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ABSTRACT 5G and beyond networks are expected to support a wide range of services, with highly
diverse requirements. Yet, the traditional ‘‘one-size-fits-all’’ network architecture lacks the flexibility to
accommodate these services. In this respect, network slicing has been introduced as a promising paradigm for
5G and beyond networks, supporting not only traditionalmobile services, but also vertical industries services,
with very heterogeneous requirements. Along with its benefits, the practical implementation of network
slicing brings a lot of challenges. Thanks to the recent advances in machine learning (ML), some of these
challenges have been addressed. In particular, the application of ML approaches is enabling the autonomous
management of resources in the network slicing paradigm. Accordingly, this paper presents a comprehensive
survey on contributions on ML in network slicing, identifying major categories and sub-categories in the
literature. Lessons learned are also presented and open research challenges are discussed, together with
potential solutions.

INDEX TERMS Network slicing, 5G network, machine learning.

I. INTRODUCTION
The number of fifth generation (5G) mobile networks
subscribers is forecast to reach 3.5 billion globally
by 2026 [1]. The average data usage is estimated to
reach 35 GB/month/user, resulting from 400 5G use cases
in 70 industries [2]. Indeed, 5G is expected to play a major
role in the digitalization of various vertical markets, such
as automotive, smart grid and the Internet of Things (IoT).
A wide range of use cases with highly diverse requirements
are envisioned to be supported [3]. These use cases can
be roughly grouped into three categories: Extreme Mobile
Broadband (xMBB), Ultra-Reliable and Low-Latency Com-
munications (URLCC), and Massive Machine Type Commu-
nication (mMTC) applications [4].

Previous generations of mobile networks, i.e. 2G, 3G and
4G, were designed to efficiently handle human-type commu-
nication. However, their ‘‘one-size-fits-all’’ architectures lack
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the flexibility required to accommodate the diverse require-
ments of future 5G and beyond use cases [5]. As a result, the
concept of network slicing has recently been introduced by
the Next Generation Mobile Network (NGMN) alliance [6]
to allow mobile network operators to support this increasing
variety of use cases. Network slicing consists of creating
multiple logical networks on top of a single physical net-
work, on a per-service basis [7]. Thus, these logical networks
(i.e. network slices) can be formed and customized to dif-
ferent scenario requirements in terms of functionality, per-
formance and isolation, as underlined by the 3rd Generation
Partnership Project (3GPP) [8]. From a business point of
view, it is estimated that 30% of 5G operators revenue will
be driven by network slicing [9].

Enabling the vision of network slicing cannot be
achieved without fully automating overall network oper-
ations. In recent years, significant effort has been put in
this direction, through the integration of machine learning
(ML) techniques [19]. Traffic flows generated from 5G ser-
vices are increasingly heterogeneous and exhibit complex

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 39123

https://orcid.org/0000-0002-9400-5085
https://orcid.org/0000-0002-5313-9378
https://orcid.org/0000-0002-4479-3976
https://orcid.org/0000-0002-8745-1327


H. P. Phyu et al.: Machine Learning in Network Slicing—A Survey

TABLE 1. Comparisons of existing surveys on network slicing.

correlations [20]. In this case, it is not possible to rely on
conventional mathematical models and algorithms to process
them [21]. Conversely, recent advancements in ML tech-
niques, with their ability to process large amounts of data and
their efficiency in unveiling complex correlations in datasets,
are positioning ML techniques as very promising solutions in
the automation of network slicing operations.

Accordingly, a large amount of studies has been conducted,
introducing ML-driven algorithmic solutions in the context
of network slicing. The number of publications on the topic
keeps growing significantly over the years, with 340 papers
in 2022 alone, as shown in Figure 1. In the light of 6G
standardisation and the continuous development of ML tech-
niques, a higher interest in the topic is further expected in
the coming years. Considering the most recent and notice-
able works, this survey thus aims at providing a comprehen-
sive review of ML solutions in network slicing. In addition,
it underlines clear research directions for those who wish
to further investigate ML techniques to address the complex
problems in network slicing, for existing and future mobile
networks.

A. SCOPE OF THE SURVEY
Several surveys have already been published on the subject
of network slicing. A few of them review network slicing
architectures and principles [3], [10], [11], while others focus
on the algorithmic aspects of network slicing [12], [13] or
on its mathematical modeling [16]. Some surveys [14], [15]
discuss both architecture and algorithmic aspects in network
slicing. Two recent surveys focus on very specific applica-
tions of deep reinforcement learning (DRL) in a network
slicing context [17], [18].

FIGURE 1. Number of yearly publications on machine learning in network
slicing (source: Google scholar).

More precisely, in [3], the authors present the architecture
of 5G sliced networks, with its different layers: infrastructure
layer, network function layer, management and orchestration
(MANO), and service layer. The authors in [10] investigate
the network slices ordering and creation models proposed
by different standard developing organizations (SDOs). They
analyze the key attributes and functions of the most com-
mon models and propose unified network slicing models
for efficient end-to-end (E2E) network slicing management.
Furthermore, the authors of [11] discuss the potential and
integration of multi-access edge computing (MEC) and
cloud technologies in network slicing. However, algorithmic
aspects of resource management perspectives in network slic-
ing have not been studied in these surveys.

In [12], the authors review MANO methods and algo-
rithmic approaches in network slicing. However, their focus
is only on the optimization frameworks and operational
research methodologies. Accordingly, their survey does not
include machine learning-based approaches. In the study
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in [13], the authors emphasize the admission control and
resource allocation aspects of network slicing, and recent
approaches for these problems, including reinforcement
learning (RL), are discussed and documented. Nevertheless,
no other ML methods (i.e. supervised and unsupervised
approaches) are analyzed. The works in [14] and [15] empha-
size the role of 5G network slicing in IoT applications. How-
ever, algorithmic aspects, in particular advaned ML-based
solutions, are not well-grounded.

In [16], the discussed mathematical models encompass
game theory models, prediction models, and failure recovery
models. Relationships among them are analyzed in the realm
of resource allocation for network slicing across multiple
domains. However, only supervised learning approaches are
discussed, and only in the context of prediction models.

Closer to our scope, the work in [17] goes over a DRL
driven network slicing resource management model, dis-
cussing the objective, the network domains, the Markov deci-
sion process (MDP) modelling and the use cases. However,
forecasting related problems are not covered by this study.
Furthermore, the authors in [18] survey a similar topic: the
feasibility of DRL frameworks in the 5G network slicing
paradigm. However, these studies dedicate little to no discus-
sion to other ML techniques, like the role of supervised and
unsupervised learning in the traffic forecasting function, or to
multi-armed bandit techniques which have been widely used
in the network slicing resource management regime. Besides,
the topics of admission control (either inter-slice or intra-
slice) and resource allocation granularity (i.e. coarse-grained
or fine-grained) are not well-elaborated in these prior works.

To summarize, none of the contemporary surveys provides
a comprehensive review of ML-based approaches in network
slicing, with the relevant background information. Specif-
ically, none of the existing surveys articulated thoroughly
the various business models in network slicing and projected
them with respect to the network slicing architecture, as we
do below. This allows for a clear mapping of ML-based
approaches to the different business entities.Moreover, unlike
other works (i.e. [17], [18]), our survey proposes an original
taxonomy regarding the granularity level of resource man-
agement solutions in the context of network slicing. On the
other hand, we cover at an unprecedented level of detail the
resource management models used in network slicing and
the application of ML-based methods to this end. To say the
least, we extensively cover solutions with unsupervised and
supervisedML techniques, as well as RL techniques, which is
unique in the field. Besides, not only do we extensively iden-
tify the spectrum of research gaps, but also we put forward
the potential ML-based solutions respectively. The summary
of the scope of existing surveys compared to ours is indicated
in Table 1.

B. SURVEY ORGANIZATION
The remainder of this survey paper is organized as follows:
Section II equips the reader with necessary background infor-
mation on network slicing. In Section III, the functioning of

ML techniques commonly used in the context of network
slicing is explained. We remark that readers with strong
ML background can completely skip Section III. Section IV
reviews ML contributions in network slicing. Identified open
challenges and opportunities can be found in Section V.
Finally, we conclude the survey in Section VI. The detailed
structure of the survey is further depicted in Figure 2.

II. NETWORK SLICING
A. NETWORK SLICING CONCEPT
The concept of network slicing has been introduced by the
NGMN alliance [6] as a solution for accommodating the
diverse requirements of 5G and beyond use cases. Techni-
cally, network slicing consists of creating logical networks
on top of a single physical network, across multiple domains,
on a per-service basis. The resulting network slices could
be managed independently, mutually isolated, and created
on-demand [6].

End-to-end network slicing refers to creating network
slices that cover the entire communication path, from the
radio access network (RAN) to the core network (CN).
As network slicing is leveraged based on a virtualized infras-
tructure powered by network function virtualization (NFV)
and software defined networks (SDN), it enables flexible and
programmable control of network resources while respecting
service level agreements (SLA) [23]. Undoubtedly, these log-
ical networks (i.e. network slices) could be a game-changer
for potential 5G use cases as they can be established and
customized to different use case requirements in terms of
functionality, performance, and isolation, as emphasized
by the Third Generation Partnership Project (3GPP) [24].
Figure 3 formally illustrates the network slicing archi-
tecture as defined by NGMN [22]. As shown in the
figure, the architecture contains the following three
layers:

• Application Layer: It consists of end-user services
(e.g., smart home/city, remote surgery, and ultra High
Definition (HD) video streaming). A Service Instance
has a specific type (i.e. eMBB, URLCC, or mMTC).

• Network Layer: It consists of network slice instances,
including logical and physical resources. A network
slice instance supports one or more service instances and
is composed of one or more sub-network instances. For
brevity, we use in the following the word ‘‘slice’’ to refer
to a network slice instance.

• Resource Layer: It includes shared infrastructure
resources with both physical and virtual resources
that are controlled by the NFV/SDN framework. The
resource layer provides all the required resources to the
network slice instance layer.

B. BUSINESS MODELS IN NETWORK SLICING
The business model adopted in most of the existing research
works on network slicing includes three business enti-
ties: application service provider (ASP), mobile virtual
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FIGURE 2. Structure of the survey.

FIGURE 3. NGMN network slicing concept [22].

network operator (MVNO) and infrastructure provider
(InP) [25], [26]. An ASP offers a service to end-users
by using a slice operated by an MVNO. For this pur-
pose, the ASP provides the service quality of service (QoS)
requirements to the MVNO. It also pays the MVNO the cost
associated to offering the service, based on the slice instance
running time, the number of served customers, and the cover-
age area. The MVNO creates the slice based on the received
service requirements. It requests as well from the InP to allo-
cate physical and virtual resources for implementing the slice.

The MVNO continuously monitors the QoS of each slice
instance to ensure requirements are met. One or more slice
instances may belong to oneMVNO. The InP owns the physi-
cal substrate network infrastructure, manages the life-cycle of
physical and virtual resources and provides a complete set of
resources for slices. It is important to stress that it is common
in the literature to have ASP functionalities covered by the
MVNO, especially in the network slicing resource allocation
problem formulation (see for instance [27], [28], [29], [30],
[31], [32], [33], [34] to name just a few). Figure 4 summarizes
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the interactions among business entities according to this
business model.

Apart from the previously described business model, more
complex ones, with more business entities, were introduced
in [35]: i) Single-domain business model, with a single infras-
tructure and a single slice provider; ii)Multi-domain business
model, with multiple infrastructure providers and multiple
slice providers. Figure 5 depicts these two business models.
For brevity, we only describe the main entities in these mod-
els, also used in several other works (see for instance [27],
[36], [37], [38], [39], [40]): slice provider (SIP), slice tenant
(ST), slice customer (SC) and service provider (SP).

• Slice Provider: It creates a slice based on the slice
template endorsed by a slice tenant or a slice customer.
Generally, it obtains the resources required for the slice
from the InP. However, in some cases [36], the Slice
Provider controls directly the infrastructure resources
and its ultimate goal is to efficiently allocate resources
among multiple Slice Tenants.

• Slice Tenant: It requests a slice from the Slice Provider,
according to the received demands from the Slice Cus-
tomers. It also operates the slice. Usually, multiple Slice
Tenants rely on the same InP [27], according to different
SLAs [40].

• Slice Customer: It represents an end user, who can
subscribe to one or more slices simultaneously, possibly
managed by different Slice Tenants [36]. A Slice Cus-
tomer can take the role of a Slice Tenant and, by that,
serve other Slice Customers [35].

• Service Provider: It provides various kinds of slice
services to Slice Customers (i.e. end users). In some
cases [37], [39], a Service Provider plays the role of a
Slice Tenant as well, reserving resources from the InP
and offering services to the Slice Customers. In other
cases [38], the Service Provider also has control over
the infrastructure resources and fulfills slice requests of
Slice Customers.

In a nutshell, the business models applied in the surveyed
studies can be mapped partially or fully into one of the above-
described models. Indeed, a well-defined business model is
a critical component of a research work on network slicing.
In this context, this is especially true for resource allocation
problems, where multiple entities from those listed above are
involved.

C. MOBILE NETWORK DOMAINS AND NETWORK SLICING
End-to-end network slices encompass the three domains of
RAN, CN, and transport network (TN), possibly from mul-
tiple operators [41]. Network slicing can be deployed on a
traditional network consisting of these three domains, as the
concept is defined on a logical level in the 3GPP functions.
However, to fully leverage the slicing concept, these domains
have to be integrated with NFV, SDN, MEC, and cloud com-
puting [11], the key drivers of network slicing, described in
subsection II-D. In fact, one requirement in network slicing is

performance isolation among network slices [3]. Traditional
networks fail to meet this requirement. For instance, a similar
concept to network slicing is that of data radio bearers (DRBs)
in traditional RAN. It allows to handle traffic with different
QoS requirements [42]. Yet, DRBs of different users are con-
trolled by a shared medium access control (MAC) protocol
and thus do not guarantee performance isolation [43].

In the realm of 5G network slicing, the technical specifica-
tions of those domains are being developed in different SDOs:
RAN and CN domains are regulated by the 3GPP [44], [45],
while the functioning of the TN domain is specified by the
Internet Engineering Task Force (IETF) [46] and the Broad-
band Forum (BBF) [47]. Figure 6 illustrates the high-level
architecture of a 5G sliced network.

1) RAN SLICING
Themain question in the RANdomain is how to appropriately
divide the overall radio spectrum resources for different appli-
cations to guarantee the rigid QoS requirements expressed
by some network slices [48]. The degree of complexity is
higher in RAN than in CN and TN, due to the difficulties in
the segregation of radio resources. Moreover, virtualization
in the RAN is still in its infancy, unlike at the CN level [49].
In this respect, in the 3GPP 5GRAN specifications, eight pos-
sible RAN virtual functions splitting options are considered,
based on the Cloud-RAN (C-RAN) concept [50], where RAN
functions are split between Remote Radio Units (RRUs) and
Baseband Units (BBUs) hosted in the Next Generation Node
B (gNB) and a BBU pool, respectively. The RAN functional
split allows network slices to share certain RAN functions
among each other [51].

With these different functional splitting options, it is
important to consider their ability in guaranteeing perfor-
mance isolation among slices [52]. In fact, RAN slicing done
at the spectrum level provides the highest degrees of isolation
and customization compared to other RAN slicing options
at the Radio Resource Management (RRM) level (i.e. inter-
cell interference coordination (ICIC) level, packet scheduling
(PS) level, admission control (AC) level) [53]. More specifi-
cally, spectrum resources are organized as carriers (i.e. each
carrier is composed of resource blocks) in RAN slicing at the
spectrum planning level. Each RAN slice tenant is assigned a
separate carrier so as to ensure complete performance isola-
tion among slices, thereby enabling the customization of the
slices based on the tenant-specific requirements at all levels
of the RRM functionalities.

Notably, many researchers are working on the RAN
slicing system architecture to build a service-oriented net-
work. More specifically, SoftRAN [54], FlexRAN [55] and
Orion [49] solutions present new RAN virtualization models
that perform the abstraction of underlying physical resources
and ensure efficient resource utilization. Furthermore, these
SDN-based RAN architectures decouple the data plane from
the control plane and allow slice customers to have full
control of their own RAN functionalities and yet guarantee
performance isolation [51].

VOLUME 11, 2023 39127



H. P. Phyu et al.: Machine Learning in Network Slicing—A Survey

FIGURE 4. Business model of network slicing.

FIGURE 5. Single-domain and multi-domain business models of network
slicing [35].

2) CN SLICING
Recent years have witnessed the transformation of the entire
CN network with the help of NFV, SDN, and cloud com-
puting. As 5G is expected to support a variety of use
cases with diverse requirements, the 5G core (5GC) will
adopt a service-based architecture (SBA), as specified by
the 3GPP [56], to enable multiple virtual networks to run
on the same physical infrastructure [57]. Moreover, with
SDN decoupling the control plane from the user plane and
with NFV virtualizing physical network resources, these two
technologies bring programmability and flexibility to the
deployment, control and management of CN functions [23].

In fact, control and user plane separation (CUPS) is a
necessity in 5GC to fulfill the automation requirement of
future network operations. Moreover, specific functions are
required in 5GC to enable network slicing. Particularly, the
network slice selection function (NSSF), introduced under

the vision of SBA [56], is responsible for selecting the appro-
priate set of network slice instances (NSIs) and determining
the access and mobility management function (AMF) set to
serve UEs. Technically, a UE can be served by a maximum of
up to eight network slices simultaneously [58]. In this case,
AMF is in charge of the UE association with corresponding
slices [59]. If some CN functions, like AMF and NSSF, can
be shared by multiple NSIs, others, i.e. user plane func-
tion (UPF) or unified data management (UDM), are slice-
specific [60]. For brevity, we do not describe all the new
5GC functions in this survey and interested users are referred
to [45] for more information.

Finally, for a fully-fledged network slicing system, 5GC
needs to adopt a cloud-native based design. By that, con-
ventional VNFs, deployed traditionally on virtual machines
(VMs), are transformed into cloud-native network functions
(CNFs) that are deployed on containers instead [11]. Specif-
ically, running CNFs on containers facilitates automation in
the premises of a cloud environment [61].

3) TN SLICING
The TN domain is as important as the RAN and CN domains
to leverage the benefits of network slicing [62]. With 5G, the
TN slices are expected to carry the exponentially-increasing
traffic load and satisfy stringent SLAs [63]. According to the
IETF, a TN slice is a logical network topology connecting
various endpoints in the RAN and the CN, with appropriate
shared or dedicated network links, that are used to ensure
specific SLAs [46].

TN links can be established using different existing tech-
nologies (e.g., optical fiber, Ethernet, microwave) [10].
In fact, Multi-Protocol Label Switching (MPLS) in TN
provides the adaptation of different TN layer technolo-
gies, thereby enabling the multi-service mobile transmis-
sion [52]. In addition, already developed technologies, such
as Flexible Ethernet (FlexE), Wavelength Division Multi-
plexing (WDM), and Optical Transport Network (OTN),
can be used to ensure the performance isolation among
slices [64]. Ongoing research efforts are aiming at evolving
these solutions for the purpose of TN slicing. Particularly,
elastic optical networks (EONs) [65], Optical Virtual Net-
works (OVN) [66] and Open Optical Network (OON) [67]
embrace service-oriented TN slicing by providing scal-
ability, flexibility and inter-operability on optical TNs.
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FIGURE 6. High-level architecture of end-to-end network slicing.

Besides, SDN-driven TN represent a very prominent solu-
tion to leverage the development of cloud-based services in
5G systems [68]. In fact, multiple TN slices are required
for the E2E slice provisioning with different RAN deploy-
ment scenarios (i.e. distributed RAN, centralized RAN and
cloud RAN) [46]. Hence, a unified service orchestrator
is required to control multiple TN slices from multiple
network domains and to integrate fronthaul and backhaul
networks [69]. To cope with this, the IETF establishes a
management and control framework of TN slices, under the
name of Abstracting and Control of Traffic engineer Network
(ACTN), to allow an MVNO to manage multiple network
domains with a single abstract network [70].

D. KEY ENABLING TECHNOLOGIES OF NETWORK SLICING
Virtualization technologies have brought up enormous advan-
tages in terms of programmability and flexibility for resource
allocation in end-to-end network slicing. Specifically, NFV,
SDN, MEC and cloud computing are the major catalysts to
facilitate network slicing. Hereafter, the role of each of these
enabling technologies in network slicing is discussed.

1) NETWORK FUNCTION VIRTUALIZATION
NFV decouples the network functions from their propri-
etary hardware and runs them as software on general
purpose servers. The architectural framework of NFV is
introduced by the European Telecommunications Standards
Institute (ETSI) [71]. It is composed of VNFs, NFV infras-
tructure (NFVI), and NFV management and orchestration
(MANO). VNFs are the virtualized network elements that
can be chained together in a particular order to form
service function chains (SFC) offering one specific ser-
vice [72]. A network slice for one specific service is

FIGURE 7. An integration of SDN controllers into the ETSI NFV reference
architecture at the two levels required to achieve network slicing
(inspired from [23]).

commonly represented as one SFC. NFVI encompasses both
physical and virtual resources where VNFs are deployed.
Figure 7 depicts the architecture of ETSI NFV MANO
that enables the automation of resource management, net-
work services, and VNFs to guarantee the network per-
formance requirements of operators. This architecture con-
sists of three main functional blocks: the NFV orchestrator
(NFVO), the VNF manager (VNFM), and the virtualized
infrastructure manager (VIM). The NFVO orchestrates the
NFVI resources and manages the life cycle of network
services. The VNFM is in control of the instantiating,
monitoring, and termination of the VNF instances. Each
VNF instance is controlled by a VNFM. Finally, the VIM
is responsible for governing the computation, storage, and
networking resources. Those functional blocks not only com-
municate to other function blocks of the NFV architecture,
but also interact among each other through a set of reference
points [8].
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2) SOFTWARE DEFINED NETWORKING
SDN decouples the control plane from the data plane and
places it on a logically centralized controller. SDN is one of
the key enablers of network slicing, as it enables programma-
bility, flexibility, service-oriented adaptation, scalability, and
robustness [73]. Besides, SDN allows theMVNOs to manage
and control their allocated resources through the abstract
view of the network. The SDN controller manages network
slices effectively by applying rules when necessary and in
accordance with the corresponding network policy. The con-
vergence of SDN and NFV is a commonly used mechanism
in the deployment of E2E network services. As shown in
Figure 7, ETSI proposed an architecture where NFV MANO
is integrated with two SDN controllers: i) infrastructure
SDN controller (ISDNC) to provide the required connectivity
amongVNFs and its components bymanaging the underlying
network resources and, ii) tenant SDN controller (TSDNC)
to manage dynamically the corresponding VNFs. While the
TSDNC provides an overlay comprising tenant VNFs that
define the network service(s), the ISDNC provides an under-
lay to support the deployment and connectivity of VNFs [23].

3) MOBILE EDGE AND CLOUD COMPUTING
MEC and cloud computing offer on-demand storage, compu-
tational and networking resources within a single or multiple
platforms [74]. The appealing idea of MEC for network slic-
ing is to bring the network functions and related applications
closer to the end-users, to reduce delays and burdens on the
back-haul. Simply speaking, in the realm of 5G, virtualized
resources of RAN (i.e. BBU and RRU) and some user-plane
functions of the CN could be located in the edge cloud to
provide low-latency services (i.e. URLCC). With the help of
SDN, 5G networks are able to control the VMs distributed in
the cloud core and edge cloud in a centralized manner.

III. MACHINE LEARNING
Most of the network slicing optimization problems have
been formulated as eitherMixed-integer Linear Programming
(MILP) or Nonlinear Integer Programming (NLP) problems.
Generally, the resulting formulations are proven to be NP-
Hard. Thus, their global optimal solutions cannot be obtained
within a polynomial time, especially for large-scale instances.
To deal with this, the typical approach is to decompose the
complex optimization problem into simpler sub-problems or
relax complicating constraints of the problem and solve a sim-
pler version. Then, low computational-complexity algorithms
(i.e. heuristics, metaheuristics, genetic algorithms (GA), and
game theory) are applied to derive a solution close to the
optimal one.

Regardless of being less computational expensive, the
major shortcoming of traditional optimization models and
conventional algorithms is that they lack the flexibility to
adapt to today’s highly dynamic and fast-changing network
environment with 5G heterogeneous services and massive

connections [75]. Therefore, algorithms with high adaptabil-
ity are needed to make real-time decisions in network slicing.

When it comes to traffic forecasting, conventional solu-
tions like ARIMA [76] and Holt-Winters [77] have been
widely used over the years. Compared with those solutions
that could not extract and predict the complicated spatiotem-
poral features of mobile traffic in presence of user mobil-
ity [78], solid forecasting performance in this field has been
demonstrated in the recent years by machine learning based
forecasting solutions, deep learning based techniques in par-
ticular.

Needless to say, ML-based algorithms are thus envisioned
as a promising solution in the realm of 5G network slicing
problems [79]. That being said, before delving deeper in
the machine learning techniques applied to network slicing
resource control and management problems, we briefly sum-
marise them in Table 2.

IV. MACHINE LEARNING BASED NETWORK SLICING
Works applying ML techniques in the context of network
slicing can be grouped into three categories: i) traffic fore-
casting, ii) admission control, and iii) resource allocation.
These categories reflect three key network slicing building
blocks that together aim at ensuring network slicing SLAs are
respected. Figure 8 illustrates the relationships among these
building blocks, as commonly adopted in resource manage-
ment models in the literature (e.g., [77], [80]).

The traffic forecasting block allows to predict the evolution
of traffic load and resource usage for slices, over future time
instants. The outcome of the traffic forecasting solution can
be fed into the slice admission control solution and into the
slice resource allocation solution to enable better decisions
(e.g., maximize system resource utilization).

The admission control block decides on the slices/users
to be served in the future, according to various aspects
(e.g., resource availability, resource efficiency or operator
revenue [77]). It can also build on the outcome of the traf-
fic forecasting block for refining admission decisions in an
anticipatory way. Once a slice/user is admitted, the resource
allocation block assigns the resources to each slice/user by
avoiding the over-provisioning and under-provisioning of the
resources and ensuring the SLAs are respected [81]. Here-
after, we survey existing ML-based contributions in network
slicing under the aforementioned three categories.

A. TRAFFIC FORECASTING
It is beneficial to know the required resources per slice
in advance, over a certain time interval. This allows to
pre-assign the resources to the slices and avoid SLAs
violations [82]. Over the years, non-ML solutions like
ARIMA [76] and Holt-Winters [77] have been widely used
for temporal forecasting, although they are not suitable to
extract and predict the complicated spatiotemporal features
of mobile traffic in presence of user mobility [78]. Because
of this, many alternative ML-based forecasting techniques,
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TABLE 2. Summary of common ML techniques in network slicing.

FIGURE 8. Resource management model in network slicing.

and DL-based techniques in particular, became popular in
recent years to extract the spatiotemporal dependencies of
mobile traffic and to leverage the automation of end-to-end
resource provisioning for intelligent network slicing [64].
Moreover, onemay come across some empirical studies about
the superiority of DL algorithms (e.g., LSTM) over ARIMA
and Holt-Winters ([83], [84]). In the following, we divide the

contributions on traffic forecasting in network slicing in two
categories: i) CNN-based forecasting and ii) RNN and ANN-
based forecasting.

To keep our discussion consistent, we use the term time
interval to denote the duration covered by one sample, as part
of the forecasting task, and the term time window to denote
the time horizon over which the forecasting will take place.
For example, if at 1 PM, we want to forecast the traffic
demand for samples covering 10 minutes each, for a total
of one hour, then we have a forecasting time interval of
10 minutes and a forecasting time window of one hour.

1) CNN-BASED FORECASTING
According to [85], CNN and 2DCNN have major drawbacks
in recognizing temporal features, since they are specifically
designed to work with images. Therefore, the authors in [86]
put forward the Deepcog cost-aware network capacity fore-
casting framework, based on 3DCNN. In this work, historical
trends of antenna-level data traffic for each base station are
used as input to train the model. The cost on the operator
side is associated with resource over-provisioning and SLA
violations. The proposed model is applied separately for
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individual mobile services. The objective is to forecast the
network demand based on the spatiotemporal features, so as
to allow for efficient pre-allocation of resources. The authors
also design a unique cost-aware loss function to train theirML
framework and reduce the overall monetary cost of the opera-
tor. Ultimately, their presented framework demonstrates bet-
ter outcomes than baseline methods (i.e. non-ML solutions,
LSTM and autoencoder) when tested for forecasting with a
five-minute time interval and a time window of up to 8 hours,
in terms of resource overprovisioning, SLA violations, and
overall monetary cost. It is also observed that a larger fore-
casting time window generally yields higher SLA violations
and overprovisioning of resources. As evidence, the reported
observations show a percentage of SLA violations and over-
provisioning of 3% and 15%, respectively, for a given slice,
when a five-minute prediction time window is used. These
values reach 10% and 30%, respectively, for a prediction time
window of 8h.

Similarly, the work in [87] uses 3DCNN to conduct fore-
casting for the same purpose (i.e. to reduce resource overpro-
visioning and to proactively deploy the resources to meet the
future demand of slices). Accordingly, their results confirm
that ML-based forecasting can achieve more than 50% reduc-
tion of monetary cost in all tested scenarios when compared
to legacy non-ML forecasting methods.

The Deepcog model [86] is extended in [88] by consid-
ering multiple timescales, with both shared and dedicated
resources: a long-timescale over which the instantiation of
resources takes place, and a short-timescale over which
resources are reconfigured. The authors propose the AZTEC
framework, composed of four blocks: three blocks based
on 3DCNN to forecast the resource demand for dedicated
(long-timescale) and shared resources (long-timescale and
short-timescale), and one block for a heuristic algorithm for
resource reconfiguration. The objective is also the same as
in [86]; however, their overall cost accounts for more factors
(i.e. resource over-provisioning, SLA violation fees, resource
instantiating fees, and resource reconfiguration fees). The
numerical results suggest that the proposed framework can
achieve better overall monetary cost than without forecasting
for a 24-hour time window, with a long-timescale interval
of 30 minutes and a short-timescale interval of 5 minutes.
Besides, the authors also study the impact of dedicated and
shared resource allocation strategies on the monetary cost of
operators. In particular, they vary the long-timescale interval
from 30 minutes to 2 hours, showing that lower intervals
result in a lower cost.

2) RNN AND ANN-BASED FORECASTING
Many research works apply LSTM or one of its variants
(e.g., ConvLSTM) as a forecasting technique, for resource
management purposes or for the automation of network slic-
ing processes. Although it is one of the most widely used
ML techniques, LSTM has a relatively high computation
cost. To deal with this, some papers apply low-complexity

GRU methods or simple two-layer and three-layer ANN as
forecasting solutions for network slicing.

Indeed, LSTM is regarded as a promising forecasting tech-
nique for network slicing problems because of its capacity of
learning spatiotemporal and long-term dependencies in data.
With this motivation, [80] applies LSTM in the resource man-
agement processes to forecast the slice bandwidth demand
over a time window of 200 seconds and a time interval of
20 seconds. Based on the experimental performance evalua-
tion, the LSTM-based algorithm is shown to allowmore users
to access the network.

Furthermore, the authors in [89] build a collaborative learn-
ing framework combining LSTM (for large-timescale traf-
fic forecasting with a 1 hour time interval) and A3C (for
small-timescale traffic scheduling, time interval of several
milliseconds) to improve resource utilization while consid-
ering a slice performance isolation constraint. The simu-
lations show that much higher resource utilization can be
achieved via the proposed collaborative framework against
Q-Learning and classical AC methods, that do not consider
forecasting.

In [90], LSTM, CNN and DNN are used to forecast traf-
fic for resource management of a vehicular-specific slice,
based on an SDN-enabled 5G network. The simulations show
that LSTM achieves higher average forecasting accuracy
(99.36%) than DNN and CNN (92.58% and 95%, respec-
tively). Likewise, in [91], traffic forecasting using LSTM for
E2E slices is conducted with a time interval of 5 seconds and
a time window of 300 seconds. In this case, the accuracy of
LSTM is three times higher than that of linear regression.

Again, applying the same LSTM technique but taking
a different angle, the authors in [39] establish an efficient
slices resource reservation strategy from the point of view
of the SP (where MVNO data, i.e. aggregated traffic loads
and capacity of base stations, is unknown to SP). Their pro-
posed solution performs relatively better than the baseline
ARIMA model, using as metrics the MSE, the number of
over-reservations and under-reservations. Their forecasting
time interval and time window are 10 minutes and 744 hours,
respectively.

Aside from forecasting slice traffic, LSTM can also be
utilized for other forecasting problems in the sliced cellu-
lar architecture. More specifically, to facilitate the efficient
slice creation by service providers, the work in [38] uses
LSTM to forecast the transmission channel condition, with
a 24-hour forecasting time window and a one-hour time
interval. In this work, the authors feed the output of the LSTM
to a DNN, to decide whether the network can handle a new
slice request or not. The proposed ML-driven approach is
shown to outperform the standard analytical approach. Also,
in [92], LSTM is utilized to forecast user mobility to generate
the states to be dealt with by an A2C solution in charge
of inter-slice resource allocation. They prove that their joint
LSTM-A2C solution outperforms a GAN-DDQN solution
in terms of resource efficiency in dynamic network slicing
environment.
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The work in [93] uses a modified version of LSTM to
address the problem of accuracy in forecasting per-service
traffic demands in sliced networks. The authors design
an S2SConvLSTM solution, that combines the sequence-
to-sequence learning paradigm and a convolutional LSTM
approach. The authors achieve high accuracy for traffic fore-
casting over a one-hour time interval. Since S2SConvLSTM
exploits the advantages of both CNN and LSTM, it out-
performs them in terms of MSE and peak signal-to-noise
ratio (PSNR). Additionally, the proposed method is shown
to lead to good results, for five different types of services,
under a variety of settings. A prediction time interval ranging
from 5 minutes to 1 hour, and a prediction time window
up to 3 days, were considered in the evaluations. A similar
approach is proposed in [94], where the authors opt to use
ConvLSTM to forecast the traffic variations on a vehicular
slice with a one-hour time interval and a 100-hour time win-
dow. In a subsequent step, the authors evaluate the demand of
the vehicular slice and pre-allocate the necessary resources,
using primal-dual linear programming technique. They do
so, under the constraint of respecting the stringent latency
requirements of vehicular services.

Based on this rich literature, it is reasonable to say that
LSTM and its variants have been widely used for forecasting
network slice traffic and resource utilization. However, the
computation cost of LSTM is relatively higher when com-
pared to other techniques such as GRU for the same forecast-
ing task [95]. With this in mind, the authors of [96] design
a light and simplified GRU solution for forecasting resource
usage per network slice over time. In their solution, the reset
gate is excluded and a different activation function (softplus
instead of tanh) is used in the update gate. This is shown to
allow for a fast forecasting of the hourly resource usage in a
network slice, while considering a time window of 120 hours.
The authors propose to enforce the SLA constraints and
minimize the MSE loss function in their forecasting-based
network slicing resource management model. According to
their experimental outcomes, the light GRU solution has
much shorter computation time than LSTM due to its simpler
architecture.

An even more simplified GRU approach (called soft GRU)
is used in [40] for slice traffic forecasting. Soft GRU uses
the same architecture as light GRU, except for the fact that
input data is optimized by suppressing the historical data.
As illustrated in the paper, while both soft and light GRU
show the same forecasting accuracy in an hourly interval of a
weekly time window, soft GRU has better computation time
than its counterparts (i.e. LSTM, light GRU, and standard
GRU). Equivalently, the work in [97] integrates GRU in
the resource orchestrator of an SDN-based CN to predict
the traffic variation of each slice in the next time interval
of 1 hour. However, no evaluations are conducted for this
presented framework.

In contrast to the previously discussed works, that dis-
regard data privacy in network slicing, the authors of [98]
attempt to forecast the per-slice traffic, at the base station

level, while considering data privacy concerns as well as
communication and computation efficiency. To this end, they
rely on the Federated Proximal LSTM (FPLSTM) approach,
in which slice instances (controlled by MVNOs) train local
models with private datasets at the corresponding base sta-
tions, and only share trained model parameters with a global
model operating on a central node (managed by InP). Hence,
no data is shared among the parties and data privacy of
MVNOs is guarantee. Their results show that the forecasting
accuracy of their model is very close to that of a centralized
model. Besides, since local models benefit from each other’s
knowledge, through the global model, learning rate is accel-
erated and notorious computation cost of LSTM is reduced.

The substantial advantages of RNN techniques, such as
LSTM and GRU, cannot be disregarded when considering
traffic forecasting tasks, as they are specifically designed to
account for temporal dynamic behavior. However, we note
that the feasibility of simple ANN solutions in the context
of slice traffic forecasting was also investigated by some
works. In particular, the work in [99] selects a three-layer
ANN design to forecast the traffic load of each slice, with
a 15-minute interval and a 24-hour time window, to proac-
tively allocate resources in the optical transport network. The
numerical results demonstrate that allocating the adequate
amount of resources in advance provides better delay and
lower blocking probability.

Besides, in [100], two-layer and three-layer ANNs are
employed in a decentralized federated learning framework.
Accordingly, service-oriented KPIs belonging to each slice
are forecasted by local models (managed by SP or ST). The
local models send only the extracted features to the central
model (managed by InP orMVNO) for aggregation purposes.
This approach protects the privacy and sensitivity of the
information related to individual slices. The simulation con-
ducted by the authors suggests that the outcomes of this FL
solution are comparable to the centralized model in terms of
MSE, while respecting the privacy of network slices. Besides,
FL can significantly reduce the communication overhead,
up to five times lower than a centralized model.

Typically, ML models for traffic forecasting are trained on
large datasets, an operation which is time-consuming. To deal
with this, the authors in [101] rely on TL-based DNN for
traffic forecasting per slice. More precisely, they initialize
the weights of their model with the weights of a pre-trained
model on a similar task to perform the per slice traffic fore-
casting. Their TL-based forecasting model exhibits better
MSE loss than a baseline ML model (where model weights
are initialized randomly) while ensuring sample efficiency.

3) LESSONS LEARNED
It is quite obvious from the literature that forecasting
mobile traffic demand brings significant benefits to resource
management and QoS-oriented mechanisms, enabling an
increased automation in the network slicing process [96].
Therefore, numerous DL-based forecasting solutions have
been proposed, as detailed above. It is noteworthy that
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TABLE 3. ML-based forecasting techniques in network slicing. ‘‘NA’’ means the required information is ‘‘Not Mentioned’’ in the paper itself.

different forecasting time intervals, associated with different
time windows, are considered in the existing state of the art.

Generally, we observe that the duration of the considered
time interval ranges from a minimum of several seconds to a
maximum of one hour. On the other hand, in terms of the time
window, most of the works consider a minimum of several
seconds and a maximum value in the order of weeks. This is
a consequence of the number of problems that can benefit
from the forecasting function, which are diverse in terms
of requirements. For example, large reconfiguration periods
(i.e. minutes or hours time interval) are acceptable for VNF
dimensioning in the CN (see for instance [40], [86], [88],
[96], [97]), while forecasting of traffic in the RAN needs to
cover the requirements of the radio resource reconfiguration
process (i.e. below-second time interval, see for instance [80],
[89], [91]). Also, while mobile traffic demand shows signifi-
cant periodicity at a daily and weekly time scales, it presents
significant dynamics at theminute time scale. This means that
using a large forecasting time window would be adequate in
some cases, and using a smaller one would be adequate in
others.

All in all, it is sensible to stress that, in general, integrat-
ing the forecasting function in the network slicing frame-
work leads to better outcomes. Notably, LSTM is a quite
popular method, and its modified version S2SConvLSTM
outperforms CNN, 3DCNN, LSTM in terms of MAE and

PSNR values. It is also worth noting that GRU shall be a
better choice if one is looking for a lower computation time
than LSTM. Overall, each of these forecasting methods has
its benefits and its disadvantages. To the best of our knowl-
edge, none of the papers explicitly answers when to use one
forecasting technique over the others. Therefore, it is hard
to say that one unique method is universal. Table 3 gives a
comprehensive summary of all contributions on ML-driven
forecasting in network slicing.

B. ADMISSION CONTROL
Admission control systems operate at two levels: slice admis-
sion and end-user admission. Slice admission control is rele-
vant to the InP, whereas end-user admission control is relevant
to the MVNO [13]. Recently, some research works also study
two-level admission control systems whereby both slices
and end-users admissions are covered simultaneously [102].
We present accordingly contributions on admission control,
under the following three categories: (i) Slice Admission
Control (ii) End-User Admission Control and (iii) Two-level
Admission Control.

1) SLICE ADMISSION CONTROL
Slice admission control can be event-driven or periodic [103].
More specifically, as slice requests arrive in the system,
operators might want to trigger a slice admission decision
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(i.e., reject or accept) immediately upon slice arrival [80].
Alternatively, operators might want to manage decisions peri-
odically by holding the slice requests in a queues [87]. Both
the event-driven and periodic slice admission problems can
be modeled as MDP [103].

In terms of event-driven admission control, the authors
in [27] model the RAN slice admission control problem as
sMDP, to deal with the stochastic arrival of slices on the go.
They consider two types of slices: inelastic slices, that require
constant throughput, and elastic slices, that do not require
a constant throughput. The authors utilize the Q-learning
method for deriving decisions. They do so with the objec-
tive of maximizing the long-term revenue, by choosing an
adequate action (i.e. accepting or rejecting slices). As shown
in the simulation results, the algorithm tends to admit more
inelastic slices (which generate higher revenues) than elas-
tic slices and yet provides a better reward level than other
benchmark solutions. Similarly, the work in [104] models
the slice admission problem in a fog-enabled network using
sMDP. The authors use DDQN to solve the problem. Their
results show that between 10% to 60% higher revenues can
be obtained, with respect to baseline methods.

In [105], the authors also consider an event-driven slice
admission scheme, under a limited network transmission
capacity, in the context of Next-Generation RAN (NG-RAN).
More specifically, their problem is based on the model-aware
MAB problem, with two additional constraints, taking into
account the system capacity and the slice life cycle. To solve
the problem, the authors rely on a low-complexity enhanced
UCB algorithm to select the slices for admission, according to
resource multiplexing gains. To validate the effectiveness of
the proposed framework, the authors run the proposed algo-
rithm in an LTE commercial system. Their model is shown to
allow accepting more slices and enabling a better system uti-
lization, when compared to random and greedy approaches.
When it comes to periodic admission control schemes, slices
requests are buffered in a queue over a given period of
time. Requests are then processed sequentially, at the end of
the period [103]. Accordingly, the authors in [79] employ a
DQN approach which observes the system queue length and
resource availability and aims at maximizing the resource
utilization and minimizing the queue length. Their simulated
results reveal that theDQN is superior to Q-Learning, Greedy,
and Random algorithms, in terms of average utility for each
service request.

Yet, in practice, simply admitting slices in a periodic
admission control scheme would not help to increase the
profits of the operator [81]. In fact, during the periodic ser-
vicing time, slices requirements may vary and SLA violations
could occur if the operator doesn’t satisfy potential additional
slices resources requirements on time. With this consider-
ation, the work in [106] exploits RL for slice admission
control processes, in a C-RAN architecture. The objective is
to reduce the penalty fees, incurred by the violation of SLAs.
Specifically, the RL agent is designed to learn the relationship

between slice acceptance/rejection and the incurred overall
profits. The findings exhibit that RL provides a significant
reduction in losses of the operator (64 to 80 % reduction
for low network loads and 14 to 39 % reduction for high
network loads), with respect to a benchmark model, that
admits slices whenever resources are available.With the same
spirit, in [107], the authors use the policy-based RL to derive
periodic slices admission decisions. They do so, while consid-
ering obtained reward parameters (i.e., a sum of all rewards
from already admitted slice and potential new slice admis-
sion). The evaluation shows that RL achieves approximately
75% to 30% reduction in penalty for a slice, than baseline
approaches.

Equivalently, the authors in [108] establish a network slice
admission and congestion control system, integrated with
the 3GPP network slice deployment framework [109]. Their
ultimate goal is to maximize the resource utilization, while
reducing the blocking probability of high priority slices.
Eventually, this allows to maximize as well the InP revenue.
To do so, the authors map the incoming slice requests from
the queue into NSIs, which are composed of a set of NFs
spanning across the RAN, TN, and cloud. For slice admission,
SARSA is integrated with Linear Function Approximation
(LFA) to solve the MDP. The proposed approach is shown
to present superior results to the greedy approach, in terms of
long-term reward and slice blocking probability.

While some papers are focusing only on the admission
control part, other papers are coupling the admission con-
trol function with the forecasting or resource allocation
function. We note that periodic decision models are those
combined with the forecasting and resource allocation func-
tions. Accordingly, the empirical study in [77] suggests that
forecasting-aware admission control outperforms admission
control function without forecasting. However, this comes at
the cost of slightly longer computation time (approximately
3514 seconds for 30 slice requests, which remains acceptable
in overall system implementation). In [80], the authors con-
sider a heuristic-based admission control approach, coupled
with an LSTM-based traffic forecasting method. A higher
user acceptance rate is obtained with the proposed scheme,
resulting in approximately 18% more revenues to the InP,
with respect to a baseline scheme.

The authors in [110], jointly consider the problems of slice
admission and resource allocation, with a focus on beyond
5G RAN, with a cell-free mMIMO setup. They assume a
single type of VNF exists per slice and rely on a modi-
fied deterministic actor-critic algorithm (called D-TD3 with
state-action distribution function) for solving the problems.
Their objective is to do so, while minimizing the network
deployment cost. The reward clipping mechanism is uti-
lized in this work to avoid destabilization in the training
period. The simulation results suggest that, in general, D-
TD3 carters better results than baseline methods (i.e. DDPG,
Stochastic AC, TD-3) in terms of average return level, admis-
sion rate, CPU utilization, average delay, and average power
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consumption. With the same objective as in [110], the works
in [111], [112], and [113] formalize the joint slice admission
and resource allocation problem, for network slicing, in a 5G
C-RAN network. These works consider more than one VNF
per slice. They apply the TD-3 method [111], an enhanced
TD-3 approach [112] and a multi-agent PPO technique [17]
(i.e. Slicing agent1 and AC agent)2 to achieve a more stable
and faster learning process and to meet the desired objectives.
The proposed approach is shown to outperform other baseline
methods (i.e. DDPG, Stochastic AC and Greedy approaches).
Similarly, the authors of [114] and [115] rely on the DQN
and DDQN to establish a joint slice admission and resource
allocation framework to achieve higher InP revenues and
QoS. Their presented mechanism outperforms Q-Learning
and Greedy approaches in terms of long-term revenues and
user acceptance rates.

2) END-USER ADMISSION CONTROL
As for the end-user admission control problem, it is
commonly assumed that slices are already deployed in
the network, with the slices information (i.e. capacity of
slices) given. Both supervised learning approaches and
RL approaches are used for solving end-user admission con-
trol problem.

The work in [116] attempts to map traffic flows of
end-users to pre-deployed slices, by utilizing a super-
vised learning method. Precisely, the authors resort to the
edge-based GCN method to predict to which slice a traffic
flow request should be admitted. They aim to do so, while
maximizing successful transmission of requested traffic, over
network slices. Their results show that GCN-based approach
outperforms random, round-robin, and Multi-Layer Percep-
tron (MLP) methods in terms of successful transmission rate
and amount of transmitted data.

In [117], the authors exploit supervised learning and unsu-
pervised learning techniques, namely random forest and
DNN techniques, to map incoming user requests to the appro-
priate network slices. They derive their decisions, with the
objective of enabling load balancing among slices. Random
forest is applied to classify well-structured data (i.e. net-
work KPIs), and DNN is used to classify unstructured ones.
Besides, a master slice is considered in this work. In case a
non-master slice (i.e. eMBB or URLLC or mMTC) fails or
gets overloaded, end-users traffic could be redirected to the
master slice. Based on the results, the mechanism is shown
to address slice failure issues, while predicting with a high
accuracy the slice types onto which users should be admitted.

While previously discussed works apply supervised and
unsupervised approaches for end-user admission control, the
study in [118] applies reinforcement learning, and in par-
ticular DQN, to admit users in real-time. The objective is
to maximize MVNOs profits. Accordingly, the problem is

1Slicing agent ensures the efficient slice embedding to the substrate
network.

2AC agent ensures the slice instances are admitted by means of maximis-
ing the InP revenue.

modeled as sMDP. The results show that DQN outperforms
Q-Leaning and random approaches, in terms of system utility
and average system throughput.

The works in [119] and [120] study the problem of
end-user admission, while considering two types of users
(i.e., eMBB users and vehicular users). Users are to be
admitted to a hotspot slice instance and a vehicular-to-
infrastructure (V2I) slice instance, in a fog-RAN setting.
To solve the problem, the authors rely on a DQN agent [119]
and a Q-Learning agent [120]. Their objective is to maximize
the reward, encompassing content caching performance in the
fog-RAN, as well as throughput and delay over the slices.
Based on the simulation results, the proposedmechanisms are
shown to be superior to other baseline methods, in terms of
cumulative reward, associated with their objective functions.

Similarly, the authors in [121] address the end-user admis-
sion problem, and rely on a DRL approach to solve it. In par-
ticular, the ensemble learning method (ELM), which exploits
the benefits of SPG and Approximation Framework (AF),
is used. The authors compare the performance of SPG and
AF and show that, as expected, SPG achieves higher rewards
than AF, while AF converges faster than SPG. ELM is also
shown to outperform SPG and AF in terms of resource block
(RB) utilization and user admission rate.

3) TWO-LEVEL ADMISSION CONTROL
All works in the previous two subsections tackle one of two
problems of slice admission or end-user admission. None of
them considers the two problems jointly. In fact, by consid-
ering the requirements of both slices and users, it is possible
to build efficient two-level admission control systems [102].

The authors in [122] formulate the two-level admission
control problem by considering both the slice and end-users
to satisfy the end-users QoS requirements while ensuring
the isolation among slices. In this regard, they utilize a
heuristic-based Jacobian (J matrix) to monitor the violations
of predefined KPIs and resolve them by adjusting the corre-
sponding control parameters (i.e. weight of the slice, capacity
limit of the slice) iteratively. Consequently, DQN is deployed
to find the near-optimal value from the scratch based on the
control parameters and KPIs status of each service. On top of
that, they establish the hybrid of J matrix and DQN where
the J matrix changes the control parameter based on the
decisions made by the DQN agent. According to their assess-
ment, the hybrid model provides the nearest optimal value
(approx 0.1% gap with optimal value) over other baseline
methods.

The same problem is tackled in [123], with another
approach. The authors consider a three-layer ANN to estimate
the J matrix, based on the control parameters and network
conditions. The results show that the results of the J matrix
and ANN are comparable.

4) LESSONS LEARNED
Indeed, admission control is one of the main building blocks
of network slicing. Incorporating ML techniques to this
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TABLE 4. Summary table of ML-based admission control in network slicing. Column titles: ‘‘Input,’’ ‘‘Decision’’ and ‘‘Objective’’ are relevant only for the
papers which use combination of DL and heuristics. ‘‘NA’’ means the required information is ‘‘Not applicable.’’

end further helps operators maximize their revenues, while
ensuring SLAs. In fact, admitting a maximum of users/slices
can help maximize the long-term operator revenue [124].
Nevertheless, by admitting more users/slices, Key Perfor-
mance Indicators (KPIs) may degrade, leading to SLA vio-
lations and potential penalty fees [81]. Thus, it is essential
to maintain the balance between resource utilization and
KPIs values [27]. It is worthwhile to stress that these aspects
could be covered by a proper reward function design in an
MDP/MAB model.

Furthermore, it is worth noting that supervised learning
was commonly used for end-user admission control, while
model-free RL methods are commonly applied for slice
admission control and two-level admission control. Overall,
MDP formulation was mostly used throughout these works.
More specifically, states usually represent the number of
accepted slices/users, actions represent the acceptance or
rejection of slices/users’, and rewards are mostly evaluated
as the overall profits of operators. Finally, as of our knowl-
edge, ML-based techniques used so far for slice admission
control problems are still in their infancy and need further

explorations and verification. For ease of reference, all the
existing works related to ML-driven admission control in
network slicing are summarized in Table 4.

C. SLICE RESOURCE ALLOCATION
In recent years, a large number of studies have applied ML
techniques to solve complex resource allocation problems in
network slicing. These problems target the different network
domains, where different types of resources are implied. For
instance, spectrum (a.k.a resource blocks (RBs), frequency-
time blocks) and transmit power are the main resources in
the RAN domain. Wavelength and bandwidth are the main
resources in TN. Finally, VNFs, CPUs, and memory are the
major one in CN domain.

In this section, we review contributions on network slicing
resource allocation with ML techniques, while considering
the following categories: (i) resource allocation in RAN,
(ii) resource allocation in CN, (iii) resource allocation in TN,
(iv) resource allocation in RAN and CN and (v) end-to-end
resource allocation.
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1) RESOURCE ALLOCATION IN RAN
A considerable amount of works on network slicing targets
resource allocation in RAN, by exploring various ML-based
techniques. RAN domain slicing implies RAN resources
(i.e. spectrum, transmit powers, etc.) sharing and
allocation [125].

The resource allocation scheme can be coarse-grained
or fine-grained. In a coarse-grained resource allocation
approach, resources are provisioned to slices by con-
sidering merely average slice-level QoS requirements
(i.e. average slice throughput, average slice latency, etc.)
and without taking into account any end-user level require-
ments. Instead, a fine-grained resource allocation approach
allocates resources (i.e., Resource Blocks (RBs), CPU and
transmit power, etc.) to the UEs of each slice by taking
into account the end-user QoS satisfaction level. Technically,
the LTE subframe is considered for RBs allocation [126].
It includes 12 consecutive sub-carriers (i.e. 180kHz) per RB
in 1-ms Transmission Time Interval (TTI). It is commonly
assumed in papers that RBs are shared through the Orthogo-
nal Frequency-Division Multiple-Access (OFDMA) method
for downlink (DL) transmission to address the interference
issues among UEs [127].

Notably, traffic variations at slice-level can be observed
over time intervals in the order of hours/days. Instead,
users traffic variations can be observed over time intervals
in the order of minutes/seconds [128]. Accordingly, large
timescale is generally considered for coarse-grained slice-
level resource allocation and small timescale is considered
for fine-grained user-level resource allocation.

While most of the RAN resource allocation contribu-
tions introduce a coarse-grained or a fine-grained approach,
a few introduce two-level resource allocation schemes
with both coarse-grained and fine-grained approaches.
Thus, we group contributions under the following cate-
gories: (i) Coarse-grained Resource Allocation (ii) Fine-
grained Resource Allocation, and (iii) Two-level resource
allocation.
Coarse-grained Resource Allocation: Both RL and super-

vised/unsupervised methods are employed for coarse-grained
resource allocation. As mentioned earlier, coarse-grained
resource allocation targets average slice-level requirements.
In this regard, the work in [129] relies on the DQN-based
algorithm to tackle the inter-slices bandwidth allocation prob-
lem, while considering high traffic variations among slices.
A discrete normalized advantage function (DNAF) is inte-
grated into DQN to leverage faster convergence to cope
with a larger action space. The numerical results show the
superior performance of DNAF-based DQN over classical
DQN. However, the proposed DNAF-based approach could
not balance between QoS and spectrum efficiency (SE) and
that calls for further investigations. Attempting to investigate
the trade-off between QoS and SE, the authors of [130]
deploy DQN to allocate bandwidth resources to slices, while
considering 25 use cases of NGMN [6]. Interestingly, the user
satisfaction score is above 80% for all the use cases with

minimum bandwidth allocation. However, no comparisons
are done with existing counterparts.

The authors in [131] study the same problem as in [129].
They employ a Generative Adversarial Network (GAN)-
based DDQN approach [132] to have a better estimation
of expectation of state-action values (i.e. Q-value). By that,
they aim to overcome potential oscillations in the Q-value
estimation [133], that exist with classical RL techniques.
Besides, for more stability in the training process, they then
utilize the reward clipping mechanism (a.k.a reward reshap-
ing), attributing a value to the reward in [−1, 0, 1], according
to specific constraints. Through numerical results, it can be
seen that the proposed framework provides better results in
terms of system utilization, with respect to classical DQN.
Moreover, with reward clipping, their system is shown to
converge with a higher system utilization.

Exploiting the benefits of dual connectivity (DC),3 the
work in [134] formulates the multi-slice resource allocation
problem in RAN, which is composed of macro and small
cells. To this end, they introduce the dueling double deep
Q-network with LSTM (LSTM-D3QN), in which network
state is inferred and yet leverage efficient mapping from state
to action. Their numerical results show that their solution is
superior to its counterparts (i.e. LSTM-A2C and DQN) in
terms of resource utilization and QoE. Besides, DC-based
network slicing shows better resource efficiency and QoE
than the one without DC.

Coarse-grained resource allocation has also been investi-
gated for network slicing in the RAN domain, for specific
use cases (i.e. smart grid and V2X use cases).

The work in [135] focuses on the bandwidth allocation
to RAN slices to serve various types of smart grid traffic,
with the objective of maximizing the utility of bandwidth
resources. They assume slices serve two types of applications:
elastic applications (not sensitive to bandwidth requirements)
and real-time applications (with a minimum requirement on
QoS to satisfy). Then, they rely on a DQN approach to
allocate bandwidth to slices, while maximizing a reward
function, combining spectrum efficiency and the utility of
slices. Moreover, they consider a double DQN approach and
compare the convergence rate of both approaches in terms of
reward value. Both DQN and double DQN show comparable
results.

Similarly, the authors in [136] study coarse-grained slices
resource allocation for V2X services. They use simple
Q-Learning to maximize the resource utilization of multiple
slices in the network. Their Q-Learning approach is shown
to be superior to a fair and a greedy resource allocation
approaches, in terms of utility score. Likewise, the work
in [137] targets resource allocation for multiple slices, offer-
ing services to vehicular and smart cities’ users. DQN is
used to derive decisions, on whether request tasks will be
served with edge or core resources. The numerical results

3Dual connectivity allows UE to access the resources from different
eNodeBs simultaneously.
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TABLE 5. Summary table of ML-based resource allocation in network slicing. Column titles: ‘‘Input,’’ ‘‘Decision’’ and ‘‘Objective’’ are relevant only for the
papers which use a combination of DL and heuristics. NA’’ means the required information is ‘‘Not applicable.’’

show that, with respect to benchmark solutions, the proposed
approach presents the highest performance in terms of reward
(i.e. encompassing utility, grade-of-service (GoS) and cloud
avoidance).4

As V2X services are characterized by a high mobility and
spatiotemporal correlations [154], the authors in [94] rely
on the integration of ConvoLSTM with primal-dual interior-
point method to forecast the complex slice traffic and allocate
resources to slices accordingly. The proposed framework is
shown to offer better resource utilization with respect to a
resource allocation framework that does not include fore-
casting. In addition, they show that the proposed framework
can better meet overall system delay requirements, since
resources can be allocated in advance. Similarly, the study
in [138] also focuses on V2X traffic and considers correla-
tions over space and time for allocating resources. More pre-
cisely, the authors combine DQN and CNN to capture spatial
dependencies and LSTM to extract temporal dependencies,
to enable an efficient resource allocation. Their results show
that their network slicing framework provides lower blocking
error rate (BLER) and latency than the baseline approach.

4Cloud avoidance values represent the level of edge nodes contribution,
i.e. a higher cloud avoidance ratio, reflects a better efficiency of edge nodes.

While previously discussed works on coarse-grained slices
resource allocation employ RL to this purpose, the authors
in [139] rely also on supervised learning approaches to
derive decisions. In particular, they introduce a network slice
resource management orchestrator, encompassing a ML-
based classifier, a ML-based predictor, an admission con-
trol function, a slice scheduler, and a resources manager.
Firstly, they employ various ML-based Classifiers (i.e. KNN
and SVM) to classify network demands (including SLA)
requested by a service provider. Then, a Regression Tree
(RT) method is used to forecast each slice resources ratio,
serving as input to the admission control module. From
then on, they rely on heuristic approaches for both admis-
sion control and slice scheduler. Based on the evaluations,
RT (i.e. complex, medium, and simple) is shown to provide a
better MSE compared to its counterparts, in some cases even
six times lower. Besides, their framework leads to a very small
gap (approximately 5%) to optimal values, in terms of slice
ratios, while static and random approaches imply gaps of 25%
and 35%.
Fine-grained Resource Allocation: Similarly to coarse-

grained resource allocation, RL, supervised and unsuper-
vised methods have been applied for fine-grained resource
allocation. As mentioned earlier, the fine-grained resource
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allocation approach considers the end-user QoS satisfaction
level. The majority of works consider the RBs allocation
to end-users, while some attempt to allocate other types of
resources (i.e. CPU and energy/transmit power).

The authors of [140] allocate RBs to end-users in
eMBB/URLLC slices to meet stringent latency requirements.
Towards this end, their problem is first characterized as MDP
and then transformed into a model-aware MAB problem.
They defined the bandit’s reward function based on the
current system configuration, channel quality, and slice traffic
demand. Moreover, they opt for an enhancedMAB algorithm
that exploits the advantages of both UCB and TS. Their
simulations illustrate the superiority of their proposed algo-
rithm over UCB and TS in terms of latency, buffer size and
SNR. Likewise, the work in [141] employs the Q-Learning
method in the dynamic RB allocation to users associated with
eMBB, URLLC, and mMTC slices. Their results conclude
that approximately 35.6% better resource utilization can be
obtained, compared to a random scheme.

Equivalently, the authors in [142] attempt to investigate
dynamic RB allocation to different types of slices (i.e. eMBB
and Vehicle to Vehicle (V2V)) in NG-RAN. Resource allo-
cation for eMBB is considered for both uplink (UL) and
downlink (DL) directions. However, V2X communication
can be done through either base station (using UL/DL) or
via nearby vehicles (using SideLink (SL)), as introduced in
3GPP release 14 [155]. While considering these aspects in
the system model, the authors aim to maximize the RBs
utilization, by using a Q-Learning agent. Their results show
that their proposed approach outperforms the fixed resource
slicing scheme in terms of RB utilization, latency, data rate,
and service outage. Moreover, paying particular attention
to the vehicular user equipment (VUE), the works in [143]
and [144] study RB allocation with respect to multiple slices,
by accounting for the channel gain of the vehicular network
environment. In this regard, they utilize DNNs to extract
features from non-linear relationships among VUEs, thereby
finding the optimal resource assignment policies. It is learned
from their numerical results that having a good knowledge of
channel gain can reduce the radio resources overhead cost to
50% [143] and yet energy efficiency is approximately 26%
better than baselines in a certain scenario [144].

Notably, only a few studies shed light on interference when
studying coarse-grained RB allocation. The authors of [145]
study the RB allocation to end-users in individual slices, with
the objective of minimizing the inter-numerology interfer-
ence (INI)5 among slices. To solve the problem, the authors
rely on a DQN agent, trained offline, and later invoked online
to allocate RBs, while considering dynamic users require-
ments. Their evaluations show that their DQN-driven frame-
work allows to minimize INI, with results close to the optimal
solution.

5Numerology of spectrum channels in 5G is important to enable flexibility
in offering diverse services, yet in turn it introduces a new type of interference
(named INI) among slices [156].

As cooperation among base stations can help mitigate
interference [157], the authors in [146] develop an online
resource management framework that relies on DQN and
A2C agents. In their framework, the authors utilize GAT to
extract the spatiotemporal correlation among base stations.
This correlation is further used as a representation of net-
work states, and fed to the DQN and A2C agents, to find
the optimal spectrum bandwidth allocation policies. Through
their simulations, it is clearly seen that GAT-driven DQN and
A2C can improve the spectrum efficiency, while reducing the
interference among base stations.

While majority of papers (see for instance [140],
[141] [142], [145] [146] just to name a few) investigate
dynamic RB allocation with a fixed number of slices, the
authors in [147] study RB allocation to UEs, under a varying
number of slices. Their adaptive algorithm is inspired by the
distributed learning Ape-X RL technique [158] where multi-
ple actors are used for multiple instances of the environment.
Basically, Ape-X is a modified DQN method, with multiple
actors enabling parallel resource allocation to multiple slices
simultaneously. Overall, each agent focuses on the efficient
RBs allocation to satisfy each UE requirement of the slice.
Their results prove that their proposed scheme can allocate
the RBs steadily, even if the number of slices varies.

As previouslymentioned, some papers focus on other types
of resources (i.e. CPU and energy/transmit power), in a fine-
grained manner, along with RBs in their RAN slicing prob-
lem. Speaking of other resources in RAN, CPU allocation
is critical in virtualized RAN environments (i.e. C-RAN or
vRAN) [159] where BBUs are replaced by software functions
running on CPUs on vRAN [160]. Sensibly, the study in [148]
analyzes the relationships among CPU and vRAN resources6

and their influence on QoS, in the context of network slicing.
The authors then formulate the CPU and RB allocation prob-
lem as a contextual-bandit problem7 to enable customized
decision making, for varied network states, at each time slot.
They employ SAE to transform higher dimensional state8 and
action space into lower-dimensional one. Thereafter, AC is
used for the CPU controller and DNN is used for the radio
scheduler. It is noted from their experimental results on a
real-world network that their scheme enables much butter
throughput and network buffer state, with the same CPU
resource consumption as legacy methods, while reducing the
decoding error rate. On the other hand, 30% of CPU saving
is achieved with their proposed framework to offer the same
level of QoS that legacy methods deliver.

Furthermore, the authors in [149] exploit a DNN technique
for the dynamic RB and CPU allocation of slices, while
meeting the operating expenses (OPEX) cost constraints of
InP. More specifically, they set lower and upper bounds on

6vRAN resources includes RBs, modulation and coding scheme (MCS)
and transmit power.

7Contextual-bandit is an extension of multi-armed bandit and yet suitable
for online decision problem.

8Higher dimensional state includes bits pending to be transmitted, mean
SNR and variance SNR of each BS.
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OPEX cost for specific resources (i.e. RB and CPU), while
respecting SLAs between InP and slice tenants, in the DNN
training processes. For the training process, per slice traffic
and KPIs data is collected at cell-level from a commercial
network. Based on the numerical results, the DNN technique
is shown to derive solutions close to optimality, in terms
of RB utilization, CPU utilization and back-haul capacity
utilization.

Similarly, the authors of [127] study the RB allocation
and RAN functional split to slices, while considering users’
throughput, latency, and CQI. They formalize the problem as
ILP and solve it using the Branch and Cut (B&C) algorithm as
well as an LSTM-based approach. As their numerical results
show, the LSTM-based approach is able to find near-optimal
results as B&C, in terms of resource utility, throughput,
latency satisfaction and RAN split deployment cost. In addi-
tion, the LSTM-based approach is observed to take 1-2ms
while B&C takes 3600-3604ms.

In [150], the authors study the RB and energy allocation
problems, while considering the overall system resources
limitations (i.e., spectrum bandwidth, energy, queue length,
etc.). Accordingly, the authors rely on a cMDP, where they
integrate pre-defined constraints on these resources. To derive
decisions, the SACmethods are used with on-off offline train-
ing of a SAC agent to leverage the online decision-making
process. The results show that the proposed solution outper-
forms benchmark solutions, that do not take into account sys-
tem resources constraints in the MDP formulations, in terms
of QoS.

Apart from RBs, the allocation of other resources
(i.e. CPU and transmit power) also has a critical impact on the
end-users QoS. Accordingly, the study in [152] investigates
the problem of CPU and transmit power allocation to users
of multiple Service Providers (SPs), while respecting the
privacy of individual SPs. In particular, the authors assume
multiple SPs are competitive to each other and intend to
maximize their long term payoffs. To this respect, they design
the problem as an abstract stochastic game.9 We note that
in the abstract stochastic game approach, each SP evaluates
the bidding values by using their local available associated
users information (i.e., tasks arrival of users, queue state
of users, and location of users) and abstract information
of other SPs. The numerical results reveal that the DQN
agent of an SP can keep the balance between CPU/transmit
energy, average queue length and average resource uti-
lization, compared to the baseline algorithms. Aside from
slice-level privacy, the work in [153] takes into account
device-level privacy, when deriving decisions on Transmis-
sion Power (TP) and Spreading Factor (SF)10 in Industrial

9In a stochastic game approach, to achieve the NE, every SP associated
with an MVNO needs to have a global view of network dynamics, which is
impractical when SPs are non-cooperative. Henceforth, they transform the
stochastic game into an abstract stochastic game by only allowing to expose
abstract information among SPs.

10Spreading Factor (SF) controls the data transmission rate of IoT devices
and lower SFs mean higher data transmission rate and lower coverage.

IoT (IIoT). To solve the problem, the authors consider an
FL approach, where DQN agents are deployed as local
agents.The FL framework is shown to be superior to central-
ized learning in terms of overall QoS satisfaction and energy
utilization.
Mixed coarse-grained and fine-grained resource alloca-

tion: As part of RAN slicing, some papers target both
coarse-grained and fine-grained. To do so, they either com-
bine RL and heuristic approaches (see for instance [78],
[125] [161], [162] [163], [164]) or combine RL and DL
approaches (see for instance [89], [165]).

Specifically, the work in [161] considers both coarse-
grained and fine-grained RAN resource slicing approaches.
The authors introduce a framework with three main steps.
Firstly, they target slicing at the coarse-grained level, where
resources are partitioned over slices, based on the weight
of each slice. The surplus resources are reserved to serve
increases in the numbers of users later on, so as to guar-
antee performance isolation at all time. Accordingly, in this
phase, a DDQN agent is used, allowing for dynamic adjust-
ment of slice resources over different periods. Secondly, the
authors update the BS-level resources to reflect the adjusted
slice-level resources. Finally, the authors target fine-grained
resource allocation. They solve the problem using a heuristic,
that allows a BS to perform the RBs allocation to each UE,
while ensuring QoS satisfaction and efficient resource utiliza-
tion. Their simulation results show that the presented solu-
tion outperforms other baseline approaches (i.e. Q-Learning
and DQN) in terms of system convergence rate and achiev-
able reward. Similarly, in [162], the author utilizes DDPG
for two-level RAN resource allocation. First, coarse-grained
resource allocation to V2I and V2V slices is investigated.
After that, fine-grained RBs allocation to users is done. The
authors show that their DDPG outperforms DDQN, PG and
AC algorithms, in terms of slice utility.

Furthermore, the authors in [163] decompose the RAN
resource allocation problem into a primary problem, where
slice-level resource allocations are performed, and multiple
secondary problems, where slices resources are allocated to
end users. To this end, the authors rely on the alternating
direction method of multipliers (ADMM) to iteratively solve
the master problem and DDPG to solve slave problems, with
the objective of maximizing the utility of slices collectively.
Without loss of generality, one may see the master problem
as the coarse-grained resource allocation problem and the
slave problem as the fine-grained resource allocation prob-
lem. The results reveal that the proposed approach can gen-
erate near-optimal solutions as pure ADMM and can achieve
approximately 1.5 times better resource utility than the static
approach.

Using the contrary approach to [163], the work in [164]
first applies a DQN agent for inter-slice resource allocation
(i.e. between cellular slices and D2D slices) and then ADMM
for intra-D2D slice resource allocation. Again, without loss
of generality, one may see inter-slice resource allocation as
coarse-grained resource allocation and intra-slice resource

VOLUME 11, 2023 39141



H. P. Phyu et al.: Machine Learning in Network Slicing—A Survey

TABLE 6. Summary table of ML-based resource allocation in network slicing. Column titles: ‘‘Input,’’ ‘‘Decision’’ and ‘‘Objective’’ are relevant only for the
papers which use combination of DL and heuristics. NA’’ means the required information is ‘‘Not applicable.’’

allocation as fine-grained resource allocation. The numerical
results reveal that the presented scheme can maintain the bal-
ance between QoS and resource utilization efficiency, while
ensuring performance isolation.

Notably, some contributions consider resource allocation
over multiple timescales (i.e, large timescale and small
timescale). As mentioned earlier, large-timescale resource
allocation is referred to as coarse-grained resource allo-
cation, and small-timescale resource allocation is referred
to as fine-grained resource allocation. In this respect, the
authors of [89] and [165] utilize multi-timescale in their
proposed DL and RL collaborative model. They apply a
DL method for large-timescale resource allocation and a RL
method to perform the real-time RBs allocation to users
in each slice. In both contributions, the authors design
LSTM-based schemes for the large-timescale traffic fore-
casting and resource allocation of slices. For small-timescale
resource allocation, A3C is used in [89] and DDPG is used
in [165]. The experimental results suggest that the proposed
collaborative model can ensure isolation among slices and is
superior to other baseline RL methods (where no forecasting
is considered) in terms of cumulative reward, reflecting the
RB utilization.

Following the same multi-timescale idea as in [89]
and [165], the work in [125] combines a conventional
optimization technique and DDPG for the small-timescale
RB allocation. On the other hand, DQN is used for
large-timescale resource control at the base station level.
To guarantee QoS and performance isolation, Guaranteed
Bit Rate (GBR) and Maximum Bit Rate (MBR) constraints
are integrated in their lower-level control problem. Their
simulation results show that their framework outperforms the
work in [89] in terms of average utility, average packet delay,
and average packet drop rate. The same authors introduce
TL in [78] to solve online the multi-cell RAN resource allo-
cation problem, for vehicular networks. With TL, retraining
the algorithm from scratch is not necessary, if there is a
change in network states. Accordingly, the authors introduce
the ideas of self-optimizing RAN slicing framework. System
validation was left as future work.

2) RESOURCE ALLOCATION IN CN
Existing works on resource allocation for slices in CN are
mapped to the VNF placement problem on an underlying
substrate network [173].
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To achieve a good level of resource efficiency, a slice
might need to be reconfigured at certain intervals [174].
In general, the slice reconfiguration process includes traffic
flow re-routing and VNF instances scaling on the substrate
network [175]. Correspondingly, the authors of [166] investi-
gate the intra-slice reconfiguration problems in the CN. They
design a DDQN-driven framework to enhance long-term
resource consumption, by encouraging the appropriate recon-
figuration of slices. Their action is a set of paths onto which
demand flows of the slice are mapped. Thus, their action
space grows exponentially as the traffic demand increases.
To deal with this, they use the action space compression
method [176]. Their numerical results suggest that having
an adaptive resource reconfiguration mechanism can achieve
better resource efficiency, in the long run.

Similarly to [166], the authors of [97] investigate the CN
slice SFC placement and routing problem as a multi-layer
slice allocation problem. To this end, they consider traffic
forecasting operations as well as slices reconfiguration deci-
sions. Their main objective is to minimize reconfiguration
and blocking penalties. They assume that the higher the pri-
orities of slices are,11 the higher the reconfiguration penalties
are. GRU is used to predict the slice traffic variations for the
next hour and to proactively allocate resources. Besides, their
multi-layer slice allocation framework encompasses three
steps: RL-based resource adjustment if predicted traffic is less
than actual traffic utilization, optimal SFC placement, and
routing and wavelength assignment (RWA) for nodes onto
which VNFs of SFC are allocated. The algorithm validation
step is left as future work.

3) RESOURCE ALLOCATION IN TN
To the best of our knowledge, none of the papers considers
resource allocation in TN only. Instead, some works con-
sider TN slicing as a subset of CN slicing or RAN slic-
ing, to fulfill services requirements [46]. Simply speaking,
TN slices act as a connectivity layer between CN domains,
between RAN domains and between CN and RAN domains.
In this respect, the work in [167] explores the optical data
center interconnections (O-DCIs) network infrastructure to
satisfy the heterogeneous slice requests from various tenants.
The basic idea of O-DCIs is optical TN links are used to
interconnect CN data centers to leverage cloud computing
and handle the tremendous increase of data traffic in data
centers [177]. In fact, network slicing in O-DCIs can ensure
dynamic QoS requirements and can improve resource uti-
lization of the CN datacenter network. However, multiple
network slices allocation to O-DCIs still needs further inves-
tigation to provide cost-efficient solution for both InPs and
tenants [178].

Correspondingly, the authors of [167] design the multiple
slice provisioning problem as a VNE problem in the O-DCIs
environment. In their work, the InP allows to tenants to solve

11For example, mobile tenants have lower penalties than enterprise tenants
who usually purchase more resources).

the VNE, based on their specific slice requirements, with
the objective of maximizing both the social welfare of both
InP and tenants. Initially, the InP broadcasts to all tenants
resource availabilities and their associated pricing framework
(generated by using DDGP algorithm). The tenants then
derive the optimal VNE schemes (using an ILP approach)
in a distributed manner. Their pricing framework encourages
the tenants not to order more resources than they need and
ensures the load-balancing among tenants. In fact, ensuring
the load-balancing in the network helps to reduce the blocking
probability of slice requests [179]. Finally, based on VNE
solutions from tenants, the InP selects the most profitable
ones to allocate the corresponding resources. The evaluation
results show that the proposed framework has a six time
lower blocking probability than a benchmark solution, where
no load-balancing is considered. DDGP is also shown to
intelligently adjust the resource pricing scheme, based on the
current situation of the network, to maximize both the InP and
tenants’ profits.

Similarly, the authors of [168] establish their research work
based on the same O-DCIs reference architecture as [167]
to maximize the InP’s overall profits. However, in this
case, the InP only relies on the DQN agent to generate the
resource pricing/advertising and map the VNE requirements
from MVNOs. It is observed from their results that their
DQN-based framework leads to higher profit to InP in com-
parison to the benchmark algorithm where the InP doesn’t
take into account the tenants’ inputs in their evaluation of
resource pricing.

4) JOINT RAN AND CN RESOURCE ALLOCATION
Notably,some papers focus on joint resource allocation in
RAN and CN in their network slicing framework. Accord-
ingly, the work in [169] conducts the dynamic RBs allocation
to slices in the RAN and SFC slices mapping to substrate net-
work in the CN. Specifically, RBs are allocated in the RAN,
based on the delay and rate requirements of each user. VNFs
mapping to VMs then takes place in the CN. To do so, the
authors rely on a DQN agent to learn the network state (cov-
ering the probability of the user being successfully attached
to RAN slices and the corresponding user access rate to CN
slices) and to find the optimal resource allocation policies.
The simulations confirm the effectiveness of the conceptual-
ized scheme in both static (including only stationary users)
and dynamic (including mobile users) environments. Users
acceptance rates of more than 98% and 97% are achieved
with the proposed approach, while the baseline algorithms
can achieve values of at most 94%, in the same system setting.
Similarly, the work in [170] also uses a DQN agent, to find the
optimal policy for the CN’s computing resources allocation to
slices, and a legacy optimization technique for radio resource
allocation to each user in the RAN. It is clear from their results
that the DQN driven framework outperforms a dynamic and
a fixed resource allocation scheme, in terms of QoE and
resource utilization.
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Equivalently, focusing on the resources of RAN and CN,
the work in [36] seeks to maximize the long-term profits of
Slice Tenants (STs) by making the best use of the assigned
resources, while satisfying the QoS requirements of end-
users. Having continuous user demand fluctuations, static
allocation of slice resources might lead to high costs for
STs. Sensibly, the proposed framework enables STs to nego-
tiate the prices of resources with Slice Provider (SIP) and
yet allows them to re-sell their surplus resources, dynam-
ically over time. To do so, their dynamic resource trading
system is designed as MDP and solved with a classical
Q-Learning algorithm to achieve the long-term profits of STs.
Their analysis stresses the need to have appropriate trading
intervals, as short intervals may lead to high computational
costs. In addition, their results show that their framework can
lead to optimal QoS levels. Speaking of which, other factors
affect the overall profit (i.e. handoff cost12 and outage penalty
cost).13 Motivated by this fact, the work in [171] introduces
a DQN-driven framework, reducing the unnecessary handoff
cost associated with the RAN and CN resources. Their results
show that their mechanism can generate better overall profits,
by adjusting solutions dynamically.

All the above works are not concerned with the privacy
of user data. In [59] and [180], the authors study the prob-
lem of user device association to network slices, spanning
over the RAN and CN. To solve the problem, they rely
on a DQN integrated Hybrid Federated Learning (FL), that
exploits the benefits of both horizontal FL14 and vertical FL15

mechanisms. Their FL-driven framework trains the local ML
model according to the local device’s data and shares only the
extracted features to the central model (a.k.a global model,
located in the base station) to decide on the optimal selection
of network slice and base station for each device. Through
their simulation, their mechanism is shown to achieve better
handoff cost, average network throughput, and computation
efficiency, when compared to baseline approaches. Similarly,
the authors in [172] attempt to solve the same handover prob-
lem, based on the distributed Q-Learning approach. However,
privacy is not part of their concerns. Their scheme is shown
to reduce handover frequency, cost of handover, and blocking
probability to approximately 50%, as compared to conven-
tional approaches.

5) END-TO-END NETWORK SLICING RESOURCE
ALLOCATION
End-to-end (E2E) network slicing resource allocation prob-
lems are commonly seen as Virtual Network Embedding
(VNE) [181] or SFC placement [182] problems, with VNFs

12Handoff cost is the cost associated to managing the mobility of users
from one location to another.

13Outage penalty cost is the cost to pay if a user isn’t served due to
insufficient resources.

14Horizontal FL is used to aggregate the samples of end-users belongs to
the same type of slice service on base stations.

15Vertical FL is used to aggregate the features of base stations associated
with different slice services on third encrypted party side.

associated to RAN, CN, and TN domains. Nevertheless, E2E
resource allocation for network slicing differs from legacy
VNE and SFC placement problems as it involves dealing
with inter-dependent VNFs and requires as well performance
isolation among slices, with distinct SLAs [183]. Addition-
ally, E2E network slicing implies different types of resources
across the RAN, CN and TN domains, making it similar to
multi-resource allocation problems [184]. Besides, speaking
of E2E network domains, one may note that SLA satisfaction
is to be enabled across RAN, CN, and TN as well [185].

By mapping the E2E network slicing resource allocation
problem to the VNE problem, in [186], the authors allocate
resources to a slice over different InPs, while considering
their availability in terms of link bandwidth, delay and loca-
tion. Initially, they find the candidate InPs to allocate VNFs,
by using a simple heuristic. Then each virtual node is associ-
ated with a set of candidate InPs. After that, the obtained set
of InPs and their comprehensive features (i.e. average link
bandwidth between InPs, average number of hops between
InPs, average link delay, and number of VNFs associations
per InP), are integrated in a CNN-based approach, to find the
suitable InPs onto which VNFs are installed. As expected,
the ML-based approach outperforms traditional benchmark
approaches in terms of long-term revenue and computation
time. Equivalently, the study in [187] designs the on-demand
E2E VNEP as sMPD and solves it with DDQN, achieving a
higher average revenue to the InP in the long run than DQN
and greedy algorithms.

Likewise, the study in [188] and [189] rely on
heuristic-driven DRL techniques (i.e PG and A3C). Specif-
ically, the work in [188] uses a PG agent to sequentially
enhance the sub-optimal solutions given by heuristic in
their virtual network request (VNR) mapping (a.k.a VNE)
problem, in the context of network slicing. Specifically, the
outputs of the heuristic are characterized as heteograph16

and fed to the PG, where the learning agent is designed as
GCN. Their framework achieves 13-16 % improvement than
baseline approaches for large-scale networks of [12], [14]
nodes. On the other hand, in [189], the authors use a combined
A3C and GCN approach, by which GCN extracts features
from underlying networks and A3C finds the optimal policy.
The actor-network of A3C is incorporated with a heuristic
to maintain stability during policy training. The proposed
approach outperforms the DRL-only approach, under drastic
network load conditions.

In [190], the authors map the E2E slicing problem to the
SFC placement problem and design an ML-based resource
allocation approach that also enables SFC migration, based
on end-users’ mobility pattern. The proposed resource man-
agement framework is in line with ETSI-NFV standards.
It encompasses an orchestration layer, a MEC/access layer
and an end-users layer. The ML-based resource allocation
approach is integrated into the orchestration layer. Consid-
ering both discrete and continuous action spaces, they rely

16A Heteograph is composed of a substrate graph and a VNR.
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on two different DRL techniques; DQN and DDPG. The
authors evaluate their framework on testbed networks. It is
notable from their preliminary results that DDPG outper-
forms DQN in terms of stability, QoE and slice instances’
downtime.

Furthermore, considering IoT use cases, the works in [191]
and [192] design an ML-based adaptive resource manage-
ment framework to satisfy the diverse SLAs of IoT services.
Precisely, the former one proposes a network slicing automa-
tion framework that relies on LSTM to reserve resources
in advance and a DQN agent to enable adaptive resource
allocation, for the diverse services of IoT slices. On the other
hand, the latter one introduces an ML-based multi-objective
evolutionary algorithm (MOEA) to slice the IIoT network
efficiently, while dealing with conflicting multiple objec-
tives (i.e. maximizing the data throughput and minimizing
the delay). It is observed from the simulation results that
the solutions provide superior system performance against
baselinemodels. Similarly, in [193], the authors formulate the
online network slicing optimization problem and adopt a PPO
approach to balance between SLA violations and operational
costs. To say the least, their proposed solution outperforms
Greedy and ILP solutions.

As mentioned earlier, E2E network slicing encom-
passes different types of resources, associated with different
domains. Henceforth, it is crucial to have a comprehensive
view of E2E network domains and corresponding resources
to achieve appropriate resource allocation and enhance E2E
performance. With this respect, the authors of [183] establish
the 4-dimensional (4D) tensor to represent the holistic E2E
network slicing model. Specifically, the 4D tensor encom-
passes the resource requirements of VNFs, a set of VNFs’
chains, KPIs status of slicing resource management, and a
concatenation of all the slices state vectors. The authors
rely on DRL to solve the problem. Yet, unlike other DRL
approaches previously discussed in this survey, their policy
network is built using CNN to find the optimal resource
adjustment policy among slices, by extracting the features of
slices and their corresponding resource requirements. Their
mechanism shows relatively better results over other baseline
methods, in terms of SLA violation under varying network
loads (120% to 200%).

Likewise, considering different types of resources across
domains, the works in [194], [195], and [196] attempt to find
the optimal policy for the E2E resource allocation problem
for different types of slices. To represent the stochastic slice
arrivals, the authors in [194] model their problem as sMDP
and solve it with deep dueling Q network, while the authors
in [195] and [196] model the problem as MDP and apply
SPG and A2C algorithms respectively to solve the problem.
All of the proposed mechanisms outperform the considered
baselines, in terms of resource utilization.

While the above attempts toward E2E resource alloca-
tion consider multiple types of resources across different
domains, the authors of [197] focus on E2E resource orches-
tration across different domains (i.e. RAN, TN, and edge).

They propose a framework that encompasses decentralized
resource orchestrators associated each to a domain and a cen-
tral controller coordinating the network performance status.
Accordingly, the authors model the resource allocation prob-
lem across the different domains as a constraint-aware MDP
(a.k.a cMDP) and use a DDPG agent to solve it. According
to their prototype-based evaluations,17 their model is able
to adapt to the network loads of each slice and respect the
resource utilization of different domains, with a good conver-
gence time. Besides, in comparison to baseline approaches,
their framework is shown to be scalable, with approximately
3 times better system performance.

Works discussed so far on E2E resource allocation across
RAN, CN and TN, do not focus on SLAs satisfaction, despite
its importance. Thework in [185] covers this, with the authors
introducing an efficient E2E SLA decomposition framework,
using ML techniques. Specifically, the authors consider three
ML-based regression techniques (i.e. RF, Gradient Boost-
ing, and Neural Network) to decompose the E2E SLAs into
associated domain SLAs to create slices and assign them
the required resources. Firstly, their framework checks the
network capacity to accommodate the requested E2E SLA,
and then it forwards the information to the classification layer
to derive decisions. Besides, their framework monitors and
collects the historical data of SLAs from the corresponding
domains and this data is used to train the ML-based algo-
rithms. The ultimate goal of the framework is to accurately
decompose the service SLA requests into domain-level SLAs
of the infrastructure layer. It is learned from their experi-
mental results that the neural network shows higher accuracy
than RF and Gradient Boosting, at the cost of lower sample
efficiency.

6) LESSONS LEARNED
Unlike admission control, most of the resource allocation
problems under the realm of ML in network slicing are
designed as multi-objective problems. More specifically, the
majority of contributions focus on the trade-off between
QoS and resource efficiency by using the weighting factors
approach, setting a greater factor to the more important objec-
tive. Moreover, most of the resource allocation problems
in network slicing can be envisioned as sequential decision
problems, naturally modeled as MDP. In particular, network
slicing problems, with heterogeneous resource requirements,
usually do not include the prior knowledge of transition
and reward models. Thus, model-free RL frameworks are
commonly used to solve them, by training an agent that
derives decisions under the uncertain slice arrivals and traffic
patterns, without making any assumption of the underlying
network model.

Speaking of MDP formulations in resource allocation
problem, in general, states are designed based on the slice

17The prototype consists of a Radio manager, a Transport manager and a
Computing manager, configured using OpenAirInterface (OAI), OpenDay-
Light SDN switch and CUDA GPU platform.
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TABLE 7. Summary table of ML-based resource allocation in network slicing. Column titles: ‘‘Input,’’ ‘‘Decision’’ and ‘‘Objective’’ are relevant only for the
papers which use combination of DL and heuristics. NA’’ means the required information is ‘‘Not applicable.’’

status (i.e. resource utilization, QoS satisfaction, the num-
ber of users/slice, the demand traffic flows, and so forth),
actions are mainly denoted as the resource allocation actions
(i.e. increasing/decreasing resources or keeping the same
resources) and rewards are typically formulated to meet the
main objectives of the problem. For instance, if the objective
of a problem is the maximization of the long-term spectrum
efficiency and QoE, the reward can be a weighted combi-
nation of spectrum efficiency and QoE. As one may notice,
the number of users, slices, or demand of traffic flows have
been increasing rapidly day over day. Accordingly, the curse
of dimensionality issue of state-action pair arises in the con-
text of resource allocation. To overcome this, some papers
adopt certain methods (i.e. reward clipping, SAE) in their RL
framework to improve sample efficiency and filter out unnec-
essary state-action pairs. Regardless of being well-known
techniques, ML-based algorithms in network slicing resource
allocation have certain pitfalls in terms of sample efficiency,
training time, and algorithm complexity, henceforth calling
for further investigations. All the above contributions are
summarized in Table 5, Table 6 and Table 7.

V. OPEN RESEARCH CHALLENGES AND OPPORTUNITIES
While this survey underlines the recent achievements of sev-
eral ML-based methods in network slicing problems, there
are still some open challenges in incorporatingML theory and
algorithms for practical network slicing deployment. In this
section, we identify the open challenges of integrating ML
solutions in network slicing. From this perspective, admis-
sion control and resource allocation generally fall into one
category, since the same ML techniques can be applied for
both. To this end, we discuss and underline some of the
critical open challenges and research gaps, mainly twofold:
(i) open challenges particularly related to deep learning
in traffic forecasting, and (ii) open challenges particularly

focused on reinforcement learning in network slicing admis-
sion control and resource allocation. While identifying these
open challenges, we also discuss potential solutions for these
problems.

A. ML IN TRAFFIC FORECASTING FOR NETWORK SLICING
After extensively studying the related articles on fore-
casting in network slicing, we are able to distinguish
some specific challenges, such as forecasting slice-level
traffic while accounting for the privacy of MVNOs, end-
user level traffic forecasting, 1 ms forecasting granular-
ity, and the trade-off between computing complexity and
accuracy.

In most of the existing state-of-the-art works, the forecast-
ing function resides in the central controller of the network
and is managed by the InP. However, sometimes, due to
privacy concerns, MVNOs cannot share their slice traffic
information, which is entirely related to the behavior of their
users, with the InP. Consequently, this calls for an entirely
new forecasting framework, which allows MVNOs to train
their algorithms locally and only share non-sensitive infor-
mation with the central controller (managed by InP), to be
used for resource reservation during the next time interval
(or timewindow). It is worth stressing that privacy-preserving
network slice traffic forecasting still has room to be improved.
In this regard, one potential solution would be exploring
the concept of federated learning (a.k.a decentralized learn-
ing) [198]. Technically, FL allows multiple actors to train
and control their models locally, without exchanging any
critical data with the central controller. That being said,
FL-driven solutions shall be further investigated to deal
with multi-stakeholders network slicing environments which
exhibit diverse security requirements.

It is also important to point out that forecasting is done
only for the aggregated slice-level or RAN-level traffic in the

39146 VOLUME 11, 2023



H. P. Phyu et al.: Machine Learning in Network Slicing—A Survey

existing state-of-the-art. Hence, forecasting of end-user traf-
fic is still a missing piece of the network slicing problem.
Knowing the behavior of individual users in advance is cer-
tainly beneficial to fulfill the individual user QoS require-
ments. In this respect, giving authority to the MVNOs to
forecast the traffic closer to the user, chances are they have
better proficiency for end-user level traffic forecasting. If rea-
sonable accuracy is obtained, one might want to feed this
kind of end-user level forecast data into end-user admis-
sion control solutions or in fine-grained resource allocation
systems where end-user level QoS satisfaction is explicitly
considered.

In our literature study, we encountered some achievements
of incorporating forecasting into the resource allocation func-
tion. However, one should be aware of the high dynamicity of
traffic requirements in mobile network environments, where
traffic demand often varies in the order of milliseconds,
a trend which is likely to increase in the future. Henceforth,
dynamic resource allocation granularity in the RAN is con-
ducted at the level of RB, with TTI of 1 ms [44], shown
to achieve better resource efficiency than static RB alloca-
tion [125]. Correspondingly, an anticipatory resource alloca-
tion approach requires to have forecast data at a millisecond
time interval granularity. It is notable that all the traffic fore-
casting solutions in existing network slicing problems rely on
a time interval of seconds or minutes, which does not seem
adapted to these problems. This calls for further investigation
with millisecond-level time intervals. In such cases, there are
obvious challenges in obtaining datasets with such level of
granularity. If one has system capabilities that can capture
the desired level of granularity, the forecasting function then
needs to be trained using a good amount of such data to get
to acceptable accuracy values. Besides, it is worth exploiting
current ML solutions, tested with data at a minute or hour
granularity, which is prone to obtain reasonable results at the
millisecond level.

Another open topic corresponds to the trade-off between
computing complexity and accuracy in the training of DL
algorithms used for network slicing. It is important to explic-
itly investigate the algorithm complexity and determine the
level of computing complexity required to attain the desired
level of accuracy in the slice traffic forecasting. In this
case, one should have a vivid understanding of the require-
ments and objectives of the users and system, to be able
to choose the right forecasting technique corresponding to
specific requirements. From our knowledge, none of the
existing papers explicitly justify their choice for one spe-
cific forecasting technique over other by considering both
accuracy and complexity perspectives. It is clear that fore-
casting techniques shall be selected based on a compro-
mise between complexity and accuracy. Specifically, if a
system has no limit to computing power, one may want
to deploy a Transformer Model [199] to get better accu-
racy than LSTM [200]. On the other hand, GRU will be
selected against LSTM in a system with limited computation
time [95].

B. ML IN ADMISSION CONTROL AND RESOURCE
ALLOCATION
In our literature review, we identified some unique challenges
in the context of admission control and resource allocation
problems for network slicing, such as satisfying different
slice requirements in one iteration, accomplishing more than
one objective simultaneously, handling high computing com-
plexity due to an exponential number of state-action pairs and
energy overheads incurred due to massive communication
of collaborative decentralized ML models in 6G network
slicing.

Indeed, different network slice types (i.e., eMBB, URLLC
and mMTC) have remarkably diverse requirements. Never-
theless, the majority of state-of-the-art RL solutions in net-
work slicing admission control and resource allocation rely
on a single agent to deal with the heterogeneous slice require-
ments and apply that same single agent with the same reward
function to all the slices consecutively. From our review,
only two papers ([89], [147]) use multiple agents. However,
since the nature of slices is heterogeneous, it is impractical to
use one single agent, trained only for one specific purpose,
in the real-world diversified slice deployments. Here, poten-
tial solutions are to explore the concept of multi-agent RL
(MARL) [201]. In essence, MARL is where multiple agents
are interacting with the common network environment to find
the optimal policy based on their associated reward functions.
Based on the design of the reward scheme, one may have a
system where multiple agents are working cooperatively or
competitively, or even a mixed cooperative and competitive
mode.

In general, there are inherent trade-offs between multi-
ple objectives in the admission control and resource allo-
cation problems. For example, there is a trade-off between
user admission probability and QoS satisfaction, a trade-off
between network reliability and resource efficiency, and so
forth. In all of the existing RL solutions, those trade-offs are
handled in the reward function, by defining a weighting factor
between two objectives. Nonetheless, to do so, the weighting
factor must be predefined, and it is hard to assure that the
applied weighting factor is an optimal one for the given
scenario. In this respect, methods such as multi-objective
RL (MORL) [202], known to solve problems with conflict-
ing objectives, might come in handy. In MORL, the reward
function is designed as a vector instead of a scalar value.
MORL returns a reward vector for the respective individual
objectives, rather than returning a scalar reward value.

The curse of dimensionality is an inherent and ongoing
issue of RL in network slicing admission control and resource
allocation problems, due to an enormous number of state-
action pairs. Notably, the number of base stations, slices, and
end-user devices is growing continuously. We came across
very few attempts to address this problem in the existing
literature, the main example being the application of sparse
autoencoders [148] to reduce the number of dimension in
the state-action space. More efforts are needed to further
investigate such state-action reduction tools, for example
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deep autoencoders [203], latent variable models [204], etc.
Also, the learning agent utilizes the random policy in the
initial steps of all the existing RL solutions applied to net-
work slicing problems, thereby leading to longer convergence
time. On this matter, one possibility is exploiting the idea
of imitation learning [205] to enable the learning agent to
start with a relatively adapted policy, which reduces the con-
vergence time, instead of initializing it with a risky random
policy.

Indeed, sample efficiency is also one of the key ongo-
ing challenges to enhance the RL agent training process
in network slicing problems. In a real-world network slic-
ing environment, we rarely get the desired level of data to
train an agent, which requires to carefully design frame-
works which can be trained efficiently with the available
data. Noticeably, the number of studies focused on sample
efficiency is considerably low in our review, and this is
an area where additional efforts are expected. To this end,
reward shaping and TL are the most common approaches in
the literature to improve sample efficiency and leverage the
learning process of RL agents.Moreover, propitious solutions
in this sense are based on meta-learning [206] and hierarchi-
cal DNN (HiDeNN) [207] frameworks. Note that HiDeNN
can be built with any type of neural network (i.e., DNN,
RNN, or CNN) [208]. Technically, meta-learning enables
the agent to improve its learning process with a minimalist
amount of samples by initializing the training with optimized
hyper-parameters from prior knowledge. On the other hand,
recent frameworks such as HiDeNN can also enhance the
learning efficiency with less amount of data, with the help of
TL [207]. An interesting property is that agents in HiDeNN
can learn from incremental changes in data applied to a
previously trained model [209]. For instance, in the case of
network slicing, this can represent new user/slice requests,
which arrive incrementally over time.

Last but not least, energy efficiency is one of the key
performance indicators for the sustainability of multilayer
network slicing. Regardless of its benefits, a centralized ML
model exacerbates the energy consumption of the overall
network. Compared to the energy required for local com-
putations, the energy required for raw data transmission
is much higher [210]. Hence, it is logical to put forward
advanced decentralized architectures, such as MARL and
federated DRL to avoid unnecessary raw data transmission
to the central nodes and exploit the local computing power.
Since 6G network is envisioned as amultilayer heterogeneous
network [211], thousands of ML agents might be involved in
the collaborative decentralized ML scheme. This would lead
to higher energy consumption due to a large number of com-
munication (i.e. sharing model updates) between ML agents
in the regime of collaborative learning. To diminish energy
overheads, one might want to develop a federate framework
that selects the optimal number of participants in a more
intelligent manner in the collaborative training process while
achieving the desired accuracy. That said, one promising
solution is the MAB-based FL approach [212], in which the

MAB agent selects the most auspicious participants which
can better leverage the performance of the overall model.

VI. CONCLUSION
In this survey, we focus on the applications of ML techniques
in network slicing. First, we present background informa-
tion on network slicing. We then provide an overview of
some commonML techniques, used in network slicing. After
that, we review the literature on the topic. In particular,
we group contributions into three categories: traffic fore-
casting, admission control and resource allocation. For each
category, we highlight lessons learned. Finally, we discuss
some open challenges and hint to potential solutions that can
be considered.
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