and more
generally to any grid geometry-based urban environment.

Fig. 5 shows an empirical estimate of pr1 (·), which we
denote p̂r1 (·), derived in this case from simulations of the
Urban environment (see Table 1). The curve shows nonlinear
features that are a function of the square nature of the
geometric street grid model and the parameters s and w.
In the following, we use empirical estimates to derive two
mathematical models to approximate pr1 (·).

A. EXPONENTIAL MODELING OF PDF
We have observed in general, for a range of grid geometry-
based urban environments (with different s andw values), that
in each case the empirical PDF, p̂r1 (·), has a shape similar to
that in Fig. 5. This observation leads us to consider modelling
p̂r1 (·) with an exponential PDF as follows

fr1 (x) = λ1e−λ1x , ∀ x ≥ 0 (17)

where we propose to calculate the parameter λ1, for a
given (s,w) pair, from p̂r1 (·) using a least squares approach,
as follows

λ1 = argmin
λ

L∑
x=0

(
λe−λx

− p̂r1 (x)
)2

. (18)

The summation in (18) is over integer values of distance in
metres. Fig. 5 shows that the probability density has dropped
to essentially zero by about 250 m. We choose the upper
limit L = 2500 m in our numerical results to ensure that the
exponential approximation function will also be essentially
zero for correspondingly large distances.

We now present a key observation that allows us to
generalise the exponential model by providing an alternate
expression for λ1, in terms of s and w. We note that for a
fixed value of the ratio s

w , the geometric street grid scales
linearly with the value of s. This important scaling property
observation helps to relate the PDF of r1 between grids of
different dimensions. Suppose pr1 (x) is known for a grid with

dimensions (s,w), then the PDF for a grid with dimensions
(ks, kw) is given by 1

k pr1 (x/k).
Therefore, if λ1 = λ′ is the parameter for a grid with

dimensions (s1,w1), then the parameter for a grid with
dimensions (ks1, kw1) is λ1 =

λ′

k . Thus, the quantity sλ1 is
invariant for all grids with a fixed value of s

w . Hence,
we conclude that sλ1 only depends on the ratio s

w .
We have computed the quantity sλ1 for various grid

configurations (i.e., various (s,w)), with s
w values ranging

from 0.25 to 2.5 (note that all four urban environments have
an s

w value in this range). We then used a polynomial fit to
provide the following estimate for λ1 as follows

λ̂1 =
1
s

(
613
753

−
901
2116

( s
w

)
+

1258
8477

( s
w

)2
−

239
10712

( s
w

)3)
(19)

We see in Section VIII that this expression provides accurate
results for a wide range of (s,w).

B. PIECE-WISE MODELING OF PDF
In this section we introduce a more sophisticated model, that
captures the piece-wise nature of p̂r1 (·). In particular, we note
that there is an even distribution of small first-building-
distance values, since the streets are straight and we are
assuming a uniform distribution of UEs in the streets. Over
many values of (s,w), we have observed that the PDF p̂r1 (·)
tends to be mostly flat from 0 to s, and has an approximately
exponential trend after s. This observation leads us to consider
modelling p̂r1 (·) as follows,

gr1 (x) =

{
A2/s x ≤ s,
(1 − A2)λ2e−λ2(x−s) x > s,

(20)

where we propose to calculate the parameters A2 and λ2, for
a given (s,w) pair, from p̂r1 (·) using a least squares approach,
as follows

A2 = argmin
A

⌊s⌋∑
x=0

(A/s− p̂r1 (x))
2 (21)

λ2 = argmin
λ

2500∑
x=⌈s⌉

(
(1 − A2)λe−λ(x−s)

− p̂r1 (x)
)2

(22)

We have computed the parameterA2 andλ2 for various grid
configurations (i.e., various (s,w)), with s

w values ranging
from 0.25 to 2.5 (note that all four urban environments have
an s

w value in this range). As with the exponential modelling,
we then used a polynomial fit to provide the following
estimate for A2 and λ2 as follows

Â2 =

(634
403

+
457
601

( s
w

))−1
(23)

λ̂2 =
1
s

(
827
951

−
139
341

( s
w

)
+

420
3113

( s
w

)2
−

127
6176

( s
w

)3)
(24)

We see in Section VIII that this expression provides
accurate results for a wide range of (s,w). When compared
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to our exponential model (17), we will see that this model is
more accurate. In some applications, however, (17) may be
more desirable since it does not involve discontinuities and is
therefore more amenable for optimization.

VI. PROBABILITY OF LoS ESTIMATION USING
PARAMETERIZED MODELS
As mentioned in Section V, the first-building-LoS probabil-
ity, P1LoS(r, h), can be calculated using (16). In this section,
we replace pr1 (·) in (16), with each of our proposed models
fr1 (·) from (17), and gr1 (·) from (20), to give the following
propositions, which provide closed-form expressions for the
average probability of line-of-sight.
Proposition 1: For an urban environment with parameters

α, β and γ, the LoS probability PLoS(r, h) is accurately
estimated, using (17) and (19), by

P̂1LoS(r, h)

= 1 −

∫ r

0
fr1 (x)e

−ρx2dx

≈ 1 −

∫ r

0
λ̂1e−λ̂1xe−ρx2dx using (19)

= 1 − λ̂1

√
πe

λ̂2
1

4ρ

2
√

ρ

(
erf
(2ρr + λ̂1

2
√

ρ

)
− erf

( λ̂1

2
√

ρ

))
=: F(r, h|α, β, γ) (25)

where erf(·) is the error function, and ρ =
h2

2γ2r2
.

Proposition 2: For an urban environment with parameters
α, β and γ, the LoS probability PLoS(r, h) is accurately
estimated, using (20), (23) and (24), by

P̃1LoS(r, h)

= 1 −

∫ r

0
gr1 (x)e

−ρx2dx

≈



1 −

∫ r

0

Â2
s
e−ρx2dx r≤s,

1−
∫ s

0

Â2
s
e−ρx2dx

−

∫ r

s
(1−Â2)λ̂2e−λ̂2(x−s)e−ρx2dx r>s,

=



1 −
√

π
Â2
s

erf(
√

ρr)
2
√

ρ
r ≤ s,

1 −
√

π
Â2
s

erf(
√

ρs)
2
√

ρ
− (1 − Â2)λ̂2eλ̂2s∗

√
πe

λ̂2
2

4ρ (erf( 2ρr+λ̂2
2
√

ρ
) − (erf( 2ρs+λ̂2

2
√

ρ
))

2
√

ρ
r > s

=: G(r, h|α, β, γ) (26)

where erf(·) is the error function, and ρ =
h2

2γ2r2
.

As mentioned earlier, our model gr1 (·) in (20), is a more
accurate representation of p̂r1 (·) compared to fr1 (·) in (17).
Therefore, G(r, h|α, β, γ) is a more accurate estimate of the
first-building-LoS probability compared to F(r, h|α, β, γ).

However, following the same argument as previously, it may
be more desirable to employ F(r, h|α, β, γ) in some applica-
tions, since it does not involve discontinuities and is therefore
more amenable for optimization.

In the Section VIII, we will show that both estimates are
in close agreement with the actual probability of LoS using
Monte-Carlo simulation.

VII. AREA LoS PROBABILITY
An important application of our results is to a cellular system
in which the UAV is an aerial base station. A coverage metric
of interest is the proportion of the cell around the UAV that
has LoS connectivity, when the UAV is at a height h above
the ground. We model the cell as a circular region of radius R
around the point on the ground directly below the UAV.

We define the Area LoS probability PALoS (R, h) as the
probability that a LoS link exists between a UAV and a UE
located uniformly within a circle of radius R. An equivalent
definition of Area LoS probability was considered in [36]
where theUAVwas uniformly locatedwithin a circular region
around the fixed ground BS. However, the expression given
in [36] erroneously takes the distance between the UAV and
ground BS to be a uniform random variable. We provide
the expression for the case in which the UE is uniformly
distributed in the circular region below.

PALoS (R, h) =

∫ R

0

2r
R2
PLoS (r, h)dr (27)

We provide an efficient approach to evaluate the area LoS
probability PALoS (R, h) in the following. Firstly, we obtain
(28) using integration by parts. We have observed that the
slope of the LoS function ∂PLoS (r,h)

∂r changes slowly w.r.t r
(See Fig. 6-Fig. 10 in Section VIII). Hence, PALoS (R, h) can
be efficiently approximated using numerical integration (i.e.,
reasonable values of N ) as in (29).

PALoS (R, h)

= PLoS (R, h) −

∫ R

0

r2

R2
∂PLoS (r, h)

∂r
dr (28)

≈ PLoS (R, h) −

N∑
i=1

ri∫
ri−1

r2

R2
PLoS (ri, h) − PLoS (ri−1, h)

1
dr

(29)

= PLoS (R, h) −

N∑
i=1

r3i − r3i−1

3R2
PLoS (ri, h) − PLoS (ri−1, h)

1

(30)

where N is the number of steps in the numerical integration,
1 :=

R
N and ri := i1.

We now obtain the expressions for area LoS probability
PALoS (r, h) by applying our first building LoS approxima-
tions. As such, (31) is obtained using Proposition 1 and (32)
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is obtained using Proposition 2.

PALoS (R, h) ≈ F(R, h|α, β, γ) −

N∑
i=1

r3i − r3i−1

3R2
Fi − Fi−1

1

(31)

PALoS (R, h) ≈ G(R, h|α, β, γ) −

N∑
i=1

r3i − r3i−1

3R2
Gi − Gi−1

1

(32)

where Fi = F(ri, h|α, β, γ) and Gi = G(ri, h|α, β, γ).

VIII. NUMERICAL RESULTS
In this section, we compare our proposed methods in Propo-
sitions 1 and 2, with existing approaches, and results from
the Monte-Carlo simulation. Our methods, and the existing
approaches we compare with, all assume a homogeneous
built environment as described in Section II in which the
building heights are independently and randomly drawn
from the same Rayleigh distribution. We provide numerical
results for the homogeneous built environment, including
both average and area LoS probabilities, in Sections VIII-A.
In Section VIII-B, we explore the application of our results
to inhomogeneous scenarios.

A. HOMOGENEOUS BUILT ENVIRONMENTS
Fig. 6 shows the average probability of LoS curves for
the Urban environment, as a function of ground distance,
for two different UAV heights. The (dash-dot) red curve
is the estimated probability of LoS using the expression
given in [11]. This curve is a staircase because of the
‘floor’ function used in [11]. The (dash-dot) blue curve
is the estimated probability of LoS using the expression
given in [14]. Our proposed estimates F(r, h|α, β, γ) (solid
magenta) and G(r, h|α, β, γ) (solid green) are also plotted,
in addition to the Monte-Carlo curves which were generated
by randomly generating building heights and randomly
locating a UE on a street. The UAV was randomly located
in the plane at height h above the streets, and only above
the buildings which are lower than height h (i.e., not inside
buildings that are taller than h). Ray tracing was done to
establish whether there is LoS, and then this process was
repeated many times. The figure shows that our proposed
probability of LoS using the two proposed PDFs is in close
agreement with the Monte-Carlo simulation.

Figs. 7, 8 and 9 show the probability of LoS for other urban
environments. From the figures, we can see that the proposed
probability of LoS aligns very well with the Monte-Carlo
simulation in each case.

As mentioned earlier, our proposed method can also be
applied to other environments, i.e., not restricted to just four
urban environments. Many urban regions have a mixture
of building types and street configurations. For example,
for area containing a mixture of mid-rise shopping centre
buildings with surrounding houses, the parameters could be
α = 0.25, β = 400, and γ = 10. Fig. 10 shows the

FIGURE 6. Probability of line-of-sight for a fixed height and various
ground distances for urban environment. Here, UAV height h and ground
distance r are in meters.

FIGURE 7. Probability of line-of-sight for a fixed height and various
ground distances for suburban environment. Here, UAV height h and
ground distance r are in meters.

FIGURE 8. Probability of line-of-sight for a fixed height and various
ground distances for dense urban environment. Here, UAV height h and
ground distance r are in meters.

probability of LoS curves for this environment. The figure
shows our proposed probability of LoS aligns very well with
the Monte-Carlo simulation.
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FIGURE 9. Probability of line-of-sight for a fixed height and various
ground distances for high-rise urban environment. Here, UAV height h
and ground distance r are in meters.

FIGURE 10. Probability of line-of-sight for a fixed height and various
ground distances for an environment with
α = 0.25, β = 400, and γ = 10. Here, UAV height h and ground
distance r are in meters.

Figs. 11-13 show the Area LoS probability curves for
UAV heights h = 200m and 1000 m, for various
built environments. In each figure, the Monte-Carlo curve
is obtained from (27), where PLoS (r, h) is obtained by
Monte-Carlo Simulation. It can be observed that our
expressions (31) and (32) provide highly accurate Area LoS
probabilities even for small N .

B. IN-HOMOGENEOUS BUILT ENVIRONMENTS
In a practical setting, the coverage area of a UAV can be large
enough in some scenarios to cover multiple urban environ-
ments. For example, consider a UAV flying in the central
part of a city with high-rise buildings, and communicating
with UEs in a nearby suburban area. The buildings between
the UAV and UE are a mixture of suburban and high-rise
buildings, which have different Rayleigh parameters.

Our key observation from the homogeneous case is that
the LoS probability is mainly determined by the buildings
closest to theUE. In the in-homogeneous scenariowe propose

FIGURE 11. Area LoS probability for UAV height h and coverage radius R
in urban environment. Here, R and h are in meters.

FIGURE 12. Area LoS probability for UAV height h and coverage radius R
in suburban environment. Here, R and h are in meters.

FIGURE 13. Area LoS probability for UAV height h and coverage radius R
in dense urban environment. Here, R and h are in meters.

to use this as a method to predict the LoS probability more
generally, based on the building heights in a local region
around the UE. We define a square inner region of dimension
8s+ 9w, in which the UE’s location is uniformly distributed
around the building that is at the centre of the square,
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FIGURE 14. Area LoS probability for UAV height h and coverage radius R
in high-rise urban environment.Here, R and h are in meters.

FIGURE 15. Figure showing results with the inner region as the urban
environment and outer region with different Rayleigh parameters γ2. The
curves are obtained from Monte-Carlo simulation results. The results are
shown for UAV height 200m.

as illustrated in Fig. 3. This square thus contains 4 buildings
in each rectangular direction from the UE. All the buildings
in the inner region have heights that are i.i.d. with Rayleigh
parameter γ1. We consider in-homogeneous scenarios where
all the buildings outside the inner region have heights that are
i.i.d. with Rayleigh parameter γ2.

Since the first buildings are highly likely to be in
the inner region, we hypothesize that the first-building-
LoS-probability derived using the inner region parameters
will accurately determine the LoS probability in this in-
homogeneous case, provided the difference between γ2 and
γ1 is not too large. UsingMonte-Carlo simulations, in Fig. 15-
Fig. 18, we provide the acceptable range for γ2 and elevation
angles, considering each of the four urban environments for
the inner region.

Fig. 15 shows results when the inner region is an
urban environment (from Table. 1), and the UAV height is
200m. The figure shows that our proposed first-building-LoS
probability models are accurate for outer region Rayleigh
parameter values of γ2 ≤ γ1 over the full range of ground

FIGURE 16. Figure showing results with the inner region as the suburban
environment and outer region with different Rayleigh parameters γ2. The
curves are obtained from Monte-Carlo simulation results. The results are
shown for UAV height 200m.

FIGURE 17. Figure showing results with the inner region as the dense
urban environment and outer region with different Rayleigh parameters
γ2. The curves are obtained from Monte-Carlo simulation results. The
results are shown for UAV height 200m.

FIGURE 18. Figure showing results with the inner region as the high-rise
urban environment and outer region with different Rayleigh parameters
γ2. The curves are obtained from Monte-Carlo simulation results. The
results are shown for UAV height 200m.

distances. For values of γ2 in the range γ1 < γ2 ≤ 2γ1, our
model is accurate for ground distances less than 400m. Note
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FIGURE 19. Figure showing results with the inner region as the suburban
environment and outer region with different Rayleigh parameters γ2. The
curves are obtained from Monte-Carlo simulation results. The results are
shown for UAV height 300m.

FIGURE 20. Figure showing results with the inner region as the urban
environment and outer region with different Rayleigh parameters γ2. The
curves are obtained from Monte-Carlo simulation results. The results are
shown for UAV height 300m.

FIGURE 21. Figure showing results with the inner region as the dense
urban environment and outer region with different Rayleigh parameters
γ2. The curves are obtained from Monte-Carlo simulation results. The
results are shown for UAV height 300m.

that the ground distance of 400m corresponds to an elevation
angle of ≈ 25◦, so our results hold for all elevation angles
greater than 25◦.

FIGURE 22. Figure showing results with the inner region as the high-rise
urban environment and outer region with different Rayleigh parameters
γ2. The curves are obtained from Monte-Carlo simulation results. The
results are shown for UAV height 300m.

Fig. 16, Fig. 17 and Fig. 18 show results for the case
when the inner region is suburban, dense urban, and high-
rise urban respectively. From the figures, we can see that our
proposed first-building-LoS probability models are accurate
for the same range of parameter values as in Fig. 15.

For a range of other UAV heights, we have observed that
the same results hold. For example, Fig. 19, 20, 21, and 22
show results for the case when the inner region is suburban,
urban, dense urban, and high-rise urban respectively for
the UAV height of 300m. From the figures, we can see
that our proposed first-building-LoS probability models are
accurate for outer region Rayleigh parameter values of γ2 ≤

γ1 over the full range of ground distances. For values of
γ2 in the range γ1 < γ2 ≤ 2γ1, our model is accurate
for ground distances less than 650m. Note that the ground
distance of 650m corresponds to an elevation angle of ≈

25◦, so our results hold for all elevation angles greater
than 25◦.

IX. CONCLUSION
We presented a new approach to estimate the probability of
LoS for UAV communications in urban environments where
the building heights are modeled by a homogeneous Rayleigh
distribution.

We have provided a lower and upper bound on the
average probability of LoS, which are given in terms of the
first-building-LoS probability. We provided two statistical
models for first-building-distance.We then developed a novel
method for calculating the first-building-LoS probability, and
presented two general closed-form estimates of the first-
building-LoS probability. We showed that this approach
provides very good estimates for the average probability of
LoS, and that our closed-form formulas are significantlymore
accurate than existing approaches. We expect that our first-
building approach to line-of-sight calculations can be applied
to more general settings, with different city block models and
building distributions.
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We have also provided a new approach to estimate the
Area Probability of LoS. Using our estimates for first-
building-LoS probability, we provided two accurate closed-
form estimates for the Area Probability of LoS.

We also explored the application of our results to
inhomogeneous scenarios in which an outer region can
have a different building height parameter than an inner
region closer to the UE. In these scenarios, we have found
our formulas are still accurate provided that the outer
region building height parameter is no more than twice
that of the inner region close to the UE, and the angle of
elevation to the UAV is at least 25 degrees. Future work can
consider further extensions to more general inhomogeneous
scenarios.
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